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A relativistic source-field approach in radiation theory is examined and is shown to predict the radiative

corrections which normally require second quantization of electromagnetic fields. The connection between this

approach and conventional quantum electrodynamics is pointed out and discussed. For most practical
situations, the source-field effects are negligible, and semiclassical radiation phenomena are described by the
relativistic wave equation which we derive from the total Hamiltonian. This wave equation is then

transformed to an exact multipolar form which is suitable for application to many radiation problems. Its
nonrelativistic limit is obtained and interaction terms are interpreted.

I. INTRODUCTION

In quantum electrodynamics, part of the energy
of a system containing charged particles is under-
stood to arise from its interaction with the quan-
tized radiation field. This is commonly referred
to as radiative corrections. The most obvious
examples are the atomic Lamb shift and the
anomalous magnetic moment of the electron.

The quantum field theory of the interaction of
radiation with matter, where both matter and radi-
ation are second quantized, describes these cor-
rections satisfactorily, but the theory is beset by
infinities which may suggest that its basic founda-
tions are doubtful. A number of physicists believe
that electrodynamics is still incomplete and that
its difficulties are of such a profound nature that
they can be removed only by a drastic change in

the structure of the theory. Despite many attempts
to surmount these difficulties, no one has yet suc-
ceeded in satisfactorily modifying the theory with-
out abandoning principles like Lorentz invariance,
the probabilistic interpretation of state vectors,
and the local nature of the interaction.

In recent years, Jaynes and co-workers' have
emphasized that a great deal of insight into the
difficulties inherent in the structure of quantum

electrodynamics may be gained by working on a
semiclassical radiation theory where radiative
corrections are based on the intuitively clearer
classical concept of radiation reaction.

In contrast to quantum electrodynamics, the
sources in this semiclassical theory are described
by ordinary (first-quantized) Schrodinger quantum

mechanics and the electromagnetic fields are taken
as classical c-number fields. In this nonrelativis-
tic approach vacuum fluctuations are nonexistent
and radiative phenomena are attributed to radia-
tion reaction. Quantum electrodynamics attributes
these effects to the interactions with the vacuum

radiation field. The concept of the vacuum radia-
tion field has been demonstrated in an argument

by Welton, ' who succeeded in obtaining the non-

relativistic formula for the Lamb shift but failed
to account for the correct sign of the anomalous
magnetic moment of the electron. The Casimir
attraction' can be taken as another example sup-
porting the belief that this concept is not without

foundation.
Ackerhalt et at.' have suggested that the con-

ventional explanation of spontaneous decay in terms
of the vacuum field need not be adopted and that

it is the atom's own radiation field that modifies
the atom's characteristics in such a way as to
produce a finite decay rate and a shift of the un-

perturbed transition frequency.
Recent work' ' seems to concentrate on this so-

called source-field approach to radiative correc-
tions, still working within the framework of non-
relativistic semiclassical radiation theory. It
has been suspected' that such an approach should
lead to calculations of the correct atomic level
shifts, but that it is not completely straight-
forward. '' Its advantage may be in providing
an alternative description of radiative correc-
tions which is conceptually closer to classical
ideas and which may shed light as to where the
shortcomings of quantum electrodynamics orig-
inate.

In this paper we examine a relativistic theory in

which the source-field concept plays the central
role in the computation of radiative corrections.
A relativistic starting point is essential, because
some of the radiative corrections, in particular,
the anomalous magnetic moment of the electron,
have failed to be accounted for by nonrelativis-
tic approaches. ' In Sec. II we construct the
most general Hamiltonian for a system of
charged particles in interaction with classical,
static or time-dependent, external electromag-
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II. TOTAL HAMILTONIAN AND FIELD EQUATION

Our first goal is to construct the most general
Hamiltonian which is capable of describing a wide

spectrum of processes for a system of Dirac
particles (unbound or bound to an atom). This
system is taken to be in interaction with itself
and with externally applied, static or time-depen-
dent, classical electromagnetic fields.

In the absence of external fields and ignoring,
for the time being, self-interactions, the Hamil-
tonian for the system can be written as"

Ho —— d x -iy V+m+ (2.1)

where V represents the Coulomb potential respon-
sible for binding the system to a nucleus. The
latter is taken to be infinitely massive and centered
at the space origin of some inertial frame. If we

set V =0, Eq. (2.1) reduces to the Hamiltonian
describing a system of free Dirac particles.

In the presence of externally applied fields the
Hamiltonian is given by

netic fields. Self-interactions are included by
invoking classical arguments. The sources give
rise to an electromagnetic field which acts back
on these sources, giving rise to a self- interaction
Hamiltonian from which radiative corrections can
be calculated. In the total Hamiltonian, the only
dynamical variable is the spinor field. Standard
methods are then used to obtain the only field
equation in the formalism. It is a nonlinear Dirac
equation containing in a complicated fashion all the
information in the total Hamiltonian. To establish
contact with conventional quantum electrodynamics,
we consider in detail the simple case of an unbound
electron and calculate its self-energy as well as
the famous o./2m radiative correction to its mag-
netic moment. This is described in Sec. III. In
Sec. IV we take the point of view that the Dirac
equation, ignoring source-field effects, is ade-
quate for the description of most of the phenomena
in which strong external fields are involved. This
equation is then canonically transformed to an
exact "multipolar" form without need to second
quantize the external fields. ' In this form the
theory is suitable for many applications. In par-
ticular, it is useful for the description of nonlinear
phenomena and other intense-field effects, as
exhibited in laser interactions with matter. In-
teractions are further given familiar physical
significance by obtaining the nonrelativistic limit
of the transformed wave equation. This is done

by following a Foldy-Wouthuysen procedure.

J"=e$ Y "g (2.4)

is a four-vector potential a". This is called the
source field and it satisfies the equations

(2.5)

(2.5)

The solution of Eq. (2.5) is well known. We can
write

a" (x) = e(x, x') J "(x')dx' . (2.7)

The function 8(x,x') is usually taken to be the
retarded Green's function. ' ' However, Eg. (2.5)
admits another solution involving the advanced
Green's function, so that a proper combination of
the two solutions is also permissible. Physical
arguments and correspondence with quantum
electrodynamics should give us clues for the
correct choice of the function 8(x, x').

The self-interactions contribution to the total
Hamiltonian is then given by the minimal coupling
of the source field a" to the Dirac sources which
produce it. Thus we write

II„„= ~„xa" x d'x . (2.8)

Substituting for a„ from (2.7), we obtain

&y = g d x dx' J~ x J"x' 8 xx' . 29

A factor —, has been introduced in Eq. (2.9) be-
cause, by virtue of Eg. (2.4), H„~, involves non-
commuting fields and the order of the double
integral is ambiguous. The inclusion of the factor
& takes care of this ambiguity.

The required total semiclassical Hamiltonian
of the system is then obtained by adding (2.9) to
(2.2). The result is

H= d x -iy V- ey A+m+y'V

where the external fields are represented by the
classical vector potential A; in the Coulomb gauge

V A=O. (2.3)

For application to various physical situations,
this vector potential may be taken to represent
static electric or magnetic fields or an. arbitrary
time-dependent "laser" field. A combination of
these situations may also be considered.

The inclusion of self-interactions in the total
Hamiltonian can now proceed according to the
following steps.

Associated with the source operators

II, = d'x -iy. V —ey- A+m+yoy . (2.2) d'x d 'e x, x' Z„x a~ x'. 2.1O
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This can be written as

H =Ho+H„)f +II,„,
where

II,.„, =-e y A d'x.

(2.11)

(2.12)

x[yy„q(x„t) P y"g(x„t,},P(x)].

(2.16)

From the Hamiltonian (2.10) one can describe
a wide range of phenomena including self-interac-
tion. effects.

Before we proceed to obtain the field equation
we remark at this stage that this total Hamiltonian
can be extended to the case of external classical
fields interacting with material media (many-
atom systems). This can be done by associating
with each atom in the medium an electron field
which is kinematically independent of fields as-
sociated analogously with other atoms. Such a
procedure will correspond in many-body formalism
to imposing the Pauli principle for electrons on
each atom, but ignoring exchange effects in in-
teratom ic interactions. This procedure can be
arranged so as to simply introduce a summation
over the atoms in the basic relations of this paper.

The field equation associated with the Hamilto-
nian (2.10) is obtained by means of the Heisenberg
equation of motion,

j =i[a, q]

(2.13)

The computation of the first commutator is stan-
dard. %'e need to use only the equal-time anti-
commutation relations

The commutator in (2.16) can be evaluated using

(2.14) and (2.16}. The result can be written as"

[&.. .0( )]=- r'( /2) [/( )+K( )1, (2.19)

where a„ is given by (2.7) while b~ is defined by

5& =-ie d x,
,

dq8 x„x2 y& x„t y

XS~(x, x )yo. (2.20)

Adding (2.15) to (2.19) we get

g(x) = —y'[y %'-iey A+im

+&&'V + 2 &e(N+ N)14(x), (2.21)

which can finally be written as

(i}f—m- y'V)g(x)=[ey A+-,' e(g+(f}]g(x) .
(2.22)

Equation (2.22) is the equation of motion for the
Dirac field in the presence of the external fields
and taking account of self-interactions by means
of the source field method. We note that, by
virtue of (2.7} and (2.20}, this equation is non-

linear. In Sec. III we approximately remove this
nonlinearity for the simple case of a free electron
by working only to the first order in self-interac-
tion, and describe how radiative corrections, to
this order, can be obtained.

(4(x), 4(x')]. =. =~'5(x-x') .
We obtain

(2.14) III. SELF-INTERACTIONS TO FIRST ORDER:
THE FREE ELECTRON

i[H„)(x)]= —y'(y ~ V —e y ~ A+im+iy'V)$(x) .
(2.15)

For the second commutator in (2.13) we shall also
use the rules

We shall approximate the total Hamiltonian
(2.10) by taking a.ccount only of the term of order
+ responsible for radiative corrections. Using
covariant perturbation theory we first define the
S matrix:

ftI (x), T|'(x')] = -is, (x, x'), (2.16)
S =T exp -i 6tH„„ (3.1)

where Sz(x, x') is the complete Feynman electron-
propagator function for the case described by the
Hamiltonian (2.10). For a free Dirac field with
V =0 =A, we have

S~(x,x')-S~(x —x') = (i)f +m)4p, (x- x', m),

(2.17)

where h~(x —x', m) is the usual invariant delta
function.

Substituting from (2.4) and (2.9) we obtain

Retaining only the first-order term, we then have

S i dt ~ H ]f

= ——,'i e' dx

(3 2)

The expansion of (3.2) into normal products will

give rise to four terms. The first term represents
scattering processes of the Moiler type. The
second and the third terms involve single con-
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tractions of the fields. These terms are equal in

magnitude, and they combine to give
a more convenient form. We begin by the Fourier
decomposition of the fields,

5„' =-ie' dx dx' x 8 x x' y„
xi S,(x, x')y )'(I)(x') . (3.4)

This expression will be shown to be responsible
for radiative corrections. The fourth term in-
volves two contractions of the fields and will there-
fore cause no transitions.

Specializing now in the free-electron case and
setting V =0, we can then transform E(I. (3.3) into

and introduce new variables by

g=x' x, X-=-,'(x'+x),
p =-,'(p'+p), Q p' —p .

Substituting in (3.3) we get

(3.5)

S' =-i dP dP' dXe'~@'P' ie d e' ~y S X, y&8 X, C p

dp dp' dXe'~ C P' ~M'@ P, (3.6)

where

4M'=ie dge' ~y $~ X, y 8 X, . 37
hM' = ie' dge'~~ y&Sz(X, &)y "8(X,j),

(3.13)

Hence by virtue of (3.4) we obtain from (3.6)

S~"=-i dX X~m' X . (3.6)

where Sz(X, $) is the electron propagator in the
presence of the magnetic field. To order e this
is explicitly given by"

Thus under this approximation the interaction
Hamiltonian for the unbound Dirac field can be
written as

1
Sp(X $)

( )4

where

dq e "~S(q, X), (3.14)

H„)( Jl d xtj)AM'P,

and the total Hamiltonian is no+

(3 9)
S( X) g- eg+m 2eqA(Q+m)

q2 ~2 (q2 ~2)2

H- d x -iy —ey ~ A+m+Q~', 3.10
4e(2moE y(oE, Q), )

(q' —m')' (3.15)

E„,= B,A„—8 „A, ,

Aq ——(0, A) = g Eq pX ', (3.12)

from which we obtain the field equation

(i)f —m —bM')g-ey AP . (3.11)

Our next step is to show that &M' contains the
self-energy as well as radiative corrections to the
magnetic moment of the electron.

To be able to account for the anomalous magnetic
moment of the electron, we shall assume that the
external potential represents a classical static
magnetic field B. This is defined by means of the
relations

In E(I. (3.15) we have used the abbreviation

oE=(x„„F~'=20'B (3.16)

At this stage we remark that in order to obtain
quantum-electrodynamical results from this semi-
classical theory, we shall have to recognize the
function 8(X, $) [originally encountered in solving
the source-field equation (2.5)j as identical to the
"photon" Feynman propagator. In this case
8(X, () is given by a proper combination of the
advanced and retarded Green's functions. '4 Thus
we write

Epp 0 Ef '

E)//BED

The self-energy of the electron in this magnetic
field is now given by

=Dp( h)

1 e-as(
ds

(2)))4 s'+is
(3.17)
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Equation (3.7) now gives

Z8

(2W)3 S +)E

corrections of the anomalous magnetic moment of
the electron from Eq. (3.18). On the substitution
from Eq. (3.15), one can separate the ensuing ex-
pression into three parts:

(3.18) hM' =6M' +AM +6M (3.22)

S~ (q, X }~„„2= (g+ m)/(q2 —m') .
In this case Eq. (3.18) reduces to

(3.19)

'b8
b,M' (A„=—0) =

( ),

where we have made use of Eq. (3.14) and (3.17).
In the absence of the external magnetic field

where

i e' P —g+m —e44

(2v)' " (s'+i~)[(P - s)'- m']

(3.23)

ie' (P —g)2e(P —s)A
(2)T)' " (s'+is)[(P —s)'- m']'

which yields

„r„(4+m)r"
g —SZ

(3.20)

0)
'

ds „(P— + )r '
(2m)4 [(P —s)' —m2+ie]

28
SM; ,",, f 4s(--,'=s)y„

2moF +/vF, (P —g)],
(s' +2 c)[(P —s)' —m']'

(3.24)

(3.25)

1
(S'+i6) (3.21)

This is identical to the quantum-electrodynamic
result for the self-energy of the electron obtained
from conventional quantum electrodynamics.

We proceed now to calculate the lowest-order

These terms can be dealt with individually using
the standard Feynman tricks of combining denom-
inators and shifting the origin of the s-integration,
and by making extensive use of the Dirac algebra.
The calculation is straightforward, but tedius. "
Keeping terms up to an over-all order &8, we
obtain eventually

2[m(1+y)+e/y] 2my(1 —y2)egF —8y(1 —y)[m(1 +y)eAP]
1 (2x)4 (s (2 m2y2)2 12 2 2 3 (3.28)

ie', ' 8eAPm(l -y') 8eyAs'g'
(2~)4 (s (2 m2y2)3 (s (2 m2y2)3 (3.2 l)

ie', , ' 8y(1 —y)oFM'=(
)

d '(- — } (, )
(3.28)

Adding up these expressions we obtain

ie', ) 2m (1 +y) 2mey'(1 —y )vF 2e4(fy 8es 'Ag'
(ys) (s" —m'y')' + (s"—m'y')' + (s" —m'y')' (s" —m'y')' ) ' (3.2g)

Next we perform the s' integrations using standard
integrals. " The last two terms give zero contribu-
tion and we finally obtain

The second term in (3.30) depends on the external
field and can be evaluated easily to give

)T2e2 ' 2(l +y)4M' =, dy , sty*(1 —y))(2m)4, y my'

(3.30)

The first term in Eq. (3.30) originates from the
expression (3.21) which gives the self energy. -

eb M,„„= (iy (1 y)gF22 'm
-8 2

o'B
16m'2m

which can be put in the form

(3.31)

(3.32)
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IV. TRANSFORMATION OF THE THEORY

Having thus verified that radiative corrections
and other self-interactions can be accounted for
by using the source-field concept, we next con-
centrate on situations of practical significance.
If we ignore self-interactions in Eq. (2.22), we
can then write

~ 8
i —=(n p —en A+Pm+V)g .Bt (4.1)

For most practical situations this wave equation
can be taken as the starting point for the computa-
tions of external-field effects for a bound-electron
system. In this case V can be assumed to repre-
sent the Coulomb field binding the electron to an
atomic core.

Equation (4.1) can be put in another form which
is suitable for applications to a wide range of
phenomena, in particular atomic processes where
intense fields at optical frequencies are involved.
In ordinary quantum mechanics the sources are
defined by the operators

J (r) =en6(r —x), ,o(r) =e6(r —x) . (4.2)

This is precisely the standard result obtained
otherwise from conventional quantum electro-
dynamic s.

We finally remark that, although we have only
considered in detail the simple problem of the
lowest-order radiative corrections for the un-
bound electron, in principle the source-field
approach is capable of describing all radiative
effects. Not only can it account for higher-order
corrections for this case, but it can predict
atomic radiative effects to all orders and under
any physical situations, as may be dictated by
the external classical fields. It is clear that by
making use of equation (3.17), this source-field
approach is equivalent to quantum electrodynamics.
If a modification of the theory is contemplated,
one of the first candidates for thorough investiga-
tion is the use of the various Green's functions in
the solution of the source-field equation (2.5)."

It seems to us that, although previous source-
field treatments are formally correct within the
context of nonrelativistic quantum mechanics,
they are unlikely to shed light as to where quan-
tum electrodynamics fails. A relativistic theory,
as we explained earlier, is more likely to do so.

Finally it is important to point out the difference
between the source field discussed in this paper
and that in a completely semiclassical theory. In
a semiclassical theory all fields including the
source field are c numbers, while our source
field satisifies the operator equations (2.5) and is
thus a q number.

Another representation of these sources is pro-
vided by the polarization operator P and the mag-
netization operator M:

P, (r)=e f dlx; (5i —xx), (4.3)

(4.4)

These polarization sources are related to the
Dirac sources by means of the relations"

p(r) =e&(r) —V P(r),
0

J(r) =P (r)+VxM(r) .
(4.5)

The transformation of the theory is achieved by
means of the operation A = e '~, where S is the
generating function

S = P A d'r . (4.6)

Under this transformation we have

g-g'=e '
P .

The transformed wave function will therefore
satisfy the wave equation

i = e'he'+—. 8 ' sS
Bt Bt

(4.7)

(4.6)

where

h=n (p —eA)+Pm+V . (4.9)

In the Coulomb gauge for the external fields,
Ei = —sA/Bt, B =VxA, (4.10)

where E represents the transverse part of the
external electric field vector.

Using Eq. (4.6) and the first equation of (4.10),
we get

8S P'E d~r .Bt (4.11)

together with the commutation relations

(4.13)

The evaluation is straightforward. Only the first
commutator in (4.12) requires evaluation, and all
commutators of higher orders vanish. The re-
sult is exact and can be written as

e 'she'e = n ~ p+ pm+y'V — M ~ Bd'r . (4.14)

The expression e ' he' can be evaluated by
making use of the operator identit~

e ' eeh' eh-i [S,h]+[(-i) /2!] [3 [g h])+. . .
(4.12)
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In arriving at Eq. (4.14), we have also made use
of the distribution identities"

&(r-x) = &(r) —
~ d&x &(r —&x) (4.15)Bf

& r —~x . 4.16

Equation (4.8) now reads
I

=( pee() rymrp —f p'E*d r
Bt

M Bd'r (4.17)

Defining an electromagnetic polarization tensor
operator II„, associated with the atomic system by

rro~=Z, rr '=~„,M, , (4.18)

Eq. (4.17) now takes the form

self-energies. Its presence was required for
the correct computation of the transverse self-
energy of the bound electron. Its absence in
this semiclassical treatment is therefore not
surprising since we have shown that all radiative
corrections stem from the source-field terms
which we have not considered in this section.

A transformation similar to Eq. (4.8) was also
suggested by Heiss" in an attempt to devise a
nonperturbative approach to intense-field radia-
tion problems. Heiss's transformation was, how-
ever, confined to the electric dipole and the non-
relativistic approximations. The results of this
section constitute a relativistic extension of
Reiss's treatments and without resort to any
multipolar approximations.

The nonrelativistic limit of Eq. (4.17) can be
obtained by using a Foldy-Wouthuysen-type trans-
formation. First we note that odd operators are
contained in the expression

where

pe gl j (4.20)

=(x.p+Pm y y+-,'J II „Pr"d'r)P'

(4.19)

() ='p I )d Ed'r

This can be written

Q = 6 ~ (p —eW),

where

(4.21)

(4 „22)

The transformed wave equation is equivalent to
the original wave equation. While the Dirac sources
in the latter couple to the potentials, the coupling
to the external fields in Eq. (4.19) is given in

terms of the exact electric and magnetic polariza-
tion sources. These couple directly to the gauge-

invariant field intensities. The theory is there-
fore manifestly gauge invariant.

In a previous paper, "a transformation, similar
in some respects to the one we have just consid-
ered, has been applied to the Dirac Hamiltonian

and results were obtained only by assuming that

the electromagnetic fields are second quantized.
In this paper note the absence of the term f)P ~'d'r.

This term has been shown" to be important for

1
ry, (x)=r, e J d'r drrx'()(r —Xx)E'(r) .

(4.23)

Thus Eq. (4.17) becomes
I

i = ()' (p —eW)+ pm+eV- P ~ E~ d'r g'.
Bt

(4.24)

Following Foldy and Wouthuysen, "we now de-
fine the transf or mation

e-i SQ/2m2— (4.25)

By taking identical steps to the familiar procedure,
one will eventually obtain

I. s (p -eW) Pz - p m+ —,+ p- p E~d'r — pv ~ VxW —,v VxE —,g ~ Exp —,V E )I)'.
2m 8m' 2m 8m' 4m' Bm

(4.28}

In arriving at this result, we have also made use
of the distribution identities (4.15) and (4.18).

Apart from the terms involving W and P, the
individual terms in Eq. (4.26) have their usual
physical interpretation. To be able to identify the
other terms, we first consider the expansion

2 2

2m 2' 2m(p —e)P) = + Ir' —f PE B d'r, (e.dy)

where

1
dA. [TA.5(r -A.x ) + A, 5(r —A. x)T ] (4.28)

2%i p

T'= —ixx V

is the orbital angular momentum operator.

(4.29)

is the nonrelativistic magnetization operator, "and
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The term quadratic in e in Eq. (4.27) represents
an exact expression for the nonrelativistic dia-
magnetic energy shift. In the magnetic dipole ap-
proximation this term gives

8 8Wa- [xxB(5)j'. (4.30)

The spin magnetic moment does not couple directly
to the magnetic field but to V ~%. Only in the di-
pole approximation do we get

v 'vxW — v 'B(6),
2m 2m

(4.31)

%'e also note that the term involving the electric
polarization retains its form in the relativistic
equation. Thus the electric polarization operator,
unlike the magnetic polarization operator, has
the same form in both relativistic and nonrela-
tivis tie formulations.

Keeping terms up to the order 1/m, one obtains
the Schrodinger equation

.94 p ~ J. 3 e 2

i—= +V- P E d r- % ~ Bd'r+ g' — a ~ V'xW C.Bt 2~ 2m 2' (4.32)

This equation is also manifestly gauge invariant
and takes account of all contributions from the
entire electric multipole series as well as the
nonrelativistic contributions from the magnetic
multipoles. In addition, spin contributions and
diamagnetic energy effects are properly included
to all orders.
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