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A mathematical picture of the transition to turbulence in statically stressed fluid systems is pro-
posed. Systems are classified on the basis of the Hopf bifurcation theorem. One category, "inverted
bifurcation, " contains flows that exhibit hysteresis, finite-amplitude instabilities, and an immediate
transition to turbulent behavior. A mathematical model due to Lorenz which manifests this kind of
behavior is discussed. The other category, "normal bifurcation, " includes flows in which, as the stress
increases, a time-periodic regime precedes turbulence. A model of low-Prandtl-number convection falls
into this category. The transition to nonperiodic behavior in this model is studied and found to pro-
ceed in accord with abstract mathematical proposals of Ruelle and Takens. Semiquantitative agreement
with the experimental fluctuation spectrum of Ahlers is also obtained.

I. INTRODUCTION

Fluid turbulence remains one of the most fasci-
nating and poorly comprehended phenomena in mac-
roscopic physics. The purpose of this paper is to
report on some attempts to understand mathemati-
cally how it comes about as the external static
stress on a fluid system is increased. We have
chosen a statically stressed system to guarantee
that the time dependence in the turbulent state
arises naturally and is not confused with the effects
of internally imposed frequencies. We have been
primarily concerned with two questions: how does
stochastic time dependence develop as the stress
is increased and what is the nature of the fluctua-
tions in the stochastic state?

The commonly accepted picture of the transition
to turbulence in statically stressed systems is
enunciated by Landau. ' He pictures the phenome-
non as the eventual result of a succession of insta-
bilities at different frequencies. As the stress ex-
ceeds each of a sequence of critical stresses, a
new unstable, oscillating mode appears in the sys-
tem. The amplitude of each mode stabilizes at
some finite value, which, at least near the critical
point, increases monotonically from zero with in-
creasing stress. Turbulence, in this picture, is
associated with the complicated state of motion
that results when the stress rate is large enough
to exceed the thresholds for many instabilities.
In keeping with this picture, the motion is quasi-
periodic. This behavior is exemplified by a soluble
mathematical model due to Hopf.

The Hopf-Landau picture is simply wrong for one
class of transitions; for a second, for which it
contains an element of truth, it is still deficient in
several fundamental ways.

The Hopf-Landau description is least appropriate
for the class of flows that exhibit finite amplitude

instabilities and hysteresis phenomena. Examples
of this class include pipe and channel flow (flow
between infinite parallei plates). In the former,
there is no linear instability for any finite Reynolds
number. In the latter, there is a linear instability
at a finite Reynolds number, but there is no peri-
odic regime above the threshold; the transition to
a finite degree of turbulence is sudden.

In the second class of flows, there is a periodic
regime, in accord with the Hopf-Landau picture.
However, strong temporal nonperiodicity sets in
after a small number of instabilities have oc-
curred. Thus the frequency spectrum becomes
continuous sooner than this picture suggests. It
is also observed that the wave-number spectr;Irn
stays discrete until higher stresses, where it too
becomes continuous. A good qualitative account of
this sequence of phenomena for flow past a cylin-
der can be found in Feynman. The same type of
behavior is seen in Couette flow, ' low-Prandtl-
number convection, free shear layers, ' boundary
layers, ' and the "n-layer" models of the earth' s
atmosphere. '

In this paper, a mathematical picture for the
transition to nonperiodicity which encompasses
and interprets the above. flows will be discussed.
Specific calculations for examples of the two dif-
ferent types of transitions will be described, and
comparisons with the available experiments will
be made. The two sets of calculations were per-
formed for a model of thermal convection in an
infinite fluid layer in two different regimes of
Prandtl number (the ratio of kinematic viscosity
to thermal diffusivity). In the high-Prandtl-num-
ber regime, an example of an inverted bifurcation
is obtained; in the low-Prandtl-number regime, a
normal bifurcation is found. In both cases, the
transition to nonperiodicity and the behavior of the
nonperiodic orbits are studied.
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II. GENERAL THEORY OF THE TRANSITION
TO TURBULENCE

We have indicated that there are two categories
of turbulent systems, those that show abrupt tran-
sitons and those that exhibit a periodic regime,
and that the difference between them can be inter-
preted on the basis of the Hopf bifurcation theo-
rem. ' Let us be slightly more specific. The Hopf
bifurcation theorem states that, in the neighbor-
hood of the stress at which a complex-conjugate
pair of roots of the linear stability problem cross
the real frequency axis, there is a one-paramete'r'
family of limit-cycle solutions. Ruelle and Takens'
and, independently, Joseph and Sattinger' have
shown that this theorem is valid for the equations
of fluid mechanics.

If the limit cycle occurs for values of the stress
smaller than the value at the point of neutral sta-
bility the point will be called an "inverted bifurca-
tion. " In this case, the limit cycle is unstable, if
the system is released at a point in phase space
inside the limit cycle, it spirals into the laminar
state. If a system is released outside the limit
cycle, it spirals away from the limit cycle into
other regions of phase space.

As the stress on the system is increased, the
unstable limit cycle shrinks at the point of neutral
stability. Above threshold, the limit cycle disap-
pears, and in the known examples the system im-
mediately spirals out and enters a strongly non-
periodic orbit. In the example to be discussed in
Sec. IV, this nonperiodic orbit maps out an invari-
ant surface in the phase space of the system. This
invariant surface is an example of a "strange at-
tractor. '" It is possible that in the other examples
of inverted bifurcation in fluid mechanics the non-
periodic orbits may also lie on strange attractors
in the appropriate phase spaces.

Pipe flow provides a possible exception to the
above classification. The problem with pipe flow
is associated with the fact that its linear threshold
lies at infinite stress. It turns out that the real
frequency axis contains a dense set of accumula-
tion points for the eigenvalues of the linear stability
problem. Thus, even in the linear theory, there
is a continuous frequency spectrum at the point of
neutral stability. This fact, makes it difficult, if
not impossible, to apply the arguments that have
been used to establish the Hopf bifurcation theorem
in other examples, since an infinite-dimensional
phase space must be considered. While in pipe
flow an unstable limit cycle might not coalesce
with the laminar state at the point of neutral sta-
bility, this picture does apply to flow in a pipe con-
taining a coaxial wire, since in this case the sys-
tem has a linear threshold at a finite Reynolds

number.
The second category of flows consists of those

flows that have a one-parameter family of limit-
cycle solutions above the linear threshold in
stress. For this class, the limit cycle is stable
and the flow is periodic for a range of Reynolds
numbers. The question of how these flows become
nonperiodic has been attached by Ruelle and
Takens' using mathematical methods devised by
Smale" and others. The basic idea is to study the
"generic" behavior of integral curves in appropri-
ate phase spaces. They do so by showing that for
dense open sets of vector fields in the phase space
certain types of behavior "usually occur" among
all loosely constrained differential transformations
("diffeomorphisms" } which map the vector fields
into one another. Application of these results to
the particular diffeomorphism described by the
Navier-Stokes equations are predicated on the as-
sumption that the Navier-Stokes equations are
"typical" and not "special. " Ruelle and Takens
claim to show that after four bifurcations have oc-
curred a certain broad class of diffeomorphisms
will produce an open set of vector fields with a
strange attractor in the neighborhood of every
point in a certain physically interesting region of
the phase space. If they are correct, the Hopf
model which violates their picture must be "non-
generic. "

Before discussing the above idea in more detail,
it is necessary to explain what is meant by "n"
bifurcations. At low values of the external stress,
the laminar state of a fluid system is linearly
stable. When the stress is increased through the
linear threshold, a limit cycle bifurcates from the
laminar state. If the external. stress is increased
further, it will eventually reach the value at
which the next pair of complex-conjugate eigenval-
ues of the linear theory cross the real frequency
axis. Of course, these eigenvalues no longer have
meaning in general since it is necessary to study
the stability of the limit cycle itself and not the
laminar state. However, if the amplitude of the
limit cycle happens to be very small at the second
threshold, the stability analysis of the higher-lying
degrees of freedom should be approximately the
same as if the first instability had not occurred.
If this is the case, the limit cycle will become un-
stable to a new solution at the second threshold.
This new solution bifurcates from the limit cycle
and, in general, moves away in function space
from it. More generally it is expected that a solu-
tion, limit cycle or otherwise, will become un-
stable to solutions in which the amplitudes of high-
er-lying degrees of freedom increase in size. In
practice, it is quite difficult to establish the loca-
tion of higher-order bifurcations. Their location
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is signaled by an anomalously rapid growth in the
amplitude of new degrees of freedom.

The situation after two and three bifurcations
have occurred is rather nebulous. Reulle and
Takens claim that the motion after two bifurcations
should still generically be periodic. They base
this claim on a theorem due to Peixoto." We do
not understand their argument (more specifically,
how to reconcile it with the Hopf model, which
gives rise to almost periodic attractors), but
some steps in their argument may have escaped
us.

The situation after three bifurcations is even
less clear than after two bifurcations. It appears
than any number of possibilities could occur, and
none seem more likely than any of the others.
Ruelle and Takens only claim to have shown that
the vector fields are generically not Morse-
Smale after three bifurcations. A field which is
Morse-Smale has a nonwandering set' which con-
sists of a finite number of fixed points and closed
orbits.

After four bifurcations have occurred, Ruelle and
Takens argue that the motion should generically
lie on a strange attractor. This means that the
motion should be nonperiodic and that correlation
functions of the dynamical variables should go to
zero as the time separation between the variables
goes to infinity. Such motions are termed "pseu-
dorandom" in the mathematical literature. In this
paper, they will be referred to simply as "non-
periodic. "

The above ideas are supported by the calculation~
reported in Sec. V. These calculations exhibit the
surprising feature that the motion remains strictly
periodic after three bifurcations, but becomes
nonperiodic after the fourth. This same behavior
is found in the experiments discussed in Sec. V.

III. EXPERIMENTAL AND MATHEMATICAL BACKGROUND

OF THERMAL CONVECTION

A. Experimental background

The phenomenon of thermal convection occurs
when the buoyancy force in a fluid due to external-
ly imposed temperature gradients exceeds external
frictional forces and the internal dissipative
forces of the fluid. The buoyancy force occurs in
most fluids because they expand when heated. Be-
cause of this expansion, the light hot fluid will
rise and the heavy cold fluid will fall in an external
gravitational field.

In order to study the phenomenon of thermal con-
vection, it is common to impose a temperature
difference across a thin layer of fluid. If the fluid
layer is thin enough that variation in material
properties of the fluid with height can be ignored

and large enough to avoid certain complicated ef-
fects due to boundaries, the convection pattern
takes the form of two-dimensional rolls. " Lord
Hayleigh" first studied this phenomenon theoreti-
cally and calculated the temperature difference at
which the rolls would form.

As the temperature difference across the layer
is increased, the convective motion becomes fast-
er, and eventually time dependence develops. The
experiments of Willis and Deardorff' indicate that
the behavior of the fluid in the time-dependent re-
gime depends qualitatively on the ratio of the kine-
matic viscosity v to the thermal diffusivity ~. The
ratio a is called the Prandtl number

(3.1)

Willis and Deardorff performed one set of ex-
periments on air, for which o =0.71. They found
that an oscillatory time dependence developed when
the temperature difference was roughly three
times the convective threshold. More specifically,
the wavy convection rolls exhibited lateral oscilla-
tions which appeared to be closely in phase and
relatively constant in amplitude everywhere but
near the surface of the fluid layer. This observa-
tion suggests that the undulations are insensitive
to boundaries and that calculations in which, for
simplicity, the fluid is assumed to have free sur-
faces may not be grossly misleading. The first
calculations of small oscillations of convective
rolls in low-Prandtl-number fluids, were per-
formed by Busse, "who employed this approxima-
tion. He found an instability that resulted in long-
wavelength oscillations of the rolls. The extension
of his analysis to account for nonlinear effects is
contained in Sec. V.

Willis and Deardorff have also performed experi-
ments with a silicone oil for which v =57. Time
dependence did not develop in it until the tempera-
ture difference exceeded 60 times that at the con-
vective threshold. As in air the time dependence
above threshold was oscillatory, but, in contrast
with air, the oscillatory structure was not a roll
but "an up or down draft segment having one end
anchored to a more prominent up or down draft
and the other end free."

Krishnamurti'~" has also conducted experiments
on fluids with a wide range of Prandtl number. In
air, her results agree closely with those of Willis
and Deardorff. In mercury, a highly conducting
(low Prandtl-number) fluid, she observed a some-
what higher threshold than that predicted by Bus-
se's stability analysis. By contrast Rossby"
found, in agreement with Busse's predictions,
that time dependence developed in mercury imme-
diately above the convective threshold. The agree-
ment between Rossby's experiments and Busse's
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theory may be illusory. Rossby's observations
were made less slowly than Krishnamurti' s, and
he may have been misled by transient effects. If
her experiments are correct, it seems likely that
the disagreement between theory and experiment
may have to be laid to the use of inappropriate
boundary conditions in the stability analysis.

Krishnamurti's experiments on water, for which
0 =6.7, and on fluids with larger Prandtl numbers
showed that in these fluids the time dependence
was associated with plumes which broke off from
the thermal boundary layer at the low surface.
These rising plumes seemed similar in character
to those observed by Willis and Deardorff in sili-
cone oil.

Unpublished calculations by Gough, Spiegel, and
Toomre" are reported to have reproduced the os-
cillatory behavior in high-Prandtl-number flows.
These calculations entail the extensive vertical
resolution necessary to adequate1. y represent the
thermal boundary layers and the interactions for
plume formation. The horizontal variation is rep-
resented by a simple plan-form in which all hori-
zontal harmonics are dropped. The comp1ementary
calculations with greater horizontal resolution and
less vertical resolution seem more appropriate
for low-Prandtl-number fluids.

In Sec. IV we will examine a greatly oversimpli-
fied model of convection which yields a transition
to time dependence in large-Prandtl-number fluids.
Since it lacks the vertical resolution necessary to
reproduce the plumes discussed above, it is not
realistic. We include it because it ismathematical-
ly interesting; it provides an example of inverted
bifurcation. The model, a triad of Fourier compo-
nents coupled through the Boussinesq equations,
can serve as a useful guide in thinking about hys-
teresis, metastability, and other phenomena it has
in common with real fluid systems that undergo
inverted bifurcation.

B. Mathematical background

In order to obtain a tractable mathematical prob-
lem, it is customary to model a real convection
layer which is bounded on all sides by an infinite
fluid layer which has free surfaces and to assume
that the fluid satisfies the Boussinesq conditions,
that the material properties of the fluid do not vary
appreciably with height and that the heat generated
by internal friction in the fluid is negligible. Final-
ly, the motions involved in experiments on convec-
tion layers are always extremely small compared
with the speed of sound so that the fluids may be
considered incompressible.

It can be shomn' that incompressible fluids
which obey the Boussinesq conditions obey the
equations

Bu 8Q. 1 BP
+Q =gE+T5]3 —— + PQ ]8$ 'Bg. p Bx;

8+ Bg
+Q =gg~

8$ ~ Bg~
(3.2)

BQq

x( x(H, t tH'/((,

u;-u, ((/H, 8- e((v/geH' .
(3.4)

Equations (3.4) can be used to reduce Eqs. (3.2) to
the form

u; Bu c
— ~TO 1 BP'+Q,. '-5 a T- x3+8 +— -o 'u; =0,

Bg Bg—+Q -RQ —V 6=0,
8$ ~ Bg.

(3 6)

where o = v/(( is the Prandtl number, and H, the
Rayleigh number, is defined by

It =geH'&T, /((v. - (3.6)

Equations (3.5) can be reduced to a system of
coupled nonlinear equations by introducing Fourier
series for the fields. These discrete Fourier
series involve mell-defined fundamental wave-
lengths in the horizontal directions. There are
also solutions of the Boussinesq equations which

» Eqs. (3.2), u; is the ith component of velocity,
x, is the ith spatial coordinate (i=3 being the verti-
cal coordinate), t is the time, g is the gravitation-
al constant, ~ is the coefficient of thermal expan-
sion, &T is the difference between the tempera-
ture at a given point and the average temperature
of the fluid layer, p is the density of the fluid, T
is the temperature and P the pressure of the fluid
at a given point and time, and z is the coefficient
of thermal diffusivity.

If there is no motion in the fluid layer, the solu-
tions of Eq. (3.2) yieldu =0 and the characteristic
linear conduction temperature profile between the
two surfaces of the layer. It is useful to take this
fact into account by introducing a new temperature
variable 8,

&T(x„x„x„T)= T —&T,(x,/H ) + 8(x„x„x„T).

(3.3)

In this definition, T is a constant which is deter-
mined by requiring conservation of mass, ~T, is
the difference between the temperatures of the two
surfaces, andIl is the thickness of the fluid layer,

It is also convenient to introduce dimensionless
variables
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involve continuous wave-number spectra. How-

ever, calculations to be reported elsewhere indi-
cate that, in the case of the system discussed in
Sec. V, the stable solutions involve continuous
wave-number distributions which are sharply
peaked around well-defined wavelengths. This will
be taken to be an experimentally observed fact in
this paper. Thus the following discrete spectra
will be assumed:

u =i ~ u ([ m n)e &2&'"+22 "+"q'~

l, m, n=-q22

g=i Q 8(I, m n)e'& 1 "+22m&+"«&

man=-oo
(3.7)

The coordinates (x, y, z) are (x„x„x,) and k, and
k, are the dimensionless fundamental wave num-
bers in the x and y directions. Likewise the com-
ponents of velocity (u, v, 2v) are (u„u„u,).

Substituting (3.7) into Eqs. (3.5) and eliminating
the pressure term by the incompressibility condi-
tion, we find

~+ gmn ~+ Pn nq -my
dt

'=-
j lmnpr +Par+i -P m-a n-r 2 I )mnpar parV~ p m-a n-r-

~ -, -
Par

k, mo ln6, mn
+ k~ l Clmnarv2qrvl q, m--q, q-r

(alkyl

+ k2m + 22n )u~ mn lk22k2 2 (3.8a)

~+ )mn k,k,mk, „&,u&„u, &,„,+ —(-lr+mk)+mk 8, „&„)u&„v,
Par

ms —nq 2 2 2 ~ 2 k2vomngm„
tmnar par t- 2mkq, n r-o(kgb +k-2m + 7I n )v)m„—,2, 2n —r

(3.8b)

k k2dl™n=-Z (pn-'r)"". +——'(qn-mr)", . ~i .,- ... , -(k;f'+k2m'++n2)8, „„-~(k,fu,.„+kmv..„),
(3.8c)

with

k', (nP —lr)(nl —lr + nP)
(k2 l2+ k2m'+ 7t n') (n -r)r '

2k, k2(mr —qn)(Pn —l r)
l mn2ar (k2 f2+ k2m2 + g n2)(n r)r

k2(mr nq)(nq ——mr —mn)
tmnar (k2)2+ k2m2+ Pn2)(n r)r

(3.9)
BQ BV8=——+—=0 at z =O,a .

Bg Bg Bp
(3.11)

Equations (3.7) and (3.11) imply that

must be satisfield
As boundary conditions we shall assume that the

vertical component of velocity and temperature de-
viation 8 vanish at the two surfaces. In view of the
incompressibility, these conditions become

+gmn -), m, nQ

V = —Vlmn -g, -m, n ~

6 =-0lmn -f, -m, -n x

(3.10)

Equations (3.8) constitute an infinite set of cou-
pled nonlinear differential equations for the modes
of the system. As a preliminary to concrete cal-
culations, it is useful to eliminate some modes by
symmetry arguments. First, it is clear from
Eqs. (3.8) that the modes can be taken to be real.
These solutions correspond to the choice of stand-
ing waves instead of traveling waves. This choice
is somewhat arbitrary since Willis and Deardorff
reported seeing both traveling and standing waves
in their experiments on air.

Equations (3.7) imply that for the modes to be
real and the velocity and temperature fields to be
real, the relations

lmn f m -n~

Vlmn = V~, m, n t

6)mn = -6i,m, ~

(3.12)

ppn ppn f mp (3.13)

The solutions of Eqs. (3.8) can be broken into
even and odd parts on the basis of whether they are
even or odd under I,- -L. The symmetry of a
given mode can then be determined by using Eqs.
(3.10) and (3.12). This decomposition is used in
Sec. V.

In order to make comparisons with experiments,
the total heat flux through the fluid layer can be
expressed in terms of the temperature modes. Let
us denote an average over horizontal coordinates

Equations (3.10) and (3.12) imply that certain modes
vanish:
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by angular brackets. The horizontal average of
Eq. (3.2),

+ u. =K&'T,
Bg Bx-

J =(wT) —K
8( T)

Bz
(3.14)

If the convection layer is statistically steady, ( T)
has no time dependence and

8J/Bz =0, (3.15)

which implies that the flux leaving the lower sur-
face is the same as that reaching the upper sur-
face. Since the vertical component of velocity
vanishes at both surfaces, Eq. (3.14) yields

(z =0);

or, with the heat flux expressed in terms of the
deviation from the conduction profile according to
Eqs. (3.3) and (3.4),

K+TO K v 8(8)
H @AH Bz

K'v &(8)
geH g Bz (3.16)

An;.-'. :.::pression for J in terms of the modes of the
, ysiem is obtained by inserting Eq. (3.7) into Eq.
(3.16),

K V R+2wgne„.) .
gcH

(3.17)

It is sometimes useful to introduce a dimension-
less number called the Nusselt number N which
expresses the ratio of the total heat flux to the
heat transported by conduction. According to (3.17)
the Nusselt number is given by

N =1+— ne„„.1
2

n=1

(3.18)

IV. INVERTED BIFURCATION-THE LORENZ MODEL

A. Model

The solutions to Ec(s. (3.8) have received much
attention. It is well known, for example, that a
.transition to convective motion in the form of two
dimensional rolls occurs at a critical Rayleigh

can be simplified by integrating by parts and using
the incompressibility condition,

8( T) 8( T)
Bt Bz

+ —(wT) —a ) =0.
Bz

From this equation we obtain for the vertical heat
transfer J

u- -u(7t +k, )/2 ~'k 8-8(g +k')'/23~'~k'

v- —v(m'+ k,')/2'~'k, , 8r - 8r(v'+)p)'/2pk2, ,

t -t/(m +k', ), R, —= (m +k', )'/k', ,

b = 4w'/(m'+ k,'-) . (4.1)

Substituting the three modes described above
into Eqs. (3.8) and making use of the transforma-
tions and definitions in Eqs. (4.1), we find

4101 =~ lol + lol ~

8101 1018002 101 810 (4.2)

002 101 101 002 '

These equations were first studied by Lorenz, "
who denotedQlpl 81pl and 8pp2 by x, y, and z, re-
spectively. Lorenz's notation will be used hence-
forth in order to avoid subscripts.

There are three steady-state solutions to Eqs.
(4.2). One is the trivial solution in which all three
variables vanish, i.e.,

x=y=z=0. (4.3)

This solution corresponds to conduction; the fluid
layer is at rest and the temperature profile be-
tween the two surfaces is linear.

number B, and the amplitude of the convective mo-
tion grows continuously from zero as the Rayleigh
number is increased above threshold. The solu-
tion to Egs. (3.8) can be calculated perturbatively
when the amplitude of the motion is small. To
second order in the amplitude, only three modes
are nonzero. " These modes are Qlpl 81pl and

8„,(with the roll motion chosen to lie in the x-z
plane).

In this section, a model system consisting of
Q lpl 61pl and 8002 will be studied at Rayleigh num-
bers at which the model no longer applies to fluids.
At these Rayleigh numbers the model exhibits a
transition to time-dependent behavior which has
interesting mathematical properties even though
it does not apply to actual fluid convection. In the
model there is an inverted bifurcation, and beyond
the point of bifurcation the system point tends to-
wards a "strange attractor" in its phase space.
Since the system has the same type of nonlinearity,
driving, and dissipation as the full Boussinesq
equations, it bolsters the proposal of Ruelle and
Takens' that strange attractors are relevant in
real fluid systems.

As is apparent from Eq. (3.17), the heat flux
may be described entirely in terms of modes
which have zero wave numbers in the x and y di-
rections. We shall call these modes transport
modes and label them with a subscript T. We shall
also introduce the transformations and definitions
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The other two steady-state solutions are given by

x =y =+ [b(r —1)]'t'—= ac, z =r —1. (4.4)

B. Linear stability analysis

The two solutions in Eqs. (4.4) will be called
"laminar" solutions since they correspond to a
steady motion of the fluid. In order to study the
stability of the laminar solutions, it is useful to
study the perturbations

bx -=x [b(r——1)]",
by =- y - [b(r —1)l'",
bz= z —(r —1) .

(4.5)

Linearizing Eqs. (4.3) around the positive solution
of Eqs. (4.4), we obtain, for the perturbations
introduced in (4.5), the equations

The two solutions (4.4) correspond to a simple roll
plan-form in which the velocity field and horizontal
dependence of the temperature deviation from the
conduction profile is described by x and y, respec-
tively. The horizontally averaged distortion of the
temperature profile from that of the conducting
state is given by z. The variables x, y, z and
their relationship to observable quantities are
shown in Fig. 1.

The stability of these is studied, as usual, by
introducing

bx(t) =bxe" (4. t)

and similar equations for by(t) and bz(t). When
these expressions are inserted in Eqs. (4.6) and
5g, 6y, and 6z are eliminated, a cubic secular
equation is obtained:

p.'+(o+b+1)A.'+b(r+o)A, +2ob(r —1)=0. (4.8)

(~+ t z,)(x —is, )(x —~, ) = x' —z,z'+ x',~ —z, x', =0.
(4.9)

Equation (4.8) has one real negative root and two
complex-conjugate roots when r is greater than
one. The two complex-conjugate roots have a neg-
ative real part when ~ is less than a certain value

For these values of x, infinitesimal perturba-
tions to the laminar state will decay in time. At
r~, the two complex conjugate roots cross the
imaginary axis. When r &x~, perturbations to the
laminar state grow with time, that is, the laminar
state becomes unstable. The value of z~ is deter-
mined by demanding that the complex conjugate
roots be pure imaginary:

bx = -o(bx -by),
by = bx —by —[b(r —1)]'t'~z,

bz = [b(r —1)]'"bx+[b(r —1)]"'&y-»z .

(4.6)

We see from Eq. (4.9) that r r may be determined
by requiring that the product of the coefficients of
A. and A.

' equal the constant term in Eq. (4.8), or
that

(o + b+1)b(rr+o) =2ob(rr —1) .

We therefore have

rr =o(o +b+ 3)/( o—b —1). !4.10)

Vi
Cl

u = -~2nn o X sin(—)cos(—)
(i++ ) . ~ax ~z

W ~2 nn (1+o ) X cos(—)sin( H )

T = To- ~H s+ —""s s (W Yeas(~~)sin(~~)-2 sin(—))

FIG. 1. Velocity and temperature fields in roll plan
form for the Lorenz model.

Note that ~~ goes to infinity as v approaches
b+1; for o & 6+1 there is no solution. Since, by
definition, b must lie between 0 and 4, this thresh-
old does not exist for small values of the Prandtl
number. Thus, for example, the Lorenz model
gives rise to a time-independent roll plan form at .

all Rayleigh numbers for air for which 0 =0.71.
This conclusion seems related to and consistent
with the studies of Willis and Deardorff. They
have argued, on the basis of experiments in which
three-dimensional behavior was inhibited by ad-
justing a pair of styrofoam buffers, that time de-
pendence in air flows is always preceded by the
development of a three-dimensional pattern. They
have also numerically integrated the two-dimen-
sional Boussinesq equations for air to test this
hypothesis. These numerical studies indicated
Shat the laminar state was stable for all values of
the Rayleigh number examined, apart from a curi-
ous pulsation of the cells which they attribute to
the boundary conditions they used.
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C. Numerical solutions

Lorenz" has integrated Eqs. (4.2) on a machine
for values of x which exceed x~. His calculations
were performed for v = 1.0 and b = —, . This value of
b corresponds to 0', = -'m', which is the critical val-
ue of k, deduced by Lord Rayleigh. " With these
values of 0 and b, r~ =24.74; Lorenz studied the
solutions with x = 28.

Lorenz found that the system spiralled away
from each of the two laminar solutions in the phase
space of the three modes, and that it spiralled
back and forth about the two laminar points indefi-
nitely. The deterministic orbits he calculated ex-
hibit several interesting features. The first and
perhaps most unexpected feature is the nonperiodi-
city of the orbits in time. The system point rotates
about one center for two or three orbits, and then
moves off to rotate about the other center for a
series of orbits. There is no apparent relation
regularity in the number of orbits about either of
the two centers.

Lorenz mapped out the region of phase space that
was occupied by the nonperiodic orbits described
above. This region is a doubly connected infinitely-
many-sheeted surface in the phase space, which
we shall henceforth refer to as the "Lorenz sur-
face." The projection of the Lorenz surface onto
the y-z plane is shown in Fig. 2.

The movement of a system on the Lorenz surface
can be qualitatively described as follows. Assum-
ing that a system is initially close to one of the
two laminar points and on the upper (lower) branch
of the surface for the plus (minus) center, it
spiral. s steadily outward from the center until its
radius attains a critical value. When the system
attains the critical radius, it crosses over to an
orbit about the other center before it can complete
another revolution about the first center. In de-
scribing this crossing-over process, let us sup-
pose, for definiteness, that the system is spiral-
ling out from the plus center. It strikes the criti-
cal radius and describes a trajectory near the
upper (in z) edge of the Lorenz surface as it ap-
proaches the minus center. The system then winds
around the minus center and comes down onto the
lower (in x) branch of the Lorenz surface, circling
underneath the branch that it came in on. In the
next stage, the system spirals out from the minus
center until it again reaches the critical radius
and comes in toward the plus center from below
on the lower branch. The system then swings up
around the plus center onto the upper branch. At
this point, the system is back in the general loca-
tion where it started and repeats the whole char-
acteristic but irregular process ad infinitum.

It is clear that the dimensionality of the phase

0-
I

-200
I

200
ly

FIG. 2. Isopleths of x as a function of y and s {thin
solid curves) and isopleths of the lower of two values of
x, where two values occur {dashed curves), for approxi-
mate surfaces formed by all points on limiting trajec-
tories. Heavy solid curve, and extensions as dotted
curves, indicate natural boundaries of surfaces. {Re-
printed by permission of E. N. Lorenz. )

space is crucial in the process described above.
It is difficult to imagine such nonperiodic orbits
in a one- or two-dimensional system having the
same type of nonlinearity, damping, and static
driving as Eqs. (4.2); when a system moves in
towards a center, there is no way for it to escape
from the center. In one dimension, the system
would have to retrace its path, and this is impos-
sible for a first order differential equation in
which the time derivative of a variable depends
only on the variable. In two dimensions, it would
appear that all orbits must be either periodic or
asymptotically periodic.

The Lorenz surface appears to be one of the
simplest possible examples of the "strange-attrac-
tor" solutions discussed by Ruelle and Takens. '
In fact, the Lorenz surface bears a strong resem-
blance to one of the examples of a strange attrac-
tor that was given by Ruelle and Takens. This ex-
ample is a structure that is embedded in a three-
dimensional space and which is locally the product
of a Cantor set and a piece of two-dimensional
surface. The attractor thus has measure zero in
the phase space, and is an infinitely-many-sheeted
surface.

Probably the most important consequence of the
nonperiodicity discussed above is the possibility
of doing statistical mechanics without introducing
external stochastic elements into the basic equa-
tions. Numerical calculations of the correlation
functions of the three modes indicate that they
phase mix to zero in roughly one rotation period.
Ruelle and Takens point out that mixing behavior
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should be obtained for systems with strange at-
tractors,

D. Landau expansion

To show that the Lorenz model is an example of
inverted bifurcation, we shall make a Landau ex-
pansion, that is, an expansion in the amplitude of
the deviation of the orbit from one of the laminar
points.

From Eqs. (4.6)-(4.8), it is easily seen that, at
r ~, an infinitesimal perturbation to the plus center
has a,n infinite lifetime and enters an orbit about
the center:

bxo=A cos(&art),

use of Eqs. (4.11), (4.14), and (4.17), we find

»n~ = -v(bxni —byn~) i

Oy„,= Ox„,—Oy„,—c,Oz„,

—(A'&u r/2vc, )(~ r[1+cos(2&v r t)]

+ (o +1) sin(2&v r t)'I, (4.18)

6z„,= c,5x„,+c,&y„,—& ~z„,
+ (A'/2v)]v[1 +cos(2&v rt) J

—e rein(2ur r t)j .

Equation (4.18) can be satisfied by bx„„by„„and
5z„„whichhave the following form:

(4.11)

with

by, =A[cos(&u r t) —(e r/v) sin(&u rt)],
bz, = (A&a r/vc, )[e rcos(~ rt) + (v +1) sin(&u r t)],

bx„,=Bcos(2+rt) +Csin(2&art) +D,

by„,= E cos(2~ r t) + F sin(2&v rt) +G,

bz„,=H cos(2~ rt) +I sin(2&v r t) +J .

(4.19)

5x = 5x, + 6x (4.13)

co2=b(rr —1), &ur2—= 2ob(v+1)/(v —b —1), (4.12)

and A an arbitrary infinitesimal real number. Let
us first consider values of r slightly less than r~.
The corrections to the orbit given in Eqs. (4.11)
can be calculated perturbatively by setting

A system of nine inhomogeneous linear equations
for the nine unknowns B-J is generated by sub-
stituting (4.19) into (4.18) and equating the coeffi-
cients of the orthogonal functions:

2e rB = v(C —F),

2~r C = -v(B —E),

5x, =Ox„ &Y, = Gy„5z,= 6z, . (4.14)

This replacement constitutes the lowest approxi-
mation in a perturbation expansion in the quantity
hc,

and similarly for 5y and 6z. The subscript "l" de-
notes the part of the system's coordinates which
can be found from linear theory while "nl" denotes
the nonlinear correction to the orbit. If x is close
to r ~, we can take

D=G,

-2~ r E = C —F —coI —(v +1)(u rA'/2vc, ,

2' r E = B —E —cQ —&u r2 A'/2v c„,
0 = —c,J —&u ~rA'/2vc, ,

-2&v rH = c,C +c,F —bI —w rA'/2v,

2e rI = c,B +c,E —bH +A'/2,

0 = c,D+ c,G —bJ +A'/2 .

(4.20)

ac =—[b(r —1)]' ' —[b(rr —1)]' ' (4.15) A straightforward but lengthy calculation yields

Inserting Eqs. (4.5) and (4.15) into Eqs. (4.2) we
obtain

bx = -v(bx —by),

5j = 5x —6y —c 5z —hxdz —Dc6z,

6z = C,5x + c,5y —5 5y + 5x5y + Dc 5x + Dc 6y .
(4.16)

We next insert Eqs. (4.13) into Eqs. (4.16) and

equate terms of first order in the nonlinearity:

bx„,= -v(bx„,—by„,)

5y„,=Ox„,—5y„,—c,hz„,—6x, 5z, —Ac5z„,
(4.17)

5x i
= coax

~
+co~& i ~R'

i +~xi~y

+ Ac5x„,+ Ectly„,.

For values of r close to r~, we need only keep
terms of zero order in Ac in Eqs. (4.17). Making

B= J3A'

C = (o.P+y)A',

D= G = -[1+ (b&u r'/vc02)](A'/4c, ),
E= [P+y+(2(ur o.P/v)]A',

E= [o.+y —(2(or/v)]A',
(4.21)

H = [~ r (8Pc. —1) —4(v+1)(otP+ y) c.](~,A'/2vc, '),

I= [8~r(oP+y)c, +(v+1)(4Pc, —1)](erA'/2vc02),

J = -&u r2A'/2vc', ,

where the parameters n, P, and y are defined by
the equations

340 ~Q=
2~r'(v +b +1) —vc', '
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~ r2(2o + 2 +b) +oc,' —12ur r'c,
4c,[2+ra(g+b+1) +So.mrs -oc,'] '

2e rb(o +1) —3~ r'

4c,[2(o 2r(o+b+1) —oc,'] '

(4.22)
From (4.27) and (4.28) we obtain expressions for
B-J and the last two terms in Eq. (4.25) in terms
of b and o. Furthermore, to order o ', Eq. (4.26)
simplifies to X= ,dA'—/dt. With these replacements
(4.25) finally becomes

X= ——((bx'+ by'+ bz '))
2 dt

= -o«x„',) —«y.', ) -b«~.', )

+ (o +1)(bx„,by„,) + c,(bx„,bz„,) + hc «x,bz, ),
(4.23)

with the angular brackets indicating an average
over one period. The growth rate can be expressed
in terms of A, . . . , J by substituting (4.11) and

(4.19) into (4.23). We have

g(B yC2+2gy) (E + F2+ 2G )

—b(H'+P +2J2) + (o +1)(BE+CF +2DG)

+c,(EH+FI+2GJ) +(A'&u r26c/oc, ) . (4.24)

Inserting the solutions (4.21), we obtain

2X= -g(B'+C' —BE —CF) —(E'+F' —BE —CF)

—b(H'+P) +c,(EH+FI) +A'&ur26c/gc,

+ (A4&u r2/4o'c, ') [o —u rm (r r —1) '] .

From (4.11) we also have

(4.25)

2X= [1 +u'(c'+g'+2g+2)/2oc'](dA'/dt}. (4.26)

Equations (4.21) and (4.22) and (4.25) and (4.26) can
be used to calculate the growth rate. To simplify
the algebra let us consider high- Prandtl-number
flows and expand all quantities in the inverse of
the Prandtl number. The quantities r~ and ~~
given by (4.10) and (4.12) become

g(g +b +3)
0 —5 —1

(4.27}

The quantities c„e,P, and y can also be expand-
ed in powers of o '. From (4.12), (4.22), and

(4.27) we obtain

c„=(bo) ~'[1 + (2b + 3)/2o],

n = (8b/g)~'[1+b/2o],

P= (ob) 'i'(5/12)[1+(15 —62b)/10o],

y=-(v 2/Sg)[1 —3(b+1)/2o].

Near the transition point r~, the growth or decay
of an infinitesimal perturbation to the laminar state
should be small. Thus it is useful to introduce the
growth rate averaged over one period, 2m/mr.
From Eq. (4.16) we see that to first order in the
nonlinearity and Ac

A4+ — LcA' (4.29)

r, -~«1. (4.31)

Numerical calculations reveal that the 1/o ex-
pansion breaks down for values of o larger than
10, the value used by Lorenz. For accurate re-
sults one must use the values of &or, c„n,P,
and y given by Eqs. (4.12) and (4.22) and compute
the growth rate with Eqs. (4.21) and (4.25). With
the values used by Lorenz, v = 10 and b = ~, the ex-
pression for A, becomes

A, =24.4
~
hc ~' ' (4.32)

For this equation to hold it is necessary that
~
Ac

~

«1.67x10 ', whence from (4.15)

~, -x «0.01. (4.33)

For larger values of rr r, Eq. (4.32)-overesti-
mates A„the neglected terms in the Landau ex-
pansion drive the system outward and decrease A, .

Since the A' expansion of the growth rate breaks
down for A' greater than 1, the existence of an un-
stable limit cycle cannot be inferred in this re-
gion. However, it is easy to see if the limit cy-
cle rema, ins and measure its size. Such a calcula-
tion reveals that as r decreases, for 5 =& and 0
=10, the limit cycle steadily increases in size un-
til r reaches 21. At this point, it becomes impos-
sible to find orbit-type solutions about the two cen-

Equation (4.29) has the form with which Landau
begins his discussion with a crucial exception:
the sign of the A term is positive, not negative.
The quantity bc is positive when x is greater than

r~ and negative when ~ is less than r~ Thus,
when r is less than x~, we may infer the existence
of an unstable limit cycle. Then the ?grenz model
exhibits inverted bifurcation.

The limit cycle occurs for that value of A which
makes the growth rate identically zero. Denoting
this value of A. by A„wefind from Eq. (4.29)

A, = (72
~
bc

~
/37)' '(bg )' ' (4.30)

For values of A larger than A„the system will
spiral away from the laminar point. For values of
A less than A„asystem will be pulled into the
laminar state.

The perturbation expansion in A is only reliable
if A is substantially less than one. Since, to low-
est order in the 1/o expansion, the hc = (r r -r)/
2c„this condition is equivalent to
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ters. The phase space is divided into two parts.
One part is in the domain of attraction of one cen-
ter and the other is in the domain of attraction of
the other center.

Thus, in the region 21 & x&24.74, finite ampli-
tude instabilities exist. If a system is released
outside one of the limit cycles, it spirals away
from it and then proceeds to execute the usual mo-
tions on the Lorenz surface which were discussed
in Sec. IVC. It might be thought that the unstable
limit cycles surrounding the two laminar points
would prevent the system from becoming trapped
by one of the two laminar points. This is not the
case. The limit cycles are on the upper sheets
for the plus center and the lower sheets for the mi-
nus center. Thus, there is nothing on the "ap-
proach sheets" to prevent the system from being
pulled into one of the laminar points. If a system
spiralling away from the plus center comes close
enough to the edge of the Lorenz surface, it will
execute a tight swing down around the minus center
into the domain of attraction of the minus center
on the lower sheets.

The essential ingredients in the above behavior
are the center-manifold theorem, ' the three di-
mensionality of the phase space, and the nonlin-
earity of the equations of motion. The center-
manifold theorem implies that orbits near either
of the two laminar points should be attracted onto
a two-dimensional surface (the center manifold).
The nonlinearity of the equation of motion drives
the system far away from a laminar point if the
system is released outside the unstable limit cy-
cle on the center manifold. However, the three-
dimensionality of the phase space allows the sys-
tem to come back to the laminar point from a di-
rection outside the center manifold. Since this di-
rection is not in the center manifold, the system is
pulled into the center manifold and either trapped
by the laminar point or recycled depending on
whether it lands inside or outside the unstable lim-
it cycle.

Thus the Lorenz model provides one of the sim-
plest possible examples of metastability and hy-
steresis. It is hoped that it may prove helpful in
gaining insight into more realistic examples of
such phenomena in pipe and channel flow.

I
t

I
+ In I

~ 2 and even.
(5.1)

The modes which satisfy these conditions are u»„
vyyy upyp Qpy2 and 0] yy Bus se found that this
truncation for the wave modes leads to errors of
about 20% in the growth rate.

The five modes discussed above and the three
roll modes constitute a system of 8 modes. Sub-
stituting these modes into Eqs. (3.6) and employing
Eqs. (4.1), we obtain

2u„,u„, (3 —a,)u„,u„,
dt W2 (1 +a,')~

a, (I —a,') (u„,v„,-u„,v„,)
a, (1+a') lpl lpl/ 7

(5.2a)

du», u, o,u&»o (3 —a,)u„,u&», o(1 +a,') 8»,
dt 2v 2 (1+a')2~ 1+a&+a',

tion along the length of the convection rolls, which
has been observed in experiments on air by Willis
and Deardorff. ' Coles' has seen similar wave mo-
tion of the Taylor cells in his Couette flow experi-
ments.

The basic mechanism responsible for the time
dependence in low- Prandtl-number convection is
a shear instability. The shear, or velocity grad-
ient, which produces the instability has its maxi-
mum value at the points where the fluid is rising
or falling most rapidly. At these points the x com-
ponent of velocity (see Fig. 1) vanishes. We there-
fore expect the x component of the wave velocity to
behave like cos(kx) if the x component of the roll
velocity is sin(kx).

Busse approximated the basic convection rolls
by the three Lorenz modes upped Typ] and Tpp2.
This can be justified in the limit of zero Prandtl
number since the amplitudes of all other modes
vanish as higher powers of the Prandtl number.
More generally, Busse showed that the three-mode
truncation is valid whenever the amplitude of the
convection is small.

Consider the system of modes which have the
correct symmetry to couple to the roll gradients
and which satisfy the following conditions:

V. NORMAL BIFURCATION- LOW-PRANDTL-

NUMBER CONVECTION

A. Linear theory

The Lorenz model of convection discussed in
Sec. IV fails to predict any time dependence in low-
Prandtl-number convection. Busse" has found the
linear instability which leads to time dependence
in such flows. The instability involves a wave mo-

g(1+a,'+a,')u»,
1 +01

dv», v 2a,a, aa, (1 +a', )
1 +a2+a2 101 012 a (1 +a2 ~a2) ill

1 2 1 1 2

o(1+a, +a', )
1 +@2

1

(5.2b)

(5.2c)
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du„, v 2a, va',
101 111 1 2 010 )al +al

du„, a2 v(4 +a', }
~2a 101 111 ] +a2 012 4

(5.2d)

(5.2e)

To first order, three more conditions appear:

vP, = 1/a, ; 6,'~, = 0; Ai" = -(c/2&2)ui, 'l, . (5.5)

In second order, the eigenvalue is determined to
first order:

d L9„, M„,6„, u„,6„,
101 002 101 101 4

(5.2f)

6002 2 6
2 2 1116111 6

4 6002
ill ill al 101 101 m 21 +al

(5 2g)

d6„, u„,6„,u„,6„, a,v„,6„,
dt "' "' 2v2 2v2 a,

u,'„=-c(1 +a2, )/4v 2oa', ,

u,",', =+i2/a„
v~2~ = vic/v 2a'o

(,) 1 20 1 c'
(v +1) ( +a', a'(( +a') 4va') '

A.
' =sic/v 2a, ,

~(2) 8(2) 012

2~ a'(1 +a') 16oa'

(5.6)

ra2V111 (1 +a1+a2}6111 4
)+F111+

a, 1+a

with a, =—k, /11 and a, = k2/11. Since no ambiguity
exists the superscripts on u]11 vill and 6»1 have
been deleted in Eqs. (5.2). Note that Eqs. (5.2) re-
duce to Eqs. (4.2) when u»„v»„u0»,u»„and
6», are set equal to zero. Thus the straight con-
vection roll is a solution to Eqs. (5.2) and it is
stable for sufficiently small values of r.

If Eqs. (5.2) are linearized around the roll solu-
tion given by Eqs. (4.2), a system of five equations
is obtained:

o(1+a', +a', )

Finally, when terms of third order in a, are con-
sidered, the eigenvalue is determined to second
order:

+
(v +1)(1 +a', ) 2a', (v +1)(1+a', ) 2(1+a,')
c' 1 (1 +a,')

4oa,' 2(v +1) 8
(5.7)

From (5.6) and (5.7) it follows that, to first or-
der in a„the eigenfrequency is pure imaginary,
and to second order, it is real. The point of neu-
tral stability occurs when the real part of the ei-
genfrequency vanishes. Equation (5.7) gives for
neutral stability the condition

c' = 2v2o2(v + 1)/(13o +21),
which corresponds to a Bayleigh number

r r = 1 +4v'(v +1)/(13o + 21) .

(5.8)

(5.9)

c
o(1+a,'+a,') &2a,a2cu»2 oa, (1 +a) 8»,

1+a' '" 1+a'+a' a (1+a'+a') '

oa &2a2cv„,
A + 2 uplp—1+a, a,

(5.3)

o(4 +a', ) a,cv„,

The eigenvalues and eigenfunctions of Eqs. (5.3)
can be calculated by making a perturbation expan-
sion in a,. That is to say, the wavelength in the y
direction may be assumed to be much larger than
the thickness of the layer, and an expansion will be
made in the ratio of these wavelengths carried out.

Let us choose ulll to be unity. To zeroth order
in a„weobtain one condition:

This threshold is actually valid only in the limit of
infinite wavelength, since it was obtained by mak-
ing an expansion in a,. Finite wavelengths are
more strongly damped, and therefore the thresh-
old for finite wavelengths is higher than that in
Eq. (5.9).

B. Landau expansion

The Landau expansion for Eqs. (5.2) is obtained
by the same procedures used in Sec. IV. To set
up the expansion, we introduce the notation

ggg
—a(0) /2e(~+& )& + (2) /2/2&& +.a(2) /2e2&'

101 101 101 101

+ O(A. '),

, 5u», =A(e" '+e" ')

+ &(0) ~3e(2 + *)t + ~(3) g3e3Xgill ill ill 111

6",,', =1. (5.4) +c.c. +O(A'),
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g

erat

+ ~(0) P 3e(2%+% )t + ~(3) g 3e3~t
010 010 010 010

+c.c. +O(A'),

Ou = Q 4e" + n"' 43e""'*"+n"' A'e'"'
012 012' 012' 012

+c.c. +O(A'),

—g(0) /2e(&+ &+)&
101 101 101 101

+ O(A4),

—$(0) A2e(~+&
002 002 002 002

+ O(A'),

& I + |3(o) Ass(2&+ x*)I + pb) Aocs&I
111 ill ill ill

+c.c. +O(A'), (5.10)

In order to calculate the quantity P, we shall
assume that r is set equal to x~. Thus the non-
linear contribution to the growth rate will be cal-
culated to zeroth order in r —r~.

To second order in A, the quantities Qlpl Qlpl,

tities can be calculated from Eqs. (5.2a), (5.2f),
and (5.2g) by expanding in a, . To zeroth order in
Q» the modes have the values

a(o) 5(o)
101 101 0 P

a(o) 5(2)—
101 101 0 P

y(0) 0002

(2) =
002

(5.12)

The variable c, is the value of c for ~ =r ~. To
first order in a, all three modes vanish. To sec-
ond order in Q, only the modes b,'02 and bpp2 will
be needed to calculate P:

dA, 2
= aA'+ PA'.

dt
(5.11)

From Eqs. (5.2) and (5.10) it follows that when

~ =x~, so that the linear growth rate vanishes, the
real part of A, is of order A'. Furthermore, the
real part of the growth rate can be incorporated
into the definition of A . As a result, we may write

-( . (.1(.("- )

4g2Q2 1 +Q2 (5.13)

Denoting the part of the eigenfrequency which is
second order in A by A.„wefind, from Eqs. (5.2)
to third order in A, the system of equations

(O) (2) 4, (I)
2

(0) (2) cI (I) ( I)~111
2 (1)

(a„,a„„aa„,a„,+ca„,)-&1(-— , , (a„,a„,+a„,a„,+ca„,)+
1 +Ql +Q2 1+Q, +a,

1(2a,a, ( ) () (,) oa, (1 +a, )p»I o(1 +a, + a,) o'I»(1) 2 2 (1)

)).,a„,+i(do(,'„=. ,' ', (a,'„a„,+a,'„a,*„+c().,'„)+
1 +Ql +Q2

2 (1))(2a, , (,) (2) g (1) i 2 010
~2Q010 +i +010 101 111+Qlpl 111+

Ql 1+Q,

( ) a, ( ) (,) (,) cr(4+a ) 4).o12
2 (1)

A IaoI, + i~ no'» --— (aI'»a»I + au»a III +cu»1) —
(U2Q, L/1+ al

Q ~(»
a(a) I (0) (2) Q + +C &(1) &Q(O) Q +Q(2) Q + +C &(1) i + 2 111 y(0) y(2)

A&2&111+(4L)Pyll (010+ 101 PlP+ &01+ i 101012+10]012+&012/+La)002 PP2

(5.14)

(0) (2) 2 ah)
o IIPoo2 aoaIIIboo2 (1+a +a ))

Q, Q, 1+Q,'

We can solve (5.14) by expanding in powers of
Q,. To zeroth order all powers vanish. To first
order we have

o(II)o(1) = 2i/c'a, , A,,(1)= -i &2/ca, ,
P = -a,'(5o +13)/4c(a +1) . (5.17)

Since P is equal to twice the real part of x„we
have

and to second order

o") (2) =v 2i/sea~»

(,) 2v 2 2v 2o ))t2

c ' c'(1 +a') caa' '

o. ' (2) =3& 2(1 +a')/8oca', ,

A.o(2) = -(5a+13)/8o(a+1).

(5.15)

(5.16)

The variable ()( can be determined from Eq. (5.7):

(r rz)-1, (1 +aIo)

aaoI(1 +a,') 2(() +1) 8
(5.18)

Equations (5.11), (5.17), and (5.18) show that bi-
furcation resulting from Eqs. (5.2) is a normal bi-
furcation.

For high Prandtl numbers, the normal bifurca-
tion is shorted out by the inverted bifurcation, dis-
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cussed in Sec. IV, since the threshold for the
Lorenz instability, given by Eq. (4.10), grows like
o. for large o', while the instability discussed in
this section [as can be seen from Eq. (5,9)j grows
as o2. The actual crossing point of the instabilities
occurs for 0 nea, r 10. Numerical calculations for
la, rger Prandtl numbers reveal that the three
Lorenz modes execute their usual nonperiodic
motion while the other five modes go to zero.

C. Evolution of nonperiodicity

Iml - 4,

/n
/

&2, fl /+ /n
/

& 2 and even.
(5.19)

The truncation contains 39 modes: first, there is
the roll mode, u„„andfour other modes, u111,

u131~ and M141 which have the same symmetry
as u1p1 and nonvanishing wave numbers in the y di-
rection. Although these modes have the opposite
symmetry from those which are linearly unstable,
they play an important role in the dynamics be-

The work in Sec. V B showed that the model of
low -prandtl -numbe r convection studied in this sec-
tion provides an example of normal bifurcation.
Thus the ideas presented in Sec. II and the proposal
of Ruelle and Takens that four bifurcations are
generically needed to produce nonperiodic motion
can be tested. For this purpose we may include
four wave numbers (k„2k„3k„4k,) in the y direc-
tion and determine by numerical integration whe-
ther the motion becomes nonperiodic. Note that
we can adjust all four bifurcations to occur ar-
bitrarily close to the threshold given in Eq. (5.9)
by choosing k, small enough. Thus conditions
which are arbitrarily close to those assumed by
Ruelle and Takens can be created.

The lowest consistent truncation which has four
harmonics in the y direction is defined by the con-
ditions

cause of the nonlinear terms in the Navier-Stokes
equation. For small k„they are only slightly
more damped than the roll mode and they can have
comparable magnitudes.

The five temperature modes which correspond
to these velocity modes are 61pj Pj11 0121 01'3],
and 6141 Each of these temperature modes is
found to be closely phase-locked to its correspond-
ing velocity mode.

There are also four modes associated with Opp2.

These modes are 6„„6„„0„„and0„,. The
four new modes remain very small compared to
0 p2 in all the calculations. There is a good physi-
cal reason for this behavior. The mode 60» is
the only transport mode in the model. If the modes0„„0„„6„„and6„,were to drain off a sizeable
fraction of the amplitude of the 6», mode, there
would be a decrease in the convective heat trans-
port. To take a limiting case, suppose that the
periodic bounda. ry conditions along the y direction
were allowed to recede to infinity so that a whole
band of wave numbers were allowed. In that limit,
the convective heat transport would go to zero if
all modes 6»2 were on an equal basis with 0002.
This result is not seen experimentally.

It is necessary to include the modes v1]1 v]21,
v131 and v'„,because of the nonlinearity of the
equations of motion.

The rest of the modes are harmonics of the lin-
early unstable set of modes studied in this section.
Thus there are five sets of four modes: u111 Q121,
u' u' v' v' v' v'

131& 141& 111& 121& 131& 141& 010& 020& 030& 040&

012& 022& 032& 042& 111& 121& 131& 141'
The equations for the 39 modes are found by

substituting them into Eqs. (3.8) and dropping cou-
plings to higher-lying modes.

In the actual calculations we wish to report, a2
was chosen to be 0.1a„or0.072, and Prandtl num-
ber was chosen to be unity. These choices were
made so that the results could be compared with
the results of Ahlers's experiments on convection
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FIG. 3. 6ipp2 vs t for &=1.4, 4 wavelengths. FIG. 4. epp2 vs t for &=1.45, 4 wavelengths.
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FIG. 5. Minima of &pp2 for r= 1.45, 4 wavelengths. FIG. 7. Opp2 vs t for r = 1.5, 4 wavelengths.

in classical helium at low temperatures. Ahlers
did his experiments in a cylindrical geometry.
However, for the purpose of rough comparison,
the ratio of the plate separation to the circumfe r-
ence of the plates multiplied by 2 yields a value of
0.086 for a,. The Prandtl number of the helium
that Ahle rs used was 0.86.

Ahlers found a sharp transition to nonperiodic
fluctuations of about 1% in the heat flux at x = 2.18.
He did not see any periodic regime, but this may
be due to the fact that the heat flux variations we
find in the periodic regime are very small.

For o =1, Eq. (5.9) yields a threshold of 1.24 at
infinite wavelength. For a, = 0.1 and a, = 0.72, the
threshold is about 1.25. At ~ = 1.4, the modes as-
sociated with two wavelengths are large. The mo-
tion is periodic. This periodicity can be seen in
the graph of 8pp2 versus time in Fig. 3. The varia-
tions in the Nusselt number are about 0.2%.

The next set of calculations was done at r = 1.45.
All four sets of modes are comparable in magni-
tude, and the motion is weakly nonperiodic. This
nonperiodicity can be seen in the graph of 8pp2

versus time in Fig. 4. There is still a mean field
for the roll. velocity Syph at this stress. The heat
flux fluctuations are still only about 0.3%. Figures

.455—

5 and 6 show the nonperiodicity over longer and
shorter time scales.

Somewhere between x = 1 .45 and 1.50, the mean
field in u]p] drops discontinuously to zero. At r
= 1.50, M„,has no mean field and the mode switch-
es sign periodically. The motion at this stress is
periodic. This periodicity can be seen in Fig. 7.
The variations in the heat flux are about 0.02%.
The modes involved with two different wavelengths
in the y di rection dominate the motion. The rea-
son for the return to periodicity at r = 1.5 is that
the mean field, which contributes to the growth of
the perturbations at higher wave numbers at r
= 1.45, disappears. A competition between time
scales now determines whether higher-lying modes
can produce a bifurcation or not. It is necessary
to go to higher stresses before the additional de-
grees of freedom can become unstable.

At r = 1 .55, the motion is still periodic, as can
be seen in Fig. 8 ~ Three wavelengths now dominate
the dynamics. The heat-flux variations are about
0.03%

Finally, at ~ = 1.6, the modes associated with all
four wavelengths have comparable magnitudes.
Figure 9 shows that the motion is strongly non-
periodic. The rms value of the fluctuations in Nus-
selt number is 1.4%, in reasonable agreement with
the 1% value measured by Ahlers. The time scales
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440
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I I I I I I I

2 3 4 5 6s 7 8 9 10
1 ~ (Units of 1,6 x IO sec)
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I I

1 2
I I I I

3 4 5 6 7
I -(Units of (.6x IO sec)

FIG. 6. Expanded view of tIjpp2 vs t for r= 1.45, 4
wavelengths. FIG. 8 pp2 vs t for r =1.55, 4 wavelengths.
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do not agree as wel~. . In the 39-mode system the
time scale is about two or three times that found by
Ahlers and shown for comparison in Fig. 10.

The time correlation function and power spec-
trum of the fluctuations in Nusselt number for x
=1.6 are shown in Figs. 11 and 12. The statistics
on these curves are poor, and they should only be
used to gain a rough idea of the magnitude and co-
herence length of the fluctuations. The values for
the quantities are compatible with visual inspection
of the fluctuations themselves. Figure 13 shows
the actual power spectrum which Ahlers measured.

In order to check the idea that four degrees of
freedom are necessary to produce nonperiodicity,
calculations were performed with the (4k, ) mode
omitted from the system. As shown in Fig. 14, the
motion was then periodic for x=1.6. To see whe-
ther nonperiodicity might set in at higher stresses,
calculations were also performed at ~ = 2 and x
=20. Figures 15-17 show that the three-mode mo-
tion remained periodic at these Rayleigh numbers.

The above calculations suggest that the Ruelle-
Takens picture of the transition to nonperiodicity
is correct for low-Prandtl-number convection.
Let us now turn to some of the experimental evi-
dence. The experiments of Willis and Deardorff4
show that there are regimes of periodic and non-
periodic flow in low- Prandtl-number convection.

FIG. 11. u&o& vs t for r=1.6, 4 wavelengths.

In Couette flow, the experiments of Coles' show
that there is a periodic regime. The Taylor cells
have a wavy appearance similar to that of the con-
vection cells in their periodic regime. Figure 19
of Coles's paper shows that the appearance of un-
steady flow is accompanied by the growth of spa-
tial harmonics. Figure 20 of Coles's paper also
illustrates this point.

The experiments of Klebanoff, Tidstrom, and
Sargent' on the transition to turbulence in a bound-
ary layer also add support to the Buelle- Takens
picture. In these experiments, a two-dimensional
Tollmien-Schlichting wave was excited in a bound-
ary layer flow over a flat steel plate. This wave
amplified as it propagated downstream until it be-
came three dimensional at a certain point. The
three dimensionality consisted of a periodic span-
wise variation superimposed on the wave form.
The wave then became nonlinear in a very short
distance. A theoretical explanation of the subse-
quent behavior has been given by Landahl. " There
is a nonlinear rectification mechanism which tends
to clip off the positive parts of the waves, leaving
negative spikes. At distances close to the point

1.20

0.80—

z 0+0—
c3

2 0.00-

I

RiRc = 2.2 5

O
4

t
3z

2
CI

-0.40—
I

2000 4000 6000
TIME (sec)

t (Viscous Diff. Times = 3000 sec.)

I

1.5

FIG. 10. AN vs t for Ahlers's experiments {&=2.23). FIG. 12. (AN{t)AN) vs t for r=1.6, 4 wavelengths.
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a central role in this classification. Channel flow,
coaxial pipe flow, and the Lorenz model of convec-
tion are examples of inverted bifurcation. Inverted
bifurcations exhibit a one-parameter family of un-
stable limit cycles below the linear threshold in
stress. Finite amplitude instabilities, hysteresis
phenomena, and an abrupt transition to turbulence
above the linear threshold are characteristic of the
flows in this category. The Lorenz model was dis-
cussed in Sec. IV.

Low-Prandtl-number convection, Couette flow,
free shear layers, boundary layers, and flows past
obstacles exhibit normal bifurcation. Normal bi-

FIG 17o 8pp2 vs t for r = 20 ~ 3 wavelengths.

for two degrees of freedom and obtained a doubly
periodic motion. In the next set, he allowed for
three degrees of freedom and obtained a triply
periodic motion. Finally, when Lorenz allowed
for the fourth degree of freedom, he obtained a
nonperiodic motion in which correlation functions
of the dynamical variable phase mix to zero as
their time differences go to infinity.

VI. SUMMARY AND CONCLUSIONS

The basic goal of this paper has been to present
a unified picture of the transition to turbulence
in fluid systems which are subjected to static ex-
ternal forces. The Hopf bifurcation theorem plays

furcations exhibit a one-parameter family of stable
limit cycles above the linear threshold. A picture
of the transition to turbulence in such flows, due
to Huelle and Takens, was discussed in Sec. II.
This picture was supported by calculations of low-
Prandtl-number convection in Sec. V. The avail-
able experimental results for the various flows
were also discussed. These results appear to sup-
port the Ruelle- Takens picture.

It should be remembered that the Buelle- Takens
analysis is based on finite-dimensional phase
spaces. They do not consider the possibility of in-
frared instabilities to a continuum of wave num-
bers. Preliminary calculations indicate that such
instabilities do not occur in low-Prandtl-number
convection for the Bayleigh numbers of interest in
this paper.
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