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A simple theoretical method for calculating radiative capture cross sections is proposed. Applying the
quantum defect theory, the radiative capture process and the tip bremsstrahlung process are treated together
on the same footing. An application to radiative capture of 50-keV electrons by Au+" ions is presented.

INTRODUCTION

Radiative capture of electrons by atomic ions is
one of the processes important in plasmas. Such
radiative two-body recombination may be ex-
pressed symbolically as

A' ~+e A(n). &z~- +kv
n

= (A' ' ")** A(n)' "+kvn~ (1.2)

where Z, )1 is the charge of the atomic ion (to be
distinguished from the charge Z) Z, of the atomic
nucleus). The process (1.2) passing through inter-
mediate quasibound states, i.e. , autoionizing states
may be important locally, when electron kinetic
energies are close to resonance energies. These
resonance energies are usually of an order of ex-
citation energies of atomic ions. For electrons
with kinetic energy larger than about 1 keV, we
consider here only the process (1.1), i.e. , the di-
rect radiative capture process. The captured
electron is treated as moving in an averaged cen-
tral potential, i.e., Hartree-Slater potential. ' The
electron may be captured into one of the infinite
number of unoccupied bound states which form
Rydberg series of the "electron+atomic ion" sys-
tem. Thus, it may be a formidable task to calcu-
late all the cross sections for capture into each
bound state and the sum of the cross sections.

In Sec. II we propose a simple method, based on the
one-channel quantum defect theory' for nonrela-
tivistic wave functions. Further, extended multi-
channel quantum defect theory has been applied to
various atomic and molecular photoabsorption pro-
cesses, ' namely, to analyze discrete, autoioniza-
tion, and continuous photoabsorption spectrum on

the same footing. This theory is based on the fact
that at atomic distances the behavior of bound and
continuum wave functions of energies close to the
ionization threshold varies slowly with the degree
of excitation or ionization. Thus, the quantum-defect
parameter p, and the cross-section density do„/
d(k/Z', n~) for each .partial-wave channel KJLvary'
smoothly across the ionization threshold, namely

j

from the radiative capture region to the brems-
strahlung tip region. (Here, J' is the total angular
momentum of the partial wave and L is orbital
angular momentum of the large component of the
partial wave; K is the quantum number which com-
bines total angular momentum J and parity, e.g. ,
K=-1,1,-2, 2, —3, . . . corresponding to S,&„
P»„P,&„d,&„d,&, . . . , respectively. ) The cross
section 0~ „ for each state is then calculated a~
defined in Eq. (2.22): oz „=Nz'„do~/d(k/Z', c, ',', .

with the state density Nz „defined in Eq. (2.17).
We expect this present method will give a fairly
reliable estimate of the sum of the capture cross
sections Q„Z„o„„.

Section III presents an application to direct radi-
ative capture of 50-keV electrons by Au ions with

charge +49e (Zn isoelectric). The validity of
the theoretical method is also discussed.

THEORETICAL METHOD

The differential cross section for an electron p
to radiate a photon k and then to be captured into
a bound state (n, K,J,L, M) is

where

H„, = —e(2z/k)' ' d'r4'&(nKZLM)a e*e-'"'4

(2.2)

Here, we will adopt natural units throughout (i.e. ,
h=c=m =1, e = n=1 /1 37.04). E =(1+p')' ' is the
total energy of the incident electron p and &~ „ is
the energy of a bound state (nKZLM) The final.
state has its conventional bound-state normaliza-
tion and the initial state is normalized to a unit
volume. Thus, the total cross section for capture
into the bound states (nKJL) is

0, „=12~) 'p 'z g Jd &~sr...~'a(z —'k--e,
,„) . -

M

(2.3)
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Expanding the initial wave function into various
partial-wave components I(.jl, the total cross sec-
tion can be rewritten as

R'„(M) = Q Q„'(M) Q P'„(M)S„. (2.6)

0'~ =Xo R'„M + Rff M
M=1 /2

(2.4}
The index & runs from ~l' —I.

~

to l'+L in steps of
2 for n = 1, and from

~

l —L'
~

to l+L' in steps of 2
for n=2:

where we utilize the same symbols and expressions
as in Ref. 4: (2.7)

X, = 16»kE n/P, (2.5) (2.8)

q'(M) =i} (-)~ ' +""~'[(2L+1)(2g+1)(2l'+l)(2j+1)]' '
~

( L —.
' Z)

1 1

q'(M) = —i} (-)~ "»" '[2(L +1)(2Z+1)(2l+1)(2 '+1)]' '
M+-.' +-,'- Mal-j EM~-,' +-,' -M/

(2.10)

S",(M) = (-)"'"-""(2&+1)
~

01 —M w —,
' M+ —,

' 0
(2.11)

I
'(M} = (—) & "~-»/'(2~+1) (2.12)

Sx = d+jx k+ G (2.13)

A j kxI' g„. (2.14)

The G~ and I'~ are, respectively, large and small
components of a relativistic radial wave function of
a bound state (nKJL); correspondingly, the g„and
f„refer to a continuous state (E»j l). The G», E»,
g„, and f„are obtained by solving radial Dirac
equations numerically. 4 The integrals 8 are then
calculated by numerical integrations. For each
partial-wave channel KJI., there exist an infinite
number of bound states which form a Rydberg
series. Thus, it is not attractive to calculate by
brute force wIth Eg. (2.4) all cross sections v» „.

Before discussing a useful way to calculate each
o» „and the sum Z~g„v„„, let us first examine
the behavior of the final-state wave functions
4&(nKJL). For those Hydberg states which are un-
occupied, it may be reasonable to consider only
the large components of the wave functions, i.e.,
to take a nonrelativistic limit. Now it is well
known that at atomic distances a Rydberg-state

i

wave function resembles the wave function of a
low-energy continuum electron in the correspond-
ing partial-wave channel KJI.. Such behavior has

', been formulated mathematically in the quantum
defect theory. ' For each partial-wave channel

KJI., one can construct a radial wave function
R»(e, r} such that the following conditions hold.

(1) The wave function R»(e, r) is a smooth func-
tion of energy e at atomic distances (continuous
states for e ~ 1 and bound states for & (1).

(2) The logarithmic derivative of R»(e, r) at the

edge z= x, of the atomic ion is a smooth function
of energy E.

(3) Outside the edge of the atomic ion, r~ r„
R»(e, R) is expressed as a linear combination of
regular and irregular Coulomb wave functions,
j(E,L, r) cosvIi»(e) —g(e, I, r) sin»p, »(E), where f

and A are nonrelativistic regular and irregular
Coulomb wave functions, ' respectively, and are
continuous functions of energy &. The parameter
p, ~, which is determined by matching the inner
form and the outer form of the wave function, is a
smooth function of energy. Thus, we have

R»(e, r) = (a smooth function of energy), for r(r,
= f (e, I, , r) cos» p»- g (e, L, r) sin» Ii»,

for r ~ r, . (2.15}
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The wave function RK(e, r) is normalized to unit
energy in Z',, n . For each bound state xKJL with
an energy e» „=1——,Z',.n4/v» „&1, the radial wave
function GK is

tion density
J'

~R„(M) ~'+ ~R„-(M),
M=1 /2

G =N '„R (e, r) . (2.16) (2.23)

The normalization factor NK „ is determined by the
bound-state boundary condition at z = ~ and conven-
tional bound- state normalization".

is a smooth function of energy, where
2

R'„(M) = Q Q4(M) Q P„'(M)S„.
n=1

(2.24)

~2 3 + PE
Kfn Kfn d q Z2 ~4 & ~ &Kf

(2.17)

with

e» „=1—3Z', n-'/v» „
VK „=6—PK ~

(2.18)

S, = &' j~ kx „GK,

1" d IC
S =— drj (kr)/, —+ —G

(2.20)

Here n is the principal quantum number of the
bound state. For a, low-energy continuous state with

energy & = 1+ 2 P', ~ 1, the wave function normalized
to unit volume is then

7tZ'; n'
G» = R»(c, r)

2gp2

r- 1 L Zn;~—p y ——~+ ' ln'p ~+ 0 + ~ p,
p 2 2 p

(2.19)

Here, g pK is the short-range phase shift and the
0~ is the Coulomb phase shift' corresponding to
charge Z, .

Taking the nonrelativistic limit of the final-state
wave function, the reduced matrix elements, S in
Eq. (2.13) and (2.14) can be rewritten as

As the final-state energy &K „approaches 1, i.e.,
k-Z, the erose-section density do K/ d( k/ Z'; o4)

will approach a limit corresponding to the partial-
wave contribution (KJI ) in the electron-ion brems-
strahlung cross section do»/d(k/Z', n4) wi.th k = E.
Thus, for each partial-wave channel KJL, to cal-
culate each v» „ in Eq. (2.21) requires only the cal-
culation of two smooth energy-varying quantities,
i1» and do»(k)/d(k/Zf, . n4). In practice, such calcu-
lations can be carried out by calculating a few
points and performing interpolations, as will be
demonstrated in the next section.

APPLICATION

Calculations for direct radiative capture of 50-
keV electrons by Au ions with charge +49e are
presented. First, the cross sections OK „defined
in Eq. (2.4) for the low-lying Rydberg states are
calculated numerically. These Rydberg states
are the first unoccupied states for each partial-
wave channel (e.g. , 5s] /3y P1/3y P3/3y 3/
4d3/„4 f»„ete.). Their quantum-defect parame-
ters i1», defined in Eq. (2.18), are displayed in
Fig. 1. We also display two other sets of quantum-
defect parameters p, K which are calculated from
short-range phase shifts defined in Eq. (2.19) for
two energies E ~1. Figure 1 shows that the quan-
tum-defect parameters p, K for each partial-wave

Substituting Eq. (2.16) into Eq. (2.20), we then have

S, =N»1„S1=N»1„dr j1(kr)f„RK(e,r), 0.6— 4P l /p

5s I/p~—

K= I

dv(k„)
K,n K, n d(k/Z3 &4) (2.22)

S, =N»'„F3 =N»'„dr j1(kr)g„———R»(e, r) .1K

(2.21)

Since the important domain in configuration space
for reduced matrix elements is at atomic distan-
ces, the S, and S, are thus smooth functions of en-
ergy. The total cross section o» „ in Eq. (2.4) is
then rewritten as

0.4—

0.2—

4p

4dp
/p

~——

4dS
/~

4fs/
/p

4f7
/p

K = 2—~ ~

—~

I

0.02
I

—0.04 —0.02 0

(e —l)/Z; a

~ w

l I

0.00

with the photon energy k„=E—&K „. The cross-sec- FIG. 1. Quantum defect pK vs energy (c-1)/t'Z;o. .
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TABLE I. Quantum defect p&. TABLE II.II. Cross-section density a' (10 cm energy).

&s0 (rc0

-1 S~/2

1 Pg/2

-2 P)/2

2 d3/2

—3 dg/2

3 f5/2
-4 f7/2

0.636

0.564

0.470

0.351

0.327

0.205

0.192

0.204

-0.265

-0.252

-0.339

-0.325

0.297

0.283

-1 Sr/

Pi/2

-2
2

3 dg/2

3 f5/2

f 7/

93.94

61.12

84.24

15.84

18.61

1.27

1.64

33.17

52.28

103.97

85.32

101.84

23.32

3.21

nc ions o energy.channel are indeed smooth fun t' f
Thus, each p.~ can be expanded as a power series
in energy:

&E= ~a+ I"~+
with

a= (a —1)/Z'n4

(3.1)

(3.2)

(3.3)

I. With
The expansion coefficients p. are 1' t dls e ln Table

the quantum-defect parameters
then obt '

en o ain the normalization factors N' d
p, ~ we

rs ~ „efined
q. ~ . &

~and the cross-section densities
dox/d(k/Z', n~) defined in Eq. (2.22), for these low-

2. At
lying Rydberg states, which are d 1 d

'

two energies &~1, the cross-s t'

s o'~/ (0/Z;n ) for each partial-wave channel
KJL are calculated by partial- dia -wave decomposition
of the bremsstrahlung eros tlt's se ions for electrons
scattered by Au ions with charge +49e. A

'g. ws that the cross-section d 't
e e. gain,

do /d(a/ '.

'
n ensi ies

( /Z, . n ) are smooth function of energy e.
Thus, each do+/d(k/Z2 n') can be expanded as
power series of A.

cfO'1

d(k/Z', n').

The expansion coefficients 0' are 1' t dis e in Table

The cr
igure 2 also shows something int t'in eres ing:

hi ho
e cross sections for capture

' t thin o e states with

ig orbital angular momentum L ~ 5 aro m ~ are negligi-
i e quantum-defect parameters d

cross-section densities do /d(k/Z'. 4
p, ~ an

ln Tables I and II, respectively, each eros

The cross sections for capture into the first five
Rydberg states in each part'alr i -wave channel are
presented in Table III. The sum f ll

~ ~

sum o all cross sec-
ons + OE js 12.38 10 2~ cm2

The r
We would like to conclude 'thwi some comments.
e present calculations are bas dase on an indepen-

en electron approxima, tion in the Ha, rt
n ia . or a highly stripped atomic ion, we

expect that the calculations sh lds ou give a fairly
reliable estimate for the tot 1 d'o a ra iative capture
cross section Llrg„oz „, although the cross sec-
tions for the indi
owin to

i ividual states may be red' t 'b t disri ue
'

g perturbations among the states due to

TABLELE III. Cross section 0. (10 "E, fl cm ).

0
b N
0

'a

l6

l2—

—0.04 —0.02
I I

5siIg ~

4p& 2

4p)
/p~—

(E' —I)/z; Q

0
1

K=-I

K=-P

K= )

0.02
I

0.04

n eS nP/2 f/2 nP3/2 nd3/2 ~d / nf5 2 5/2 ~7/2

4 1.48 1~ e85 Oo27 Oe30 Oo008 Ooplp

5 1 11 0 69 p .89 0 14 0 16 p pp7 p pp8

6 0 60 0 38 0 49 p 08 p p9 p pp0.005 0.005

7 0 36 0 23 p.3p 0.03 0.04 0.003 0.004

8 0 23 0 15 0.20 0.02 0.03 0.002 0.003

9 0.16 0.10 0.14. 4 0.017 0.02 0,001 0.002

10 O.ll 0.07 0 10.10 0,013 0,015 0.001 0.001

4d5
4dp~lp ~o
4f5 4f

/~ 7g

0.8053

K=2
K=-4

~, K=3
0.72530.7653

k/Z'. a
FIG. 2. 2. Cross-section densit da d

I

y z g poo Sum 3.07 3 40 4.36 0 69 0.79 0.03 0.04
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electron-electron correlations. To treat strong
perturbations among various Rydberg series, it
would be necessary to extend the one-channel quan-
tum-defect treatment to a multichannel quantum-
defect treatment. ' In the present application, a
ground state of Au ion with charge +49e may have
a closed-she+. configuration ].s'2s'2p'Ss'Sp ScP 4s'.
Hence, a one- channel quantum-defect treatment

may be adequate, except that a few states of a
Rydberg series will be perturbed locally by states
not belonging to the corresponding Rydberg series.
For instance, a few states of the Rydberg series
(core) 4s'ns, n~ 5, which are close to a state (core)
4s4p' with J= —,', will be perturbed. Thus, we ex-
pect that the corresponding cross sections 0~ „
would deviate locally from the present calculations.
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