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An eikonal formalism is developed to calculate corrections due to screening to the exactly solvable case of the
unscreened Coulomb field. The high-energy Sommerfeld-Maue wave functions are used, and, by construction,
the unscreened case is reproduced exactly for all coordinate space. The modification caused by screening is
found to be multiplicative, and it appears as a phase factor exp( ~ iZe (E/p) ln[p(r~ z)]—i(E/p)
x J~ V(p, t') dt'I, where p is a large momentum, E is the corresponding relativistic energy, and V is the

screened Coulomb field. Our approximate high-energy wave function is given by one formula for all
coordinate values, without any need to introduce partial waves, is easy to calculate numerically, and is shown

to satisfy a second-order differential equation to a very good accuracy practically in the whole space. For
example, the outgoing solution satisfies an appropriate equation to an accuracy better then 3% in a very large

region of cylindrical variables p & 0.1, z ( 2p, which expands with increasing p.

I. INTRODUCTION

The routine way to evaluate wave functions for a
given spherically symmetric potential is to use
the partial-wave expansion. However, for large
energies, and especially for particles with spin,
the number of partial-wave amplitudes is so big
that it becomes essentially a numerical problem
to include sufficiently many of them. For a spe-
cial case of the unscreened Coulomb field, using
the high-energy Sommerfeld-Maue approximation,
one can analytically sum up all partial-wave am-
plitudes and get a compact form for the whole
wave function. But, to account for screening, often
given only numerically, one must use an approxi-
mate scheme.

The aim of our paper is to propose such an ap-
proximation which completely bypasses the par-
tial-wave expansion, is as close as possible to the
known exact solution, and by one formula valid
practically in the whole space, describes the de-
viations from the known solution of the unscreened
case. The motivation of our work is the applica-
tion of our wave functions for the evaluation of the
high-energy bremsstrahlung, pair production, and

elastic scattering in the presence of a given
screened Coulomb field. The relativistic, quan-
tum theory of these processes was fully developed
many years ago by Bethe and Maximon, ' and ex-
tended by Olsen, Maximon, and Wergeland. ' For
all details, in particular on the high-energy Som-
merfeld-Maue wave functions, we refer to these
papers. Here we only mention, that these wave
functions are approximate solutions of the iter-
ated Dirac equation and are given by

)=exp(zp r)(1-zitx V/E)F'"""'u,

where 8 and u are Dirac matrices and a Dirac
spinor, respectively, E is the relativistic energy

(in units where m =c =5=1) given by E= (P'+1)'/',
P is a large momentum, and F'"'"' are the appro-
priate solutions of the equation

(V ' + 2zp'V-2E V)F = 0. (1.2)

F,'"'" = I'(1 + iZe'E/P) exp( atrZe'E/P)

x,F,(viZe'E/P;1; +iPr ip r). -(1.3)

Etluations (1.2) and (1.3) are the starting points
of our considerations. In this paper we always
have in mind the Sommerfeld-Maue wave func-
tions. However, our method is more general and

can be applied if two conditions are satisfied: (a)
there is a known exact solution for a special case,
and (b) there is a 'large" parameter in the prob-
lem. For example, in the field of heavy-ion re-
actions the large parameter is the ratio of the
distance of closest approach to the Compton wave-
length, while the exact solution corresponds to the
Coulomb potential and the square well. Details of
this application shall be given in another paper.

Staying with the Sommerfeld-Maue wave func-
tions, we call Etl. (1.2) the exact etluation. This
equation we replace in Sec. II by a first-order
differential equation. By construction, the last
equation has to have the exact I, given by Eq.
(1.3), as its solution for the special case V= V, .
For Vwhich differs from V, at large distances,
but is very close to V, at small distances, we find
the solution in a form I', times a correcting phase
factor. A special care of the boundary conditions

It is known that for the special case of the un-
sc reened Coulomb potential

V= V,=--Ze'r ',

the exact solution of Etl. (1.2) is given in a com-
pact form in terms of the confluent hypergeomet-
ric function as
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enables us to remove the logarithmic phase factor
out of E, .

To justify our result we estimate in Sec. III the
errors which appear when our solution is put into
the exact second-order differential equation. In
this way we can locally check at each point in con-
figuration space the goodness of our solution and
find out the accuracy with which the exact second-
order differential equation is satisfied. We pro-
vide an upper bound for this accuracy.

As an illustration of our result we calculate
numerically in Sec. IV the contours of a constant
correcting phase. Looking at the number of such
contours in a given region of configuration space,
we can see the effect of screening as the modifi-
cation of the unscreened solution E, . This effect
is studied as a function of the charge of a nucleus
and momentum of electron (position).

Our result must be compared with the one ob-
tained many years ago by Olsen, Maximon, and
Wergeland (OMW). ' On the level of the E function
we make the following remarks. OMW use two
different techniques in different regions of configu-
ration space, while we have one method covering
both regions. We never need to go through the
partial-wave expansion, while OMW have to use it
in one region of space. OMW use WEB-type meth-
ods to evaluate the whole result, while in our case
the eikonal method is used only for the evaluation
of a correcting factor, multiplying E, . For the
special case V= V, our result, by definition, agrees
with the exact one in the entire configuration
space, while OMW in one region of space have the
agreement with the small-angle approximation of
the exact result, and in another region of space
they have to take special care to avoid divergence
and to get the proper logarithmic phase factor.
For the screened potential V4 V, in the region
where both cylindrical variables p and z are large,
the result of OMW is close to ours. It is so, be-
cause to reach this region along a path parallel to
the z axis one meets either the small V, or the
small V, = V—V, . However, to reach another re-
gion of space, namely, p =1 and

~
z~ =P, onehas to

pass through the region p =1 and very small z.
Then, one cannot work with the first-order differ-
ential equation in which V is in the inhomogeneous
term, because the variation of V is comparable
with V itself. One is then forced to change the
method as OMW did. On the other ha, nd, if one is
calculating only the correction to E„and has V,
instead of V, one can use the first-order differ-
ential equation since the large variation of E is
in E„while the correcting phase is very mildly
varying along the whole path,

Finally, our result for E stated as

E =E, x (eikonal correction),

may be associated with a similar result obtained
in a different field, namely, the large-angle PP
scattering, discussed by Gaisser. ' There, the
soft exchanges, worked out in the eikonal frame-
work elaborated by Erickson, Fried, and Gais-
ser, ' 6 are modifying the hard exchange, which
takes care of the large scattering angle. Our E„
although not the first Born term but the whole
solution for V= V„plays a similar role as the
hard exchange does, and enables us to reach prac-
tically all points in configuration space.

11. FIRST-ORDER DIFFERENTIAL EQUATION

For a given screened potential V we want to replace
the exact second-order differential equation (1.2) by
a simply solvable first-order differential equa-
tion. There are many ways of achieving this, and
our choice is specified by the following two re-
quirements: (i) The exact solution (1.3) of the
exact second-order equation (1.2) has to be also
the exact solution of our first-order equation for
V= V, in the whole configuration space. (ii) The
basic part of the first-order differential operator
is the simplest one, already appearing in the exact
equation (1.2). It is 2ip V. We choose the z axis
along the incoming (outgoing) momentum p, and de-
note cylindrical coordinates perpendicular to p
by j, having 2ip V =2ip&/Bz and r'=p'+ '.z

Both of our requirements are satisfied if we take
the following first-order differential equation:

[2ip &/&z+&(p, z)-2EV, ]E, =0, (2.1)

where B is independent of z, and z0(p) shall be de-
termined from the boundary conditions in the fol-
lowing paragraph.

We now pass on to the screened potential V,

which we split up into two parts,

V=V, +V„ (2.3)

where V, is a small and smooth potential, as ex-
plicitly shown in Appendix B, contrary to both V
and V„which at small distances are big and
strongly varying. As the most obvious generali-
zation of Eq. (2.1) we postulate for V= V, + V, the

where E, is given by Eq. (1.3), and the new func-
tion A(p, z) by definition, has to guarantee the
equality in Eq. (2.1). The explicit form of A(p, z)
is unimportant for us, since we are only interested
in the solution of our first-order differential equa-
tion, which in the case V= V, is already known.
The implicit definition of A(p, z) can be given by
writing the solution of Eq. (2.1) as

«;(pz)=&exp(-( — '
,[);(p, ")( ,'z 'A(p()]d()=,

- s0(P)

(2.2),
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similar first-order differential equation for E as
Eq. (2.1) for F, . Thus, we write

Similarly, for the incoming solution we find

E'" =E,'" exp -iZ e' E P ln P r+z

2(p —+A(P, z)-2E(V, + V,
))

F=0, (2.4)
+((&/P)J )'(o, ()d() (2.8b)

E=E, exp -i — ' V, p,
P gp( P)

(2.5)

and it should be reemphasized, that the explicit
form of the function A(p, z) is unimportant, since
it is hidden in the known function E, . To specify
z,(p) we have to consider the boundary conditions.
For definiteness let us take the outgoing solution.
It is well known that for z - —~ the exact solution
F,""' of the exact Eq. (1.2) for the unscreened V= V,
behaves as

F,""', „exp{—iZe'(E/p)ln[p(~-z)]). (2.6)

On the other hand, the corresponding exact solu-
tion of the exact equation (1.2) for the screened
potential VW V, has to be such that the product

[exp(ipz)]F'"'

behaves as a plane wave for z —~, because of
the finite range of the screened V. These two
statements on the exact boundary conditions we
want to fully respect. Therefore, we demand
that in our solution, given by Eq. (2.5), there is
a compensation effect and the logarithmic phase
factor of E, is cancelled by an appropriate phase
factor of the second part of the right-hand side
of Eq. (2.5). This require(nent determines for us

z, (p), and we ean write the condition for z, (p) ei-
ther in the form containing V, as

P
V(p, $ }dg, „-Ze'ln[p() -z)],

or in the form containing V and z = —~ as

(2.7a)

and verify in Sec. III that, for large P, the solution
of Eq. (2.4) satisfies to a very good accuracy the
exact equation (1.2}for F, practically in all of con-
figuration space.

The solution of Eq. (2.4) is simply given by

Our final result, written in Eqs. (2.8a) and (2.8b)
is stated in the most practical form for any given
screened potential V, However, to study the lim-
iting ease V= V, one has to reintroduce again zo(p)
to avoid divergence, and then the form of our so-
lution given in Eq. (2.5) is easier to deal with.

The solution of our Eq. (2.4), stated either in
Eq. (2.5), or in Eqs. (2.8a) and (2.8b), can be
shortly written as

F =F,exp(iX). (2.9)

The correcting phase X, which takes care of
screening, satisfies the first-order differential
equation

8 E—X= ——V»Bz P
(2.10)

which follows directly from Eqs. (2.9), (2.4) and
(2.1). The important feature of Eq. (2.10), besides
its simplicity, is, that its inhomogeneous term is
small and smooth in the whole configuration space.
This is illustrated in an example in Appendix B.

III. ESTIMATES OF ERROR

F = F, exp(i X), (3 1)

being guided by the result of Sec. II. However,
contrary to Sec. II, we now consider the second-
order differential. equation both for E, and g. Ac-
cording to Eqs. (1.2) and (3.1), F, and x satisfy
the following equations

(& +2ip V —2F. V,)F, =0, (3 2)

To justify our result we return to the exact equa-
tion (1.2) for F, and consider the screened poten-
tial Vx V,. We look for the solution of Eq. (1.2)
in the form

&p(P)

V(p, ()d$ =Ze'1n[p2p/(zo+t', )], (2.7b) .p [i~x-(&x) ]—+ — '-- &x= —v, .-a 2 2 ~ ~Ec p
P E p p 1

where &2O=—p'+z', and p' = (r-z)(~+z).
Both Eqs. (2.7a) and (2.7b) define z, (p), but in a,

rather involved way. Luckily enough we do not
have to find explicitly z,(p), but using Eqs. (2.7b)
and (2.5) we can eliminate z, (p) altogether and
write our solution of Eq. (2.4) in terms of V in-
stead of V, . We get

E "'=E,""'exp ice' E P ln r-z

X(p, z). Z(&e/ )»p[ (~p—z)]. (3.4)

It is useful to split up the y introduced in Eq.
(3.1) into a sum x, +x, in such a way that, by def-
inition, gp satisfies the first-order differential
equation

(3.3)

The boundary conditions for p are just the one
given in Sec. II. For example, the outgoing solu-
tion has to fulfill

(2.8a) a &x.=(z/p)v„ (3.5)
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where

iVF, pa=
P &. P'

and go obeys the full. boundary condition, given by
Eq. (3.4). The remaining part of x has to fulfill
the zeroth boundary condition, and satisfy the
equation

—.p '[i v'x, —(vx, ) —2(vx, ) ~ (vx, )]

+ a vx, =-'P '[- i v'x. + (vx.)'].
(3.6)

pgp go p-

for the outgoing solution, and a strip

(3.8)

Equations (3.5) and (3.6) are meaningful at all
points for which F,c0.'

The term VF,/F, is studied in detail in Appendix
A, where dimensionless quantities P, 1, and P
are used to define regions of configuration space
and orders of magnitude. We find tha, t excluding
a very smal. l region

p, lzl, ~p ', (3.7)

~
VF,/F, ~

behaves at most as 1. Therefore, cutting
out from our consideration a strip

op 'Iiv'x. -(vx.)'I

(E/p) V,
(3.12)

The numerator is already estimated in Eq. (3.11),
while the denominator is a decreasing function of
r, behaving as 0.'73/r for large r, if Z =100. For
r &$P, where $ is a given number, we get from
Eqs. (3.11) and (3.12)

because of the nonlinearity of equation, that X,
is varying very slowly.

We expect that the phase p can be very well
approximated by Xo in a bounded region of space,
where the constant phase is immaterial. To veri-
fy that X=X, satisfies approximately Eq. (3.3), we
compare Eqs. (3.3) and (3.5), and find the accuracy
to which the omitted terms are neglected with
respect to the remained one. In this way we can
check locally at every point of space to what ac-
curacy the known function y, is the solution of the
second-order differential equation (3.3). It should
be remembered that our whole solution for F is
Fe xp(i X)oand F, satisfies exactly Eq. (3.2). I.et

us denote the accuracy connected with g, by d, and
write down the expression for it according to the
above definition

p=- p-' g s p-~ d ~ 1.5)10 2 (3.13)

for the incoming solution, we can approximate

and take all. results from Sec. II as the results for
8

Xo

Having explicit form of go, we can investigate the
inhomogeneous term in Eq. (3.6) for x, . The mod-
ulus of this term is bounded by X 0.73 in[ p(r + I & I)], (3.14)

Thus, if we take r & 2P, we get d & 3 /p.

The estimates of partial derivatives of g, with
respect to z and p, given in Eqs. (B4)-(B9), are
too pessimistic in some regions of configuration
space. In particular, considering the outgoing
solution and large negative ~, we have from our
asymptotic condition Eq. (3.4) that

Xo p-j Xf) Xp Xp Xp

(3.9)
Individual derivatives of g, are estimated in Ap-
pendix B. There, we restricted p from below
even more than in Eq. (3.8), setting

p ~ 0.1. (3.10)

However, this restriction is harmless, from the
point of view of applications, since there the low-
est interesting value of p is around 1. Taking the
estimates from Eqs. (B4), (B6), (B7), and (B9),
and using Eq. (3.9), we get

op 'I —iv'xo+(vxo)'l~ 8P 'x'=I 1P '10 '
(3.11)

where A. =2(q v) e Z~, and A. =0.038 for Z= 100.
It is indeed a very small quantity for large P, and
remembering that g, has to fulfill. the zeroth bound-
ary condition, it is plausibl, e, though not proven

Xo&i i-],
dz

d2
Xo

98
(3.15)

9Xo &
i i

-j.~ p-y Xo Xo

dp dp Bp

For very large
~

z~ = —z, and fixed p we have

V, =
~ z) ', and the accuracy d, defined in Eq.

(3.12), is

d ~2.5P 'uzi (3.16)

Therefore, taking for example j~~ =2P, we get a
very good accuracy for large P. This result is
not surprising, because for the outgoing solution
we are bound to get a very good approximation
for large negative ~, since we obeyed the exact
boundary condition at —~. Similarly, for the in-
coming solution we get a very good accuracy in
satisfying Eq. (3.3) for large positive z.

Another region of configuration space where the
bounds given in Eqs. (B4), (B6), (B7), and (B9)
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are too pessimistic is the region of la, rge p, for
example, p =p, and arbitrary ~. There, using
Eqs. (B4) and (B9), we get

0 XP ( 1 5 ]
() f,

Br
2

. ; (1.5p '
Bp

p 1 Xo ( 1 5p 2
d

(3p
(3.17)

d Xp ( p-1
88

82
Xo ( p-s

Thus, for large p the accuracy d, defined in Eq.
(3.12), is

d~3 7P P (3.18)

In particular for P =P, and large P we satisfy Eq.
(3.3) with a very good accuracy for arbitrary
z~~ p.

Including all results, stated in Eqs. (3.13),
(3.16), and (3.18), we can say that for the out-
going solution we satisfy Ecl. (3.3) to an accuracy
better than 3% in a very large domain

p~0.1, z ~2P, (3.19)

which expands with the increasing P. Our region
(3.19) covers both regions p =1,

~
z

~ =P, and

p =
~
z

~
~P interesting for bremsstrahlung and pair

production.

IV. CONSTANT X CONTOURS

To appreciate the importance of the correcting
phase factor e', and to get some feeling of it in
different regions of configuration space, we plot
contours of constant X on the plane of cylindrical
variables p and ~. The number of such contours
in a given region of space indicates how much
we have to change E, to account for screening.
The change of X by about 3 reverses the sign of
E, , while by 1.5 interchanges the real and imag-
inary parts of E,. Thus, the number of contours
of equal X indicates the importance of screening
and shows the necessity of including e' together
with E,.

As an example of the screened potential V, we
take the modified Thomas-Fermi potential"

For large@» ' and ~z~ ~ & the potential V, be-
haves as p ', and the derivatives of Xo with respect
to a are bounded by

and evaluate it for two values of Z, 10 and 100,
and two values of p, 100 and 500, in our dimen-
sionl. ess units m= l.

The fol. lowing features of constant X contours
can be noted:

(i) Fixed P and Z, e.g. , P = 100, Z = 100, (Fig.
1): (a) Going from left to right contours become
flatter. However, the density of contours, mea-
sured parallel to the ~ axis, increases to a finite
value if we approach the p axis from either left
or right. This is in agreement with the decreasing
behavior of V, for increasing r. Going parallel
to the p axis towards small values of p we meet
more contours, and their density is also finite.
(b) Considering four regions: p =1, z =-P; p =1,
~ = P; p =P, ~ = —P; and p =p, & =p, most important
for bremsstraht. ung and pair production, the num-
ber of contours of equal X is sma. ll a,nd comparable
in the firs t three r eg ions and much bigger in the
fourth region. It means that E, is only slightly
corrected by e' in the first three regions and
must be corrected in the fourth, where the effect
of screening is the biggest.

(ii) Fixed P, varying Z, e.g. , P =100, Z=. 10100
Figs. 1 and 2: (a) The main dependence of g on Z
is i.n V, -Z. Therefore, changing ten times Z
we get a, corresponding effect in X. For this rea-
son there are introduced broken-line contours in
Fig. 2, corresponding to a change ten times
smaller in }I than on the continuous contours. (b)
The smaller number of contours in Fig. 2, com-
pared to Fig. 1 in all four regions important for
bremsstrahlung and pair production, indicates
that E, is a quite good approximation of E for
low Z, and verifies the known fact that the im-

p = 100, Z =100

V(x) = —Ze'r '[0.711 exp(- 0.175Ar)

+ 0.2889 exp(- 1.6625Ar)]', (4.1)
-200 -160 -120 -80 -40 0 40 80 120 160

5.5

5.4
5.2
5.0
4.8
4.6
4.4
4.0

200 z

with A. =-2(& ~) "e'Z'~'. For the numerical evalu-
ation of }I(p, z) we take the outgoing solution, writ-
ten in the form

FIG. 1. Contours of constant correcting phase for the
modified Thomas-Fermi potential; P=100 in units m =1,
Z=100. The neighboring contours differ in phase by 0.2.
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portance of screening increases with Z.
(iii) Varying P, fixed Z, e.g. , P = 100, 500,

Z=100, (Figs. 1 and 3): (a) g varies very slowly
with P, with the main dependence given as an
additive term lnP. Therefore, contours in Figs.
1 and 3 are very much the same, though because
of a different seal. e we have drawn contours sep-
arated by a different distance. (b) The derivatives
of g are practically independent of P, and the
effect of flattening of contours of constant g for
large positive ~ is transparent in Fig. 3, which
can be considered as an extension of Fig. 1.
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and note that in this region it is of order 1, or
smaller, so we write

lul ~ 1.

For such argument the function F, = I'(1 —in)e'" '
x,F,(in; 1; u), and its derivative with respect

to u, denoted as F„behave so that

I
F',/F, l =1, with /4=EP 'Ze .

The partial derivatives of u with respect to either
~ or p behave as

/

—,", =Plz(p'+")-"-II~P,

—=Pp(p'+z') "~P.
Bp

Therefore, we get

I vF, /E, I
~ p.

APPENDIX A. THE ESTIMATE OF IV'F /F I

I.et us denote "of order P ' or lower orders"
as «1, "of order P or higher orders" as» 1,
and divide the configuration space of cylindrical.
variables (p, z) into the following four regions:

(1) p«1, lzl«1,

(2) p «1, 1& lzI, and p=l,
(3) p=l, lzl«1, »d p=l,
(4) l«p, z arbitrary.

We estimate I vF, /F, l in each of these regions
separatel. y.

Region 1: p((1, lzr((1

Denote the argument of F, as

u ip(r —z=-),

Region 2: p(( 1, 1~lz I and p= 1, 1(( I z I

Here, we always have p«lzl, i.e. , p Izl '«1,
or pl z

I

' 6 p '. Therefore, for positive z & 0 we
get

~ = i pl zl [(1+p'I zl -')"—I]
=l-i pp'Izl ',

from which it follows

~u 2 2 ~
~u=pp'I z

I

' s P ', —, =Pp I
z

I

' & I,dg ()p

I vF, /F, l
& 1.

For negative a& 0 we get

24 =i pl zl [(I +p'I zl ')'"+11=2i pl z I,

and therefore the argument of I", has a very large
modulus. To estimate IF, I and IF,'I we use the

p =100, Z =10

0.680.70074200072
r r
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/
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I
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1

I

80' .- 0.60

- 0.58

0.56

/
/

/
/

/

g /
1 /

1

I

0.54

z I I

-200 -160 -120 -80 -40 0 40 80 120 160 200 z

FIG. 2. Contours as in Fig. 1; P=100, Z =10. Broken
lines are contours corresponding to phases differing by
0.02. Continuous lines are as in Fig. 1 and differ in
phase by 0.2.

p =500, Z =100

10.0 8.6 9.2

8.8

8.0

7. 2

6.8
6.4
6.0

// . 4 I
1000 800 600 400 200 0 200 400 600 800 1000 z

FIG. 3. Contours as in Fig. 1; P=500, Z =100. The
neighboring contours correspond to phases differing by
0.4.
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asymptotic expansion for,F,. Denoting n =—Fp 'Ze',
we have

E, = I'(1 —i n) e'" 2,E,(i n; 1;u)

=I'(1 —in)[I'(1 —in)] '(-u) '"g(in;in; -u)e'" '
+I'(1 —in)[I'(in)] "(e""" )u'" 'g(1 —i n;1 —in;u),

(A1)where

g(o, ; P; u) ~ I + nP/u+
(u) ~~

Estimating the partial derivatives of u we note,
that I

z
I

must be of order p', giving

8u
WP

BZ

Therefore, we obtain

I vF, /&, j~ p

Finally, in the third case, I ul & P', we again ap-
ply Eqs. (Al) and (A2), getting

Therefore, we get

I
&'./&. I

= lul -'.

The partial derivatives of u behave as

~u ~u
=p, —=ppjej '&1.

~p

Taking into account Eq. (A2), we get

I vF./F. I ~I,
similarly as for the positive z& 0.

Region 3: p=1, Iz I((1 and p=1, iz I=1

(A2)

IF'./F. j
= p-'.

Noting that now we must have I
z

I &p, we get

~u ~u VF,~p ~ p SP~z p F

Therefore, in the whole region 4 we have

Considering the whole configuration space, we get
the following behavior of I VF,/F, I:

' & P, region 1;
C

Here jul = p, so we apply the asymptotic expan-
sion given in Eq. (A1), and get Eq. (A2). The
partial derivatives I &u/&e I and I du/&p I are of
order p, so we get

I V&./&. I
=1.

Region 4: 1&&p, z arbitrary

For a& 0 we have Iuj &P, thus I E,'/E,
I &P '.

The partial derivatives of u behave as

~ 1, region 2;

= 1, region 3;

&P ', region 4.

APPENDIX B. ESTIMATES OF THE DERIVATIVES OF X„

It is straightforward to establish the following
expressions for the derivatives of Xo, setting
gP-1-1

~u
pBz

J

Therefore

~u 6 p.
6)p,,

~X BXXQ V ' =- V'zr-'
Z x &Z2 z

lvz, /F. I~ p '.
For z& 0, jul =pl (p2+z')'~' —z I may take any

positive value. It is useful to consider separately
three cases: jul&1, Iul=p, and luj&p'. In the
first case we must have I 2

I
~pp' and I u I

= 2 pp'I z
I

'.
Thus,

IF,'/F, j =1,

~ ~X ~ ~Xo' = —V,'px ',
~p ~p ~z

~X Q Z

0
p ~ Vl(p2+g ) I/2d)

~p

~X0 VI (p2 ~ (2) 1kd(
gp2 1

(Bl)

~u—=pp'lel '&p '
Bz

~u

Bp

I vz, /F. j s p-

~ p
2 V,"(p'+8) 'd5

V~ p2~(2 3/2d( (B2)

In the second case lul is large =P, therefore Eqs.
(Al) and (A2) apply, giving

IF;/F. j
=p-'.

where V,'=—d V, /dr, V,
" =d'V, /dr', —and under all

integrals the argument of V,' and V,
" is (p2+g2)'~.

To estimate the above derivatives we take for the
screened potential V the exponential model"
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V ge2~-1 e- ~r
)

where A. =2(~ w) "e'Z''. Considering the worst
case Z = 100, we get ~ = 0.038, ~ ' = 30, and

V, =0.73r '(1 —e ").

For such V, the following features of V„V'„and
V", can be established:

V, (0) = 1.8 V, (A. ') = 0.7A = 3 x 10 ',

V, (r)& 0.7~ ' for r&x ',

V'(0)=1 9V'(~-')=-0 4~2=5x10-',

~
V;(~)~&0 7~ .f.,-r&~ ',

V,"(0)=2.0V,"(A ') =0.2)P = I, () ',

V,"(r)& 1.5x ' for r& A. ',

V„—V,', and V,
" are very small, positive, de-

creasing functions, with maximum value at r = 0,
proportional to ~, A.', and ~', respectively. Simi-
lar features can be verified numerically in the
case of the modified Thomas-Fermi potential '
used in Sec. IV. Therefore, we may put the fol.—

Lowing bounds on V„~ V,'~, and V,",

0.7~ ', 0.'7x ~„

0.2z', ~&X '
Vlf &

1

1.5~-',

(B3)

o & O. VA.

82
Xo &0 7), 2

8g (B4)

The estimate of
~ ago/Sp ~

we get from Eqs. (Bl)
and (B3) setting z =~ for the worst case. We get

These bounds give us immediately the estimates
for the derivatives of X, with respect to z:

~2pa zh

1.5[1—(1 —A p )'~']+0.4A.'pin 2, «& 2+, p& A. ',
8X
8p 1.5p ', p&A. '. (B5)

Therefore, we get

8 Xp & 2~
8p

(B8)

ate separately the positive and negative integrals,
setting ~ =~ in each of them, and then take the
greater modulus of the positive and negative con-
tribution as the estimate. The result is

Equation (B5) can be also used for estimating

~ p
' Sg, /e p ~. Now, the term containing logarithm

plays the most important role, and restricting p
from bel.ow p~ 0.1, we get

5.4X', 0.1 ~ p& x-'
8 Xo
8A2

1.5p A. & p (B8)

8Xp-' ' & 5.4~2.
Bp

{BV) Therefore

Finally, the second derivative with respect to

p is estimated from Eqs. (B2) and (B3). We evalu-
8 Xp & 5.4A.' for 0.1 ~ p.
8p

(B9)

*Supported by NSF Grant No. 36217.
H. A. Bethe and L. C. Maximon, Phys. Bev. 93, 768
(1954).

H. Olsen, L. C. Maximon, and H. Wergeland, Phys.
Bev. 106, 27 (1957). This paper is referred to as
OMW.

T. K. Gaisser, Phys. Bev. D 2, 1337 (1970).
4G. W. Erickson and H. M. Fried, J. Math. Phys. 6,

414 (1965).
5H. M. Fried, Phys. Bev. D 1, 596 (1970).
6H. M. Fried and T. K. Gaisser, Phys. Bev. 179, 1491

(1969).
~A zero of F, would locally spoil our equations. We

found the following arguments indicating that I", does
not have a zero. First, the approximate position of a

zero of &E&(+in; 1;u) is proportional to the position of
the zero of the Bessel function g()(u). However, u is
pure imaginary and Io(emu) does not have a zero for
a real argument. Second, we calculated numerically

~
I', ~2, covering practically the whole domain of its ar-

gument, and found its behavior smooth, which did not
indicate any zero.

We enlarged the region given by Eq. (3.7) into the region
given by Eq. (3.8) in order to avoid a cumulative er-
ror along a path parallel to the z axis.

H. K. Tseng and B. H. Pratt, Phys. Bev. A 3, 100 (1971).
P. Csavinszky, Phys. Rev. 166, 53 (1968).
R. H. Pratt, A. Ron, and H. K. Tseng, Rev. Mod. Phys.
45, 273 (1973).


