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The adiabatic-nuclei theory of electron-molecule scattering is extended to account for electronic excitation of
the target. The approximate expressions for the wave function and the scattering amplitude are derived from a
formally exact expansion in terms of the fixed-nuclei, electronic-scattering solutions. The formalism treats
molecular-bound and continuum states on an equal footing. We also propose a modified expression for the

adiabatic-scattering amplitude which is expected to have an increased range of validity near excitation
thresholds.

I. INTRODUCTION

During the last few years, both purely theoreti-
cal and computational evidence has been accumu-
lating which shows that the adiabatic-nuclei ap-
proximation' provides an accurate description of
electron-molecule scattering when the collision
time is short compared with the rotational and
vibrational periods of the molecule. The basic
formula for the adiabatic scattering amplitude
was first derived by Chase' in the context of
nuclear physics. Temkin and co-workers ob-
tained detailed expressions which are appropriate
for the rotational' and vibrational excitation' of
homonuclear diatomics. Similar expressions were
also derived by Hara, ' who calculated the rotation-
al-excitation cross section for H, . Other applica-
tions of the adiabatic-nuclei theory include the
early work of Mittleman, Peacher, and Rozsnyai
on the rotational excitation of polar molecules, '
the study of e -N, collisions by Burke and co-
workers, v the formulation of electron scattering
from polyatomic molecules, ' Henry and Chang's
calculation of the simultaneous rotational-vibra-
tional excitation of H„' and the recent study of the
e -CO system by Chandra and Qianturco. "

Recently, Bottcher" and Chang and Fano" have
examined the fundamental justification of the
adiabatic-nuclei theory of electron-molecule colli-
sions by studying its relationship to the close-
coupling formalism' with the aid of frame trans-
formations. Unfortunately, in this form the deriva-
tion of the approximation bears little resemblance
to the usual adiabatic (Born-Oppenheimer) treat-
ment of bound molecular states. " Thus, the in-
teresting question still remains, is it possible
to obtain a unified adiabatic description of the
nuclear motion in molecules which treats the bound
and scattering (continuum) states on an equal
basis?

Our work was original?y motivated by the fact
that the previous treatments of the adiabatic-

nuclei approximation did not include explicitly
the molecular electrons and therefore could not
describe the electronic excitation of the target.
In this paper, we present the outlines of a general
theory" which accounts for all the possible excita-
tions of the molecule by electron impact except
breakup (ionization or dissociation). Thus, our
theory applies explicitly to electronic excitation
which is always possible for sufficiently large
impact energies.

Our derivation of the adiabatic-nuclei approxi-
mation is similar to the usual treatment of bound
states, "'"but it emphasizes those aspects which
are the most relevant for electron-molecule scat-
tering. This approach has the advantage that it
provides a unified formalism which treats all the
molecular states, bound or continuum, on an equal
footing. In addition, our analysis shows that the
adiabatic-nuclei theory is no less justified formaI-
ly than the close-coupling formalism. ' Each meth-
od is based on the expansion of the total wave
function in a complete set of basis functions; how-
ever, these functions are eigenstates of different
zeroth-order Hamiltonians in the two cases. Each
method is exact as long as all the terms are re-
tained in the expansions. Since, in practice, one
must deal with truncated, hence approximate, ex-
pansions, it is the rate of convergence of the
alternative expansions which ultimately determine
the success of the two methods. For sufficiently
low impact energies, only a few target channels
are open, and the close-coupling method is known

to give accurate results. ' On the other hand, when

very many rotational and vibrational states (in-
cluding dissociating states) are energetically ac-
cessible, the adiabatic-nuclei approximation seems
to be more appropriate.

Another purpose of this paper is to propose a
modification of the usual adiabatic scattering am-
plitude for inelastic electron scattering which may
extend the range of its validity. %'e propose to
replace the fixed-nuclei, electronic scattering

12 1895



MAR Y SHUGAHD AND ANDREW U. HAZI 12

amplitude (which is on the energy shell) by a cor-
responding off-shell amplitude which satisfies
exactly the requirement that the total energy
(electronic plus nuclear) be conserved during the
collision. This modification eliminates from the
adiabatic theory the usual assumption that the dif-
ference between the initial and final energies of
the scattered electrons is negligible. ' Consequent-
ly, we expect that the modified formula will be
more accurate near excitation thresholds, where
this assumption breaks down. ' From the practi-
cal point of view, only minor additional calcula-
tions are required to evaluate the cross section
because the fixed-nuclei, electronic wave function,
which must be calculated to extract the on-shell
amplitude, contains the necessary off-shell in-
formation as well. However, a different off-shell
amplitude is required for each rotational-vibra-
tional transition as a result of energy conserva-
tion. Although the proposed formula appears in
Chase's derivation' of the usual adiabatic formula,
as far as we know, no one has ever suggested its
possible usefulness or used it in numerical work.

Section II of the paper formulates the problem
of electron-molecule collisions in general terms
and establishes the notation. In Sec. III we derive
the form of the adiabatic wave function, and then
use its asymptotic behavior to extract the approxi-
mate scattering amplitude in Sec. IV. In Sec. V
we obtain a modified expression for the scattering
amplitude by using the adiabatic function directly
in the exact T matrix. Section VI summarizes
our conclusions.

II ~ GENERAL CONSIDERATIONS

For simplicity, we consider the scattering of
an electron from a diatomic molecule with Ã elec-

trons. In terms of the relative coordinates, the
total Hamiltonian describing the collision (and the
bound states of the %+1 electron system, if any
exist) is written in the form"

H'""'=P'„/2p+H. ~""'(r,r', 8),
where the first term represents the relative ki-
netic energy of the nuclei, w'ith p, denoting their
reduced mass. The electronic Hamiltonian H „",

"
contains all the potential energy terms (including
the nuclear-nuclear repulsion), and depends para-
metrically on the internuclear position vector B.
The superscript denotes the number of electrons
involved, while r and r' label the scattered and
target electrons, respectively. H,", " can be de-
composed according to

(2)

where &P,' is the kinetic energy of the projectile"
and V represents the electron-molecule interac-
tion. The total scattering wave function satisfies
the equation

Here & denotes the initial state of the target (elec-
tronic vibrational-rotational state) and Q specifies
the direction of the incident momentum vector k .
The target states 4 are eigenstates of H ~~~ with
energies I'„,

H~~ @l„=[P'„/2g+H~,", l(r', H)]@„=w @„. (4)

If p(r, r', 8) vanishes sufficiently rapidly as the
coordinate of the scattered electron, r, approaches
infinity, +~&~ has the asymptotic form"

Opell

g&/2(2v) 3/2Q [5 eika ~ r (2v)2(y y )-~/2T (gr g)e(year/~)C, (
r ~)

8

(5)

where 0 and 0' specify the directions of incident
and final momentum vectors k~ and k&, respective-
ly. The conservation of energy requires that

1'E=2 k'8+%8 (6)

for all open channels. The differential cross sec-
tion for excitation of the molecule from state z
to state P is givenby

do'. /«'=(2")4&. 'I T'.(~', ~)I'.
In the close-coupling formalism' of electron-

molecule scattering, one chooses the internal states
of the target molecule, (@8), as. basis states and
expands +~&~ in the form"

+gna= 8'Sn r 4'8 r, ~ (8)

8

where implies summation over the discrete
states and integration over the continuum states.
This choice of basis functions corresponds to a
zeroth-order Hamiltonian which is correct asymp-
totically for &-~, i.e., one which is obtained from
II ~""~ by neglecting the electron-molecule interac-
tion V [Egs. (1) and (2)j. The functions gs~(r)
are the solutions of an infinite set of coupled equa-
tions in which the matrix elements of V in the
basis (@8] act as the couplings. Comparison of
Eqs. (5) and (8) shows that the expression inside
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the brackets in Eq. (5) gives the asymptotic form
of g„8(r). For practical calculations, the expan-
sion in Eq. (8) and the corresponding coupled equa-
tions must be truncated at a manageable number of
terms.

III. SCATTERING FUNCTION IN THE ADIABATIC-NUCLEI
APPROXIMATION

Simple physical arguments show' "that, for
nonresonant scattering of electrons from neutral
molecules, the collision time is short compared
to the rotational and vibrational periods, provided
the incident energy is greater than 0.1 eV. This
fact suggests that one can neglect the kinetic en-
ergy of the nuclei in Eq. (1) to obtain another
physically reasonable, zeroth-order Hamiltonian,
H~,") "~. The electronic wave functions (I) are solu-
tions of the equation

H'""'g(r, r', 8) =8(R)(l)(r, r', 8), (9)

where we indicate explicitly that both p and @

depend parametrically on the internuclear distance.
The discrete solutions of Eq. (9), denoted by

v =1,2, . . . , vo, represent the bound electronic

states of the electron-target system (negative ion)
if any exist. The continuum solutions of Eq. (9)
represent the scattering of an electron from the
molecule in which the nuclei are fixed at a rela-
tive position R; hence, these are called the fixed-
nuclei scattering functions. Similarly, the bound
electronic states of the target are represented by
the usual Born-Oppenheimer functions P„(r', R)
which satisfy

H„P„(r',R) =e„(R)P„(r',8) .

For sufficiently large 8, electronic excitation of
the target is possible, and there are several
linearly independent solutions of Eq. (9) with the
same energy. For each R, the scattering solution

are normalized according to

The subscript n labels the initial electronic state
and + specifies the orientation of the incident
momentum vector k„. In the asymptotic region,

„has the form

open

y+ ~ k&»(2 )»2+ [6 e
8'"~' '-(2w)'(k„k„e) ' 't, ((d', e; B)e'~~'"/r]P„r(r', ll),gQJ tt p ~oo

n'
(12

where +' denotes direction of the final momentum vector k„i. The fixed-nuclei scattering amplitude
t„r„(&'(d;8) is a simple generalization of the elastic amplitude' "' (n' =n) to include electronic excitation

( rte ate)= 'k( ()ke'r'f f drdr'e"" '' ''k„",(r', H)(r(r r', H)de „(r r', H) .

We choose to label the scattering states in such
a way that

g=e„(R)+-,' k'„, (14)

where &„ is taken to be independent of R for the
initial state. Consequently, one has the conserva-
tion relation

-', k'„=-,'k'„+ e„(R)—e„'(R), (15)

and, in general, both c and k„(n' &n) depend para-
metrically on R (see Fig. 1).

For each value of R, the solutions of Eq. (9)
form a complete set in the space of electronic
coordinates. Hence, the exact scattering function
can be expanded in the form

vo 00

@+e„(r,r', l)=P k„" (R)()„(r,F', 2).+ g f k„dk„fdteke"" (H)de, (r, r'; R) .
V=1 n

(16)

This equation is simply the generalization of the usual Born-Oppenheimer expansion of the total wave func-
tion to the case of electron scattering or continuum states. The first sum contains the bound states of the
electron-target system, if any exist, while the second term involves the fixed-nuclei scattering functions.
Jtshouldbenotedthatthe integration, over k„ implies an integration over 8', the total electronic energy. In con-
trast, the total energy (electronic and nuclear) of the system, E, is constant [see Eqs. (6) and (14) and
Fig. 1(a) for a comparison of E and 8].

The standard procedure of substituting the expansion for kid into Eq. (3}and then eliminating the electron-
ic coordinates results in an infinite set of coupled equations for the nuclear wave functions y(R). In the
special case where no bound state of the negative ion exists (vo =0}, the coupled equations have the form"
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[( (/2 ))rV„rd'(R)- R] rr2v", „,(R)=g f 2„dd f dtrUr, „,r (R)xr"„(R),
n

where

Ur...„, r, „(R)=(2)r) ' f()r'.„.(r, r', R)V't)r, „(r,r', R)dr r

+2 g & n r r R Vg g(deaf r~r ~R drdr 'V (18)

The matrix operator U represents the dynamic
coupling of the electrons to the vibration and rota-
tion of the nuclei. The adiabatic-nuclei approxi-
mation is based on the assumption that such
coupling is negligible. This assumption is valid
when the fixed-nuclei electronic functions are suf-
ficiently slowly varying functions of R so that U
-0. Thus, the adiabatic nuclear wave functions
)((R) are solutions of the uncoupled equations

[ —(I/2I )~', +e.(R)+-'k! —El X'".".(R) =0,

where we dropped the primes on 8, +, and n, and

substituted Eq. (14) for 8(R). In neglecting the

dynamic coupling between the electrons and nuclei
for the electron-target system, one implicitly
assumes that it is negligible for the target mole-
cule itself. Therefore, in order to have an in-
ternally consistent approximation, one must
represent the target states by the usual Born-
Oppenheimer product, (I)„(r', R)F„„~(R), where

P„(r', R) is just the electronic function of the
target [see Eq. (10)]. The nuclear functions F(R)
are the solutions of the equation,

[ —(1/2p)VRn+e„(R)-u„„~]F„„~(R)=0 (20)
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where the bar on m„„J indicates that it is the adia-
batic approximation to the exact molecular energy
so„. The vibrational and rotational states are
labeled by v and ~, respectively. A comparison
of Eqs. (19) and (20) shows that

X q"„"(R)= Q Cs"„„"~ (Rk'„—E+sv„„~)F„„~(R),
vJ

(21)

where the constant C is yet to be determined by
the boundary condition imposed on +'. After sub-
stituting Eq. (21) into (16), one can perform the
integral over k„ to obtain (for the special case [dU

=0),

+„.(r, r', R)
T

vmax max

r
internuclear Distance, R

FIG. 1. Relationships between the various energies
and electron momenta as a function of the internuclear
distance B. The potential-energy curves of typical ini-
tial and final electronic states are labeled by c„. E is
the total energy; 8(A) is the total electronic energy (tar-
get electrons plus projectile) for fixed nuclei. The full
vertical arrows indicate the energies of the incident and
outgoing electrons; the dashed vertical arrows show the
corresponding fixed-nuclei quantities. The energies of
the target states are denoted by zv. The subscripts i and
f distinguish quantities which refer to the initial and
final states. Purely electronic energies, $(R}, c„(R},
and 2k„(R) depend parametrically on A.

where h(R) is fixed to be

(()(R) = (e)R+-,' „k=R(eR) + -E

(22)

(23)

The upper limits on the sums over v and ~ ensure
that (E-~„„~)~0, since k'„must be positive.

To evaluate the constants C, we compare the
in"oming parts of @' and [I)' using Eqs. (5) and
(12). If one labels the initial molecular state o.'

(in the Born-Oppenheimer approximation) by the
quantum numbers n&v, J, , then Eq. '(5) requires that
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where
+ (outgoing terms), (24)

k 1/2(2v) g/2 e(}t(', ' g

y ( rt R)F (R) pk] =E —K~ v J (25)

On the other hand, substitution of Eq. (12) into (22)
yields,

v . Jmax max

„(gr) 'r' g f dtu g g k„'t' e'" ' ' d„(r', R)g„„r (R)C*„„"e (ootgoiog terms) .
n v

Recalling that 0 and + are the solid angles of k,
and k„, respectively, one can use the orthogonality
of the plane waves, (I)„and F„„z, to obtain

(26)

Thus, in the adiabatic-nuclei approximation the
total wave function has the simple form

kids„, „,z (r, r', R) =)&(}„,(r, r', R)F„„z(R),

and energy conservation requires that

h(R) =e„(R)+Z-w„„~ =e„(R)+-,'k', . (28)

The physical content of the result in Eq. (27)
is completely consistent with the assumption that
the collision time is short compared with the ro-
tational and vibrational periods. The electronic
part of +~& is just the fixed-nuclei scattering
function $' that describes the collision between
the electron and target in which the nuclei axe
fixed in space Furth. ermore, since the incident
electron spends relatively little time near the
nuclei, it does not contribute to the potential
which governs the motion of the nuclei. Hence,
it is the vibrational-rotational wave function of
the initial state of the target which appears in

Eq. (27) for ki'n„„.
The above analysis shows that, mathematically,

the adiabatic-nuclei approximation involves the
truncation of the expansion for ki's(}„ in Eq. (16),
which is formally exact, to a single term. This
truncation uncouples the equations which determine
the nuclear functions X(R). In principle, system-
atic improvements of the approximation are pos-
sible, just as in the close-coupling formalism.
However, in practice, the solution of the problem
is complicated by the continuous nature of the
coupling. Perhaps a higher-order approximation
could be obtained by converting a truncated set
of equations [Eq. (17) for n~n, „and k„~k,„] into
coupled integral equations. After the singularities
are treated by a subtraction procedure, "the con-
tinuum can be "discretized" without the loss of
accuracy. Such a procedure would lead to a finite
number of coupled equations which may be handled
by standard numerical techniques.

IV. SCATTERING AMPLITUDE IN THE ADIABATIC-NUCLEI
APPROXIMATION

Once the form of the total scattering function
is known, one can obtain an expression for the
scattering amplitude which describes the simul-
taneous electronic-vibrational-rotational excita-
tion of the target molecule. In the conventional
approach, ' one compares the outgoing parts of
the exact and approximate wave functions, +~&,
in the asymptotic region. Using the Born-
Oppenheimer approximation for the molecular
states, Eq. (5) can be written in the form,

=„(2}})'r ' Q (k„k„) 't„„(Q'Q;R)
fthm

xe'~" "t)k((r}', R)F„„&(R)

+ (incoming terms) . (31)

The initial and final "fixed-nuclei" momenta, k„
and k„, are related through Eq. (15) and, asffy y

shown in Fig. 1(a), k„-=k, . Since the Born-
Oppenheimer product functions ((}}„(r',R)F„„z(R)
form an orthonormal set, a comparison of Eqs.
(29) and (31) gives, for the 7 matrix,

g „,, „.r (0'it}=f„dR (gR)t„„(o't};R}

xF„„~(R)(k//k„)e

(32)

= (2w)'r ' Q (k/k)) 'T„„~ „„~(O'Q)
tlyv~ J~

xe" p/„(r', R)F„„~(R)

+ (incoming terms), (29)

where the quantum numbers (n&u& J&) label the
possible final states. Of course,

E=g~y +SU~ v J (3n~v~ J~ y

and the incident momentum &, is related to E as
in Eq. (25). Substitution of the asymptotic form
of the fixed-nuclei electronic function [Eq. (12)]
into Eq. (27) gives



1900 MARY SHUGARD AND ANDREW U. HAZ I

The result in Eq. (32) suffers from two diffi-
culties. For electronically inelastic collisions
(n& tn, ), the "fixed-nuclei" momentum, k„ is af
function of the internuclear distance R, unless
the potential curves of the two electronic states
are parallel [see Eq. (15) and Fig. 1(a)] . Even in

the case of pure vibrational-rotational excitation
(n&=n, ), k.„differs from k& because the former,f s ~ nf
being a "fixed-nuclei" quantity, does not take into
account the vibrational and rotational energy of
the target. '" Consequently, the above expres-
sion for the scattering amplitude is not independent
of ~, as it should be. In order to obtain a physical-
ly meaningful result, one must assume that, in
the Franck-Condon region, i.e., for values of R
at which the integrand in Eq. (32) is nonzero, the
potential curves of the initial and final electronic
states are reasonably parallel, and that k'„=kf .
The latter assumption is valid if the kinetic en-
ergy of the outgoing electron is large compared
to the energy spacing between the rotational-
vibrational levels, i.e., when the electron leaves
the interaction region in a time short compared
to the rotational and vibrational periods. ' " This
situation is illustrated in Fig. 1(a), which shows
the magnitudes of the relevant momenta for typical
potential-energy curves. On the other hand, Fig.
1(b) illustrates the case when E is near the excita-
tion threshold, &f is small, and the assumption
that 4'„--kf is not valid.

For impact energies which are sufficiently
larger than the excitation threshold, the expres-
sion for the scattering amplitude becomes

T„., „„,{o'o)=J E"dH, ( ))tt„„( 'o„;o„)H

F„„,(R) . (33)

Thus, in the adiabatic-nuclei approximation, the
1'-matrix element for the transition n,-v, J;.

~f Uf ejf is just the fixed- nuc le i ampl itude "aver-
aged over" the initial and final vibrational-rota-
tional wave functions. The amplitude t„„de-
scribes the (possibly inelastic) collision of the
electron with the molecule in which the nuclei
are fixed in space at relative position R, while
the functions E„„~are the probability amplitudes
for the internuclear vector having the value R
in the initial and final states. In the case of
electronic excitation of the target, the final
nuclear wave t'unction which appears in Eq. (33)
is correctly associated with the potential-energy

curve of the final electronic state. In the case of
electronically elastic collisions, Eq. (33) reduces
to the results obtained previously. ' ' " In addi-
tion, if one chooses to evaluate t„„.in the firstnfn.
Born approximation, i.e., one uses

~(k„-T„)~
&drdr'e & ftBortt (gt fit. ~B)

xp„* (r', R)V(r, r', R)())„(r',R),

then Eq. (33) reduces to the result which is ex-
pected in the Born approximation.

V. IMPROVED EXPRESSION FOR THE SCATTERING
AMPLITUDE

The major shortcoming of the adiabatic-nuclei
approximation for the scattering amplitude is its
failure to describe correctly the energy region
near excitation thresholds. It would be useful if
this shortcoming could be remedied without un-
duly complicating the basic formalism.

Our approach to obtaining an improved expres-
sion for the amplitude consists of an alternative
derivation which does not require any assump-
tions about the final momentum vector k„[in

half

addition to those assumptions which are necessary
to uncouple Eq. (17)]. Instead of comparing the
asymptotic behaviors of the exact and adiabatic
scattering functions, one can start with the exact
expres s ion for the T matr ix,

x V(r, r', R))I'z„„(r,r', R) .
(35)

Again, 0' specifies the direction of the f inal
momentum vector ka and + is the exact scat-
tering function with the asymptotic form given
in Eq. (5). The approximate 1' matrix can be
obtained simply by substituting for 4', the
adiabatic function in Eq. (27). In order to be
internally consistent, one must use the Born-
Oppenheimer function P„F„„~ to represent"f "f"f f
the final molecular state 4() (I3 =n&v&&& ). Using
kz for ks [see Eq. (30) and Fig. 1(a)], Eq. (35)
becomes

T,„(n', n)

=tt' '(2 )' ' f Jedrdr'dHe '" ~''d (P H)

r„..,, , „,(O O) d,"(r.e)-,'„*.f=.d rd r' d He-'"f ' '

x (t)„* (r', R)E„*„z(R)V(r, r', R)(1)~„„,(r, r', R)E„„.z (R),
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where 8 is defined in Eq. (28). Performing the
integrals over the electronic coordinates, one
obtains

dREn „q R t„„8'Q
~ ~~iR +n o q R

where

8'=e„(R)+-'k'

(37)

The quantity t„„(h'0';8&;R) is just the general-
ization of the fixed-nuclei amplitude for the elec-
tronic transition n, -n& [Eq. (13)] off the energy
shell. It is given explicitly by

t„„(8'O',Sn; R)f i

=)',~'(2m) '~*ff 2rd2 a '"s' '

xP„(r', R) Vg ~ „„,(r, r', R) .

(39)

It is an off-shell quantity because kf 4k„and
hence 8'+ g [compare Eqs. (15), (28), and (38)
and see Fig. 1]. Of course, for impact energies
large compared to excitation thresholds, kf ap-
proaches k„, and Eq. (37) reduces to our pre-
vious expression in Eq. (33) containing the on-shell

Since the derivation of the adiabatic expression
in Eq. (37) required no assumptions about kz, we
expect it to have a wider range of validity near
excitation thresholds. It still has the desirable
feature that the electronic part of the problem
can be solved for fixed nuclei, and then the elec-
tronic amplitude is averaged over the initial and
final vibrational-rotational functions. On the
other hand, the magnitude of &f depends on the
final quantum numbers n&v& J& (in contrast to k„off

which depends only on n& ) and, consequently, the
off-shell amplitude t„„must be recalculated forfff ff f
each final vibrational-rotational state of interest.
This should not be too cumbersome unless a great
number of final states is treated. The fact that
the electronic T matrix is required off the energy
shell should cause no major difficulties for any
computational scheme which obtains the scat-
tering information via an approximate wave func-
tion. Once the fixed-nuclei function g„„has been
calculated, the required off-shell information can
be extracted by directly integrating Eq. (39).

VI. CONCLUSIONS

In this paper we have examined the adiabatic-
nuclei theory of nonresonant electron-molecule
collisions. Our main results can be summarized
as follows.

(i) It is possible to derive the adiabatic approxi-
mation from a formally exact expansion of the
total scattering function in terms of the basis
functions which are solutions of the electronic
Hamiltonian, with the nuclei fixed in space. The
approximation involves the truncation of the ex-
pansion to a single term. The resulting adiabatic
scattering solution is a product of the fixed-nuclei
electronic function and the vibrational-rotational
wave function of the initial state. Here we have
not discussed in detail the physical arguments
justifying the adiabatic approximation nor the
criterion for its validity, because these questions
have already been examined extensively else-
where. ' "

(ii) Since our approach follows closely the usual
adiabatic (Born-Oppenheimer) treatment of bound
molecular states, "we obtain a unified formalism
which handles all molecular states, bound or scat-
tering, on equal footing.

(iii) We have derived an expression for the
adiabatic scattering amplitude which applies to
the general case of (nonresonant) electronic, vibra-
tional, and rotational excitation of molecules by
electron impact. In the case of "electronically
elastic" collisions, our formula reduces to pre-
vious results. ' In the case of electronic excita-
tions, the adiabatic theory is complicated by the
fact that the potential-energy curves of the initial
and final electronic states are not parallel. How-
ever, for impact energies sufficiently large com-
pared to the excitation threshold, the adiabatic
approximation should be valid. Details of the
inelastic formalism" will be presented in another
paper.

(iv) In an attempt to increase the range of validity
of the adiabatic-nuclei approximation near thresh-
olds, we have proposed an alternative expression
for the scattering amplitude. It contains the fixed-
nuclei amplitude for the electronic transition off
the energy shell. The utility of the modified ex-
pression must still be tested by calculations. This
will be possible in the near future because the
numerical treatment of electronically inelastic,
molecular collisions, at a level beyond the first
Born approximation, is now feasible. '
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