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We introduce an analogy between the theory of autoionizing states as described by Fano and

the tbeory of certain states ("pseudo-autoionizing states") of an irradiated atom. These
"pseudo-autoionizing states" are used to obtain a number of qualitative results concerning
resonant multiphoton ionization probabilities for several experimental arrangements. This
method makes clear the importance of nonresonant processes in determining resonant multi-
photon ionization line shapes.

I. INTRODUCTION

Multiphoton ionization has received a great deal
of attention in recent years from both experimen-
talists' and theoreticians. ' This interest has been
fueled by the advent of high-powered tunable lasers
which make possible ionization measurements as
functions of both the power and the frequency of the
incident light.

Most of the ca,lculations of multiphoton ionization
processes reported thus far have been numerical
in character, and have therefore been restricted
to specific atoms —generally hydrogen or the al-
kali metals. Because these calculations have as a
goal the quantitative numerical description of the
multiphoton ionization process for specific atoms,
no effort has been made to determine which fea-
tures of the results depend on general qualitative
behavior of the process and which features de-
pend on the specific atom involved. For example,
as we change from one atomic species to another,
what are the important atomic parameters whose
change causes the observed differences in experi-
mental profiles? As the techniques previously re-
ported were chosen for purposes of numerical con-
venience, their complex nature seems ill-suited
to the discussion of this and other qualitatively
oriented questions. Thus, although a great deal
of information is available about line shapes for
specific multiphoton processes at specific wave-
lengths and intensities, very little appears to be
known as to what kinds of line shapes are poten-
tially possible. This is evidenced by the fact that
experimental results and theoretical calculations
are very seldom expressed in parametrized form,
being presented instead in a completely numerical
fashion. (The effective order of the process is ot'

course an exception. )
In this article we develop an analogy between

autoionization and certain types of resonant multi-

photon ionization processes. Since the Fano form-
ulation' of autoionization is well known to many
a,tomic physicists, this analogy provides a con-
venient and easy method of studying the qualitative
aspects of multiphoton ionization. The probability
of multiphoton ionization can immediately be ex-
pressed in a form which clearly indicates which

aspects result from peculiarities of the specific
atom being considered, and which aspects are of
a more general nature. The simplicity of the re-
sults obtained allow, we feel, a greater physical
insight into multiphoton ionization than is generzQy
obtained from the more complicated quantitative
calculations. In addition, the results focus atten-
tion on those parameters of the atom which need to
be numerically calculated in order to explain the
process quantitatively.

The Fano' formalism for autoionizing states is
reviewed in Sec. II. Section III is devoted to their
irradiated-atom analog, "pseudo-autoionizing
states. " A resonant two-photon ionization line
shape is derived in Sec. IVA using these states,
while the generalization to an n-photon process is
discussed in Sec. IVB. Section V discusses a
more complicated situation in which an additional
intermediate resonance is considered. A brief
summary is then given in Sec. VI.

H. AUTOIONIZING STATE

We first briefly review the theory of autoionizing
states as given by Fano. ' It is assumed that the
a.tomic Hamiltonian H„has, in the zeroth approxi-
mation, a discrete eigenstate

~ y) which is imbed-
ded in a continuum of eigenstates

~
aE), where I

is a label which removes the degeneracy of all
possible states of energyE . With respect to these
states, the matrix elements of H„are assumed to
be of the form

i903
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where

I e }—cosa
I nE),

mVE

f dz'('
(
az')

(2)

is the bound state "clothed" by the continuum
((P indicates principal-part integration), and

tank = vV '/[E —-E —E(E)] .
The quantity F(E) is a shift in the energy of

I y) due
to the interaction with the continuum:

The probability of a transition from a ground
state lg) to the states 1@~) is, in lowest-order
perturbation theory, proportional to

I (g I & I +s) I

'
(6)

where T is the transition operator. Using Eq. (2),
one finds

For simplicity, we assume here and below that the
phases of the states have been chosen so that all
matrix elements are real.

The wave function which diagonalizes HA with
eigenvalue E within the manifold of states I y) and

I oE) can be written as

Ie ) =a(z) Ip)+ f5 .(E)I ar&')d&

In using Eq. (8) for analyzing experimental data,
it is assumed that E(E), Va, and q vary slowly in
the neighborhood of the resonance and hence mey
be replaced by constants. Note that Eq. (8) has a
zero when q = -c. This zero is a direct conse-
quence of the interaction between the discrete and
continuum contributions to the transition probabili-
ty.

III. PSESO-AUTOIONIZING STATES

"Pseudo-autoionizing states" are the irra-
diated-atom analogs of the autoionizing states of
Sec. II. The atom is again described by the Hamil-
tonian HA. We assume that the eigenstates of FI„
are known (in this section and below we are in-
terested in eigenstates of HA which represent
bound states and continuum eigenstates not near
Bn autoionizing resonance, the autoionizing forma-
lism of Sec. II being used only for the atom-field
interaction). To introduce the radiation field into
the problem, we must add the Hamiltonian of the
free field, HF, and the Hamiltonian of the interac-
tion between the atom and field, H». The total
Hamiltonian H now becomes

H =HA+HF+HAF .
The eigenstates of HF are, of course, of the type
I n, (u„n,e„.. . ), where

Hp I ni(di n2(()2 . . . )

= (n, h(o, +n, g(u, +. . . ) I n, (u „n,(()„.. . ) .

(12)
The usual electric-dipole approximation is taken
for HAF:

1(gl &
I +~) I' (q+ ~)'

I (g I
T

I ~E) I

' I+ e'

where

e = (E Eq —E)/vV~, —

and

(~17 lg)
~ vV, (HEI rl g)

'

(8)

(gl ~l @~)= (gl & l@)»n& —(gl &
I o(E) cosa.1

mV~

(7)

We see from Eqs. (4) and (7} that there will be a
resonance in the transition probability when E
=E~+E(E). Gn one side of the resonance, the
contributions from 14 ) and

I nE) will interfere
constructively, while on the other side they will
interfere destructively. This leads to the well-
known asymmetric Fano profile for absorption.
Using Eq. (7) in Eq. (6), we find

where a is a creation operator for a photon of
frequency w, polarization i, and the remaining
symbols have their usual meaning.

Suppose now that the eigenstates
I a, n~),

I E, (n —l)u) of Hz+H~ are known, where I a) is a
discrete atomic state,

I E) is a continuum atomic
state, and

I neo) represents a. field of n photons of
frequency e. Vfe assume that the energy of the
state 1(2, n&u), E, +nk~, lies in the continuum of
energies E+ (n —1)h&u as shown in Fig. 1 (in all
figures, the vertical axis is atomic energy); i.e. ,
we assume that a photon of frequency ~ can ionize
an atom beginning in state

I a). If we now consider
diegonalizing the Hamiltonian H, and restrict our
attention to the manifold of states discussed above,
then the problem is mathematically identical to
that discussed in Sec. II. By restricting our 3tten-
tion to this particular manifold of states, we are
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of course excluding certain parts of the general
problem. We will discuss the implications of this
restriction at the end of this section.

Using the results of the previous section, we can
immediately write down the eigenfunctions of H:

H~48) = h ~4 s),
where

iaaf) = iC, ) —cosh,
i E, (n —1)(u),

ma~

with E being fixed by the condition

h' =E+ (n —1)hu

and

Hs =(a, n~ IH» ~E, (n —I)&),

-mII@2

E —E, —her —E(E) '

E(E) =6' [H„['dE'

dE'II
(4,)= ~a, neo)+iP s ~E', (n —1)&o).E -E'

Consider now the probability of transition from a
state

~
b, (n —1)to, &u') to the continuum of states

~4&), where
~
b) is a bound state of the atom: of

the same parity as
~
a) (Pig. 1). In lowest-order

perturbation theory, this probability is propor-
tional to the square of

H, (E', (n- I)tolH»~ b, (n —l)&u, &o')
(e iH»i b, (n —1)&u, to')= (P

—cosh(E, (n —l)to~H»~ b, (n —1)e, e'), (15)

where 8=E,+(n —1)k~+8&o'. The matrix element
of Eq. (15) is similar to the matrix element of Eq.
(7) which describes absorption by an autoionizing
state. Using the same assumptions discussed in
Sec. II, we may cast the result in the same form
as Eq. (8). Note the parameter q for this process
is given by the expression

I Hs, (E', (n —l)(u i H„~i b, (n —I)(o, (u')

mHs(E, (n —1)~ I H» I b, (n —1)to, &u')

and is independent of the intensity of the strong
field

~
ne), i.e. , is a constant. At first sight this

might seem to say that the Pano absorption profile
persists even as n-0. However, for this case the
energy parameter e is given by

e = [h —E, —nn(u —Z(E) j/sH,',
which is inversely proportional to n. Using this
fact, it readily follows that the profile given by
Eq. (8) tends to one as n- 0, a,s expected.

For moderately large n, this process shows a
Pano profile with a resona, nce in the region ao'
= (E,+ h&o —E~)/I. In this case, the Pano profile
is produced by the strong interaction between the
discrete state

~
a, nv) and the continuum of states

~
E, (n —1)v). We therefore refer to

~
a, ne) as a

"pseudo-autoionizing state. "
The situation discussed above can be easily

realized experimentally. It corresponds, for ex-
ample, to the case in which an atom is illuminated
by two light sources with the longer-wavelength
source having a very much higher power than the
shorter-wavelength one. Thus, the long-wave-

I Q, A ld )

AF

I b, (n-()~,~')

&&G. 1. "Pseudo-autoionizing state" ~a, neo).

length source might be a high-power laser, and
the short wavelength could be produced by syn-
chrotron sources. The short wavelength should,
of course, be of a frequency such that it can ionize
the atom from the state in which it enters the in-
teraction region (e.g. , the ground state).

In the calculation above we have neglected cer-
ta.in ma, trix elements. First, we have neglected
nonresonant bound-bound matrix elements. Cus-
tomary physical insight tells us that if n is not too
large, then these corresponding processes contri-
bute at most a sma, ll shift to all the sta, tes involved.
We are also assuming that no pair of atomic states
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la, n~ )
(2}

HUFF

Ib, nu, u')

FIG. 2. Two-photon ionization involving a resonant
intermediate state ia, n u) and a nonresonant intermediate
state i c,na&}.

FIG. 3. Two-photon ionization in which the nonreso-
nant process of Fig. 2 has been approximated by an ef-
fective Hamiltonian H „,f .

has an energy separation nearly equal to a multiple
of hap. We will consider in later sections situations
where this assumption is no longer valid.

Secondly, we have neglected the spontaneous de-
cay of the states. This is valid if n is sufficiently
large, so that the stimulated processes dominate.

Finally, we have neglected the effect of free-free
transition induced by the light of frequency w. This
seems reasonable because such processes are
relatively structureless, at least over the energy
range of interest in the experiment discussed
above. Similar assumptions to the above will be
made in future sections without further discussion.

such that the process

i b, nor, e')-
i c, neo)

is very nonresonant; the transitions

i b; ne, u'}-
i c, n~} i E, (n —1)&u)

are thus weak, and can be treated using the lowest-
order nonvanishing perturbation theory.

We find that the nonresonant part of the interac-
tion between i b) and iE) contains terms of the
type

~ (b, n~, &u'iH»i c, n&u)(c, nariH»iE, (n —l)~}

IV. RESONANT MULTIPHOTON IONIZATION

A. Two-photon case

The situation described above becomes even
more closely related to that of autoionizing states
when the effects of other levels in the atom are
considered. Consider the situation pictured in
Fig. 2, where now i b} is of the opposite parity to

i a). The weak light source is taken in this case
to have a frequency

(o' = (E, —E,)/5
such that the process i 5, n&u, &u') i a, neo) is close
to resonance. The atomic state

i c) has an energy

(16)

(»»i (u'i Herrl E~ (n- 1)~),
where He«i is an effective Hamiltonian (Fig. 3).

We once again calculate the first-order prob-
ability of a transition from the state i 5) into the
continuum of states i4'&) of Eq. (14). This prob-
ability is, using Eq. (17), proportional to the
square of

(17)

which, because of the nonresonant nature of the
interaction, are roughly independent of co'. Thus,
to a very good approximation, we can simply re-
place Eq. (16) by

(+s I
(H»+Hi'ff) I &, n~, ~') = ' (~.I(H»+H'. g) I &, n~, ~')

g

—cosa(E, (n 1)(uiHI'„'i 5, n-~, ~'), (18)
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where S=E~+nh&u+hup'=E+(n —1)h&u. The Fano
profile in this case is given by

l(~sl (H»+H'. ff')I b, n~, ~') ' (q+e}'
i(E, (n —I)cu i H,"«'

i b,ncaa, cu'}P I + e2 (19)

where, in analogy to Eqs. (9) and (10),

e = [b -E, -nh(o —F(E))/«H'«,

(20)

(C.I(H»+ HP«') I b, n~, ~')
«H~(E, (n —1}&u ~H~,g ~ b, n&o, &o'}

Note that we can write q as

q =A+ B/n,

(21)

B. p+r —Photon resonant ionization

The methods of the previous section can be ex-
tended to study the process in which an atom is
ionized by an m =p+r photon absorption, enhanced
because of a p-photon resonance with an inter-
mediate state. The process is incorporated into
the previous formalism by introducing the follow-
ing effective Hamiltonians: H„, for the m-photon
direct transition from the ground state ~g) to the
continuum via nonresonant intermediate states
(the equivalent of HI~«~ of Sec. IVA}; H~f~f for the
r-photon mixing of the resonant intermediate state

~
a) into the continuum; and H',~«~ for the p-photon

transition from the ground state ~g) to the reso-
nant intermediate state

~
a). These operators are

defined as in the previous section by use of the
first nonvanishing term in perturbation theory, the
use of these expressions being justified in the
same fashion. We again require that B,ff and

B ff be small, so that first -order perturbation
theory for transition to the "pseudo-autoionizing
state" is justified.

where A and B are roughly constants; that is,
q- constant for large n. Once again, we see that
a Fano profile results, with a resonance in the
region of

u' = (E, —E,)/5 .
The situation discussed here (Fig. 2) describes

a special case of the two-photon ionization of an

atom. From Eq. (18), we see that the Fano pro-
file is produced, in this case, by the nonresonant
processes. That is, if HP«i were zero, Eq. (18)
would give simply a Lorentzian line shape. Thus,
nonresonant processes are seen to be crucial in
the calculation of line shapes in multiphoton ioniza-
tion.

With the obvious substitutions, the process is
again described by Eqs. (19)-(21)of Sec. IVA.
It is easily verified that the parameter q has the
form

q =A+ B/n"

where n»1 is the number of photons in the field
which couples the resonant intermediate state to
the continuum via the r-photon process, and A and
B are constants. As in the previous section, q
tends to a constant for large intensity. The cor-
responding Fano profile is broadened and flattened
as n increases.

It should further be mentioned that the require-
ment that H,«and H,«be small actually corres-
ponds to many experimental situations and does
not require that two separate lasers be used to
drive the process. For moderate intensities,
whenever P &r, both H,«'and H', «will be small
compared to H,«, under the same restrictions,
whenever P&1, then H,«and Il,«will be absolute-
ly (rather tha, n comparatively) small. Both of
these circumstances are those most commonly met
in the laboratory.

V. THREE-PHOTON IONIZATION IN MUTILEVEL ATOMS

In the previous section we have only considered
the case where a single intermediate-state reso-
nance occurs. In actual experimental situations
it may happen that additional resonances between
intermediate bound states also occur. In this sec-
tion we demonstrate how the Fano formalism may
also be used to handle situations of this type. The
results in this case are much more complicated
than those of the previous section. However, the
source of these complications can be traced be-
cause of the simplicity of the formalism.

As an example, we consider the three-photon
ionization process depicted in Fig. 4, where

+'=E~-E» (d=E, -E„.
We have once again introduced effective operators,
as indicated in Fig. 4, to describe multiphoton
processes proceeding via nonresonant intermediate
states. In particular, the operator H,«describes
the two-photon transition

~b, n~, ~')- (a, (n-l)~),
H, ff describes the three-photon transition

~ b, n(o, (u') —(E, (n —2)(o),

and B,«describes the two-photon transition in-
volving only the strong field

~ d, n(u) - ( E, (n —2)s)) .
Our first step is to take into account the effects
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with

H, E=(ll (H„E+H,ff } I E, (n —2)(g)

=(E(d, n(ulH,"„'IE,(n 2)(0)

+p(a, (n —1)(dlH„EIE, (n —2)(d)

c(HdE—+ pH, E,

HBE ( HdE +HaE t

(&)

EFF

AF

(&)

EFF

(&)

EFF

2

E,'=E, +(n —1)b(d+(P dE'

FIG. 4. Three-photon ionization involving a resonance
between intermediate discrete states. Nonresonant pro-
cesses have een appro

'
h b proximated by effective Hamiltonians.

of the strong iefield by carrying out a diagonalization
of H between the states Id), I a), and IE). Follow-
ing Fano again, we find that

(H+H(«' )le, ) =el~, ),I
(22)

where

)+ * [2) —)8, (rr —2)ru)),H f(H3E

2'E' dz',E„'=E„+nh(d+6'

W2 52+4 d nM HAP a n-1 ~

LEE Hg EIIIE I g

=—52+ 4&2„, .

The states
I 1) and

I 2) can be recognized as the
two states of the Autler-Townes' or ac-Stark
doublet, "clothed" by the interaction with the con-
tinuum. The angles 4, and 62 corresponding to
these states are defined by

E being fixed by the condition

((l =E+(n —2)h(d.

tan~, = ffH', E/-(8 —E,),
tanh2 = —ffH2E/(((' —E2),

(24)

The wave functions
I 1) and

I 2) are defined by

I 1) = ~ I d, n(o}+Pl a, (n —1)(u)

+6' rdE'H, E I
E', (n —2)(())

I 2) = P I d, n~) - ~
I
a, (n- 1}~)

+(P ~
dE'H» IE', (n —2)(())

(23)

where

1E .=-.'(E'.+E,') ~ 2~.1,2 2

Finally 6 is defined by

tan4 = tan4, + tanh2.

The first-order probability of a transition from
I b, n&(u()') to the states IC@) is given by the square
of the matrix element

(b, n~, (O'
I (H~E+H, 'fl +H ff ) I +s)

(d)+H"')
l
1)+"" 2 (b, ne, (d'I (H„,+H(2))l 2) —(b, neo, e'IH, ffIE (n 2)(d= COSA (b~ nM~ M HgfF+Hrff +

H ) ~ gfF ~ff
2E

evaluated at

8 =E +nb(d+If(d' =E+ (n —2)h(() .b

As indicated by Eq. (26), the probability of ab-
sorption of a photon of frequency (d' is, in this

case, a very complicated function of u'. This
cornomplicated structure arises because of inter-
ference between the Pano and ac Stark effects. A
number of very different absorption profiles can
result in this case, depending on the exact values
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of the various matrix elements involved. For ex-
ample, if all the effective Hamiltonians are very
small, the profile will be dominated by the usual
ac Stark effect. Then, for 6=0, a single sym-
metric absorption will occur for small values of
H„, splitting into two symmetric curves when

H,„becomes larger than the linewidth of the states.
The linewidth in this case is related, of course,
to. the lifetime of the states with respect to decay
into the continuum via absorption of another photon,
since spontaneous lifetimes have not been included
in our calculation.

Once the effective Hamiltonians become impor-
tant, however, the absorption curve will become
asymmetric, and can show as many as two zeros
of intensity in addition to the relative minimum
which occurs between the two maxima of the ac
Stark profile. One zero of intensity will occur in
the case that H, ~«~ is small, but either (or both}
H ff or H ff is large . It can easily be s een that
the term in square brackets in Eq. (26} vanishes
at one value of +' for this case. The two zeros of
probability will result whenever H,«becomes sig-
nificantly large, as can be seen once again by
reference to the term in square brackets in Eq.
(26). When this occurs, the situation becomes very
analogous to the case of two close-lying autoioniz-
ing states discussed by Fano. '

It is obvious from this brief discussion that the
absorption curve can take on many different shapes
when an additional resonance occurs between in-
termediate bound states. Because the features of
the curve depend very critically on the relative
strengths of the interactions a more complete
general analysis of these profiles would be quite
lengthy. Specific analyses, although useful, would
take us beyond the scope of this paper. However,
once again, we can easily see the extreme impor-
tance of nonresonant processes in determining the
shape of the profile.

VI. SUMMARY AND DISCUSSION

In the preceding analysis, we have pointed out the

analogy between certain states of an irradiated
atom ("pseudo-autoionizing states "}and autoioniz-
ing states of an atom in the absence of incident
radiation. This analogy permitted the Fano' for-
malism for autoionizing states to be employed for
treating certain resonant multiphoton ionization
processes. Explicit discussions were presented
for m-photon ionization, where a single inter-
mediate state is resonant with the ground state
plus P&m photons (with the additional requirement

that P &m- p), and for three-photon ionization,
where an additional resonance occurs between two
discrete states of the atom. In the former case,
a Fano profile is predicted for the resonance,
while the latter case shows complicated structure
resulting from the interference of the Fano and
ac Stark effects.

We have always assumed above that the transition
out of the ground state involved a weak field. This
was done so that first-order perturbation theory
could be used to obtain the transition probability.
If the first transition is also strong, the resulting
calculation is much more tedious. Complications
arising when this assumption is invalid will be dis-
cussed elsewhere. '

One strength of this approach is that it enables
one to see the importance of nonresonant processes
in determining the structure of the resonance pro-
file. The characteristic Fano profile, in fact,
arises from interference between these nonreso-
nant terms and the resonant transition. The im-
portance of the nonresonant terms becomes even
more apparent for the case considered in Sec. V.
Here, a large variety of profiles can result, de-
pending on the relative magnitudes of the various
nonresonant terms. The importance of these pro-
cesses has not generally been emphasized in more
quantitative calculations.

Another aspect of a more general approach such
as the one described above is that it provides con-
venient equations for the parametrization of ex-
perimental data. Thus, just as autoionization data
is presented by giving the parameters q and mHE,

so may multiphoton ionization data be concisely
parametrized. This has the benefit that it focuses
attention on the aspects of the data which are
unique to a specific atom, thus simplifying the
work of both experimentalist and theoretician.

We have attempted to demonstrate above how our
method may be utilized to obtain qualitative infor-
mation about multiphoton ionization processes.
Our emphasis has been on the ease and simplicity
with which such qualitative information can be ob-
tained. No attempt has been made here to obtain
quantitative information about specific profiles,
although the method certainly allows such deter-
mination in principle. Of course, both the qualita-
tive and quantitative information can be obtained
by a variety of more commonly used techniques,
e.g. , the method of resolvents. ' However, our
method provides a different vantage point for these
familiar calculations, and we think it serves to
focus attention on those features of the process
which are physically significant.
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