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The first Born approximation calculation of Kroll and Watson is extended by a time-dependent eikonal
calculation. The resulting amplitude returns to their first Born approximation in the extreme limit of a weak

scattering potential or small momentum transfer. In the ultrastrong-field limit, the total cross section reduces
to the field-free eikonal result.

I. INTRODUCTION

lf &ov = (I/2m) [q', —q'(v)] . (1.2)

The parameter X is the Bessel function is y
=-n ~ Q, where a is the amplitude of the oscilla-
tion of the charged particle (electron) in the pres-
ence of the laser field alone. They also show that
XI~ represents the electromagnetic energy emit-
ted in the corresponding classical collision.

First we shall extend their results here by an
eikonal treatment instead of a Born treatment of
the scattering process. Our results return to Eq.
(1.1) when the momentum transfer is large com-
pared to some measure of the scattering potential,
but for the case of strong potentials our results
are quite different. In the process of our deriva-
tion we are forced to make some approximations
as follows:

(a) If o., is the range of the scattering potential,
then we require that

n eE «1,
ao nz ceo'ao

(1.3)

Atomic scattering processes in the presence of
a strong electromagnetic wave (laser) have be-
come of great interest recently. The first step
towards the understanding of such processes was
taken by Kroll and Watson, ' who studied the scat-
tering of a structureless charged particle by a po-
tential in the presence of a single-mode laser field.
Among other results they showed that when the po-
tential is weak enough for the first Born approx-
imation to hold, the cross section is given by

do q(v), dos
)

dA q,
" dQ

where dos/dQ is the scattering cross section in

the absence of the field, and where q, is the initial
momentum, q(v) is the final momentum, Q =q(v)
-qo is the momentum transfer, and v is the num-
ber of photons emitted during scattering, i.e.,

c (o/v« I, (1.4)

or that the ratio of the amplitude of the oscillating
velocity to the incident velocity be small. This
approximation, while it arises as a specific re-
quirement of our analysis, is also required by the
eikonal (or Born) approximation itself. It is sim-
ply the requirement that the instantaneous particle
velocity should never be small.

(c) We also require that the fractional energy
transfer be small enough so that

In the usual eikonal development one is forced to
neglect the momentum transfer along some direc-
tion close to the incident direction. Equation (1.5)
arises in a similar manner.

We next proceed to study the strong-field limit,
and relax the restrictions imposed by Eqs. (1.3)
and (1.4). We find that the total cross section
tends to the field-free result in the ultrastrong-
field limit. A formula for the correction to the
total cross section is also derived in this asymp-
totic limit.

that is, that the amplitude of the electron's oscilla-
tion in the laser field be small compared to the
potential range. Kroll and Watson' also derive a
result similar to Eq. (1.1) in the low-frequency
limit. Their result is that Eq. (1.1) holds to all
orders in the scattering potential provided that the
Born approximation is replaced by the exact result
for the elastic scattering, evaluated at some pre-
scribed energy. Our approximation (1.3) invali-
dates our discussion at low frequencies, so no

comparison with their result is possible in that
domain.

(b) If v is the velocity of the incident electron,
then we require that
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II. EIKONAL APPROXIMATION

Our starting point is the time-dependent Schro-
dinger equation'

(2.1)

7
d~' V(p+k, r —n(t'))

=
J( dv' V(r-%,(t-~')+n(t) —n(r'))

«/aQ
dt' V(b+%,t' —n(t + t' —z/u)), (2.6)

where the usual dipole approximation for A. has
been made and the A' term removed by a contact
transformation. ' The form

)I =exp[i% ~ r -i[—,'k~t —k n(t)]+iA(r, t)], (2.2)

where

where % is taken in the z direction' and 5 is the
component of r perpendicular to % .

The S matrix for scattering from wave number
%, to k' is

t

n(t) = dt'X(t')

is substituted into (2.1) with the result

(2.8)
Sk'TfQ i d~ ~X k' TtQ

w oo

where

X-„.(r, t) = exp[ik' ~ r —,'i k"—t +i& ~ n(t)].

(2.7)

(2.8)

r = p +%,r —n(7 ), t =r, (2.6)

and the equation may then be integrated with the
result

-A-%, VA+n ~ VA- V=-,'(VA)' ——,'tV'A. (2.4)

When the potential and therefore the phase A are
slowly varying in a wavelength, the terms on the
right are dropped as in the conventional eikonal-
approximation derivation. The remaining linear
first-order equation may be simplified by the co-
ordinate transformation

Substitution of (2.2), (2.6), and (2.8) into S results
in

Sk ],, =-i J( dt J)dr exp'-iQ ~ [r+ n(t)]- ~(k" —8)tj
)&V(~r)el]A(r, i) (2 9)

where the momentum transfer is

(2.10)

Simple transformations of the time integration
variable in A and the g component of r allows S
to be rewritten as

d)o «/a
S= —i dt drexP[-t]] ~ r — i(t/' —k)t] —+]k,'V exP -i dt'P[P]kl -et(et+i' —z/k ))) .

et (2.11)

The eikonal phase is now seen to be the usual
f dt V integral except that the path is not a
straight-line motion but instead is that determined
by the classical equations of motion in the elec-
tromagnetic field. In this form some simple lim-
its are obvious: (a) If the external field vanishes
(n =0), then the time derivative vanishes, the
time integral yields the energy-conservation con-
dition, and the remaining factor is the convention-
al eikonal T matrix, and (b) if the phase f Vdt is
small, then the exponential can be expanded and

the leading term is identical with the first Born
approximation of Kroll and Watson. '

Now we note that the last exponential factor of
Eq. (2.11) contains t only through the periodic
function z. If we define

2K/td
V(5+ lj)t' —n(t' + t —z/ko)) dt,2' Q

(2.12)

then the remaining part is periodic in f with period
2m/v and may be expanded in a Fourier series

« /kQ

exp -i dt' + t - a t+t' -z kQ —V

tp 2 11 gg ))et « /AQ
= P e'" ' —e '"'exp -i dt [P]5+Pl — (tte/t tzr—z'/k))-P]). '

Q
2 1T ol ~ oc)

(2.13)
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After substituting this into Eq. (2.11) and per forming the t integral, the result may be written

S,r),, = 2-si Q 6(2(k" —k', ) —v(d)}T, (%', %,), (2.14)

where

g /ao
T(R', T)t=-t dr (—exp( ire-tQ r)(Te ~ et+tetr)exp -t

i
dt' P(b rttt — e( e/ tert'- e/ e))} (e )5)

2g

t'=z/v r', -r=r'+n(a/&u-z'/k ),
then the Jacobian of this transformation is

(2.16)

and T„may then be interpreted as the T matrix
for scattering with the absorption of v photons.

In order to proceed further with T we shall now

expand in powers of e in V, which is the reason
for our first assumption, Eq. (1.3):

(n( eZ
ao mero ao

We optimize this expansion to some extent by work-
ing in the appropriate coordinate system. If we

let

Z =1-%,.n, ((o/ko) cos[a —(u&/k, )z'],

and the derivative becomes

(2.17)

n(t) = n, sin(dt, (2.19)

and where ego~ is the component perpendicular to
The quantity nor/ko is the second parameter

which we have assumed to be small [Eq. (1.4)] so
that Eq. (2. 14) may be written

V =J 'p V'+ a&cos[a —(&u/k, )z']n, ~ V'),

(2.18)

where we have specialized to a linear polarization

7'„=-i
jt dr I

—e '"[%, V'+i(n(d)+%, Q)J]2+

xexp-g Q r'+e ——— +
~

dv t/') r'- 7'+n ————+ —-7'
kp & 0 I) (d kp

(2.20)

The expansion of V is now an expansion (under the 7' integral) in powers of n(a/~-z'/k, ) -n(a/(t) -y' )
which vanishes at 7'=z'/k, . But this is the point of maximum contribution in the 7' integral, so that the
expansion is optimized. We now expand, keeping only terms linear in a in the exponential. Note that
this requires that n/ao be small, but we may still have (ngao)(Vaska) = n, V/k, large. (Vis the average
of V along the direction of integration. ) The result may be written

T„=-i dr' —e '"' ~ V'+i var+@ ~ J exp -i ~ r'-iv co ko z

x exp[-i4 ()b', z') —i n,Q(b', z') sin(a —q) + (i v ~/k, )z'], (2.21)

where

C)i(b) z) = n() Vtf)0 )

0 =((Tt), -[sin((t)z/k, )](4),+n, Q))'

+{@ [cos((dz/k, ))(@,+n, ~ Q) ]')')z,
C, —[sin((uz/k, )](e,+ n() 'Q)
C, —[cos ((uz/k, )](e,+ n, ~ Q) '

P 00

4),(b, z) = n, V dr' sinun'V(r - k r'),
0

@,(bt z) = no' V d7' cosa&v'V(r -% r'),
0

Ct (b, z) =4) ai4

(2.22)

in the exponential plays that role. We neglect it
in the exponent and in the coefficient of J. This
is our third assumption, Eq. (1.5). Then the a
integration may be performed by using

and the z integral can now be done.

(2.23)

At this stage in the usual eikonal method one
neglects the morpentum transfer along the line of
motion, or better, arranges the direction of inte-
gration in the eikonal to be perpendicular to the
momentum transfer. ' In our case the factor

ko Q+v(d/k = 2v(d)/ko



12 EIKPNAL THEORY OF CHARGED-PARTICLE SCATTERING IN. . . 1843

T„=-ik, d'be '~'" e ' pZ & 0 e '""

C~ = ep ~ VCp,

e, = [a, V +i(erik, ) ()(, k,] dte""'V(b+kt),

Q= ~e -e, -g. ~, ~,

e 'n = (e, + Q ()!0 —e )/Q . (2.25)

If V is a spherically symmetric potential, then
these may all be written in terms of one real inte-
gral

—J (()'o g))(—)", (2.24)

where 4, is the usual eikonal

C o(b) = V(5+ kt) dt,
& co

and

see that the modification due to the eikonal is not

negligible for large-enough potentials.
In the limit where the momentum transfer along

ap is small, we obtain

T,= ik -d'be 'o "[s'' o J (c(Q}e '"" 5-]( }"

(2.30)

where Q and rt now are independent of g, and Q is
proportional to the potential strength. Now in the
limit of weak laser fields, T„ is proportional to
n" and to the potential strength to the vth power.
The vth-order radiative absorption is described
as (at least) v weak scatterings with a photon
absorbed during each process.

The optical theorem may be used to evaluate the
total cross section, elastic (v=0) plus inelastic,
from the imaginary part of T,(Q =0).

I(b, (d) = t dte'~'V(b+kt)
«00

a„,= (2/ko)Im To(Q = 0) .
From Eq. (2.15),

(2.31)

and then

2b
ds [cos((d bs/k}]V(b(1+ s~)~ ~2)

k
(2.26)

y 00

0;., =4 n )' —s'in' — dt v(E+%( —u(altd~())),
~ 2m 2..

(2.32)

e,(t ) =I(b, 0),

e, (b) = ()(, b I'(b, 0),
I (b) = c(, b I'(b, (d) —(i v/k) c(, k I(b, ur},

where

(2.27)

I (b, ar) =—
b

I(b, (o) . (2.28)

Note that when the momentum-transfer term in Q

dominates the potential terms

(2.29)

T, becomes just J„(n, g) times a "zero-field"
eikonal result with the momentum transfer eval-
uated at g =k (v) —k, . This is analogous to the re-
sult obtained by Kroll and Watson' for the first
Born approximation.

The perpendicular component of the momentum
transfer is given classically by b ~ V f"„dt V(b+kt),
which is essentially C„so that we may expect
that in general Eq. (2.29) will not hold. We may
crudely estimate I- bV/k by using Eq. (1.5) so that
the inequality (2.29) is then

~u, Q~& ~a, kb&ov/k'~,

which is not true for strong-enough potentials.
Examination of Eq. (2.21) shows that the C, and eo
terms arise from the modification of the conven-
tional (zero-field) eikonal due to the field. As in
the eikonal formulation of potential scattering, we

or after the expansion in c(, from Eq. (2.24),

o „=2 d'b[1- cose J' (o'Q )],
where Q, is Q evaluated at (n) = 0.

If we use Eqs. (2.25), (2.26), and (2.27) to esti-
mate the relative magnitude of +pQ and 4p, we
see that since &ua, &k, [Eq. (1.5)], the ratio
c(,Q/eo is estimated to be the larger of

[(n, )/ba, ]((d/a)k' and [(o.', k)/a, ]((()a,/k) .

(2.33)

Both of these are small because of Eqs. (1.3) and
(1.5). This does not mean that J'0 can be replaced
by unity, since npQp is not necessarily small.

We shall now simply quote the analogous results
for circular polarization. We define a plane per-
pendicular to the incident momentum and a plane
of polarization. The x axis is taken as the line of
intersection of the two planes and the angle e as
the angle of intersection of the two planes. Then

n(t) = o.', [a„cos &et+ (a, cose + a, sing) sin &et],

(2.34)

and the result analogous to Eq. (2.24) is
'H

T=-i(-)"k, d'be 'o'(e '~o J„(c(,Q)e '""'
J [& Q( ~)]&(nn( «))-

(2.35)
where Co is the unperturbed eikonal (2.25} and
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where III. ULTRASTRONG —FIELD LIMIT

& =
l (~, + iu„) ~ (0+ x, —x.) I

e-'"=(n, +~~.} (4+X, —X)»,
fl(--)=l(,+' „) ll,
e '"' "'= (a,+ ia„) Q/0(- ~) .

(2.36)

In this section we explore the scattering that oc-
curs in the presence of a very strong laser field.
It will be assumed that the classical ac velocity is
much larger than the range of the free-particle
speed, so instead of Eq. (14}we have

—j —a +V' l dte~ ~V b+kt
(2.37)

The integrals g, and X are defined analogously to
@, and 4 .

Xi
= &C'p

(3.1)

Rather than repeat the analysis for the partial
cross sections we elect to study only the total
cross section for the linearly polarized light case.
Thus we study Eq. (2.32) in the strong-field limit.

We expand U(r) as a Fourier integral

The total cross section can also be obtained in the
form of Eq. (2.33), except that now 0, =A(Q =0)
occurs instead of Qp.

V(r) = jl dq v(q)e"',
and carry out the time integration to obtain

(3.2)

o =4 fd'b —sin' — d'q, e "~'"J ' e-'"' V(q) l

da . 2 g 2 b nQ
gp n=-"

(3.3)

Alternatively this may be written as

o =4 d'b ' —sin' '— J' ' e '"' V(r)e """ "dz~'da . $ nG
2m L2k „" k

(3.4)

We break the sum into two parts —one the contri-
bution from n = o and the other the contribution
from the n g0 terms. If we adopt Eq. (3.1) we may
use the asymptotic formula for the Bessel function
for the latter sum

V(r) - —c/r",

we have

(3.9)

the Fourier transform appearing in Eq. (3.8) to
fall off rapidly with increasing n. For example,
for a potential which goes as

Thus we may write Eq. (3.4) as

2

p 2' 2

(3.5}

(3.6} which behaves like

I'(—p)(2b)H -1&/23

&&«„»»,(b In I&a/k),

(3.10)

where d+V(r)e-fn&ag/k —n / -le nb+/0-
n-~ (3.11)

1 /00

Co=— dz V(r) (3.7)

n&p

is just the usual eikonal for the unperturbed scat-
tering, and where 4, is an asymptotic correction
term given by

Thus the sum in Eq. (3.8) is bounded by a constant
4, ~ const/a, '/2 in the strong-field limit. Thus as
a first approximation we retain only the Cp term
in Eq. (3.6) (which is independent of a) and regain
the field-free limit.

If we make the further assumption that 4, &&1

we may expand the sine function appearing in Eq.
(3.6) and obtain an explicit formula

oo

dr V(r)e '""' (3.8) 0't t =0'~~ee+4 d 5 4~ gcos24p q
(3.12)

For reasonably mell-behaved potentials, we expect
where 0„„is the field-free cross section. Inser-
tion of Eqs. (3.7) and (3.8) into Eq. (3.12) leads to
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2 40S&0 I~ It ] ~oo, p 00 2
o =o + g cos' ' —(n+ —', )— d'b cos~ — V(r)dz dzV(r)e'""'~~

p&okn Inl 0 2
n&0

(3.13)

We see that the correction to cr„„goes asymptotically as the reciprocal of the electric field strength. A

similar behavior of the multiphoton ionization cross section has been found in the high-field limit.
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