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The double-integral expression derived previously for Bryon s unrestricted Glauber approximation has been

evaluated numerically to obtain scattering amplitudes for elastic collisions of electrons on hydrogen, as well as

2s and 2p excitation. The resulting values of cross sections and Ly-a polarization fractions are similar to
previous Glauber calculations, but the alignment and orientation of Ly-a radiation as a function of scattering

angle is markedly different from the predictions of the Born and conventional Glauber calculations.

I. INTRODUCTION

This paper is a presentation of results of numer-
ical calculations using the double-integral expres-
sions for electron-hydrogen scattering amplitudes
derived in an earlier paper. ' The expressions
were derived using the Glauber approximation'
without the usual assumption of purely transverse
momentum transfer.

As discussed previously, ' this assumption makes
the scattering amplitude symmetric under reflec-
tion in the plane perpendicular to z, the direction
of the path integral in the phase factor
exp[(-i/Kv) f'„Vdz ] of Eq. (1) of Ref. 1. This
symmetry permits excitation of only one substate'
of the 2P level of hydrogen with the result that the
Ly- n radiation is that of a single dipole whose
electric vector lies in the scattering plane perpen-
dicular to the direction z. Hence, choosing z per-
pendicular to the momentum transfer q forces
agreement with the Born approximation, where the
dipole is aligned with q.4

Higher-order approximations whose transition
operators have reflection symmetry only through
the scattering plane allow excitation of two 2P sub-
states with a relative phase difference. The pur-
pose of this paper is to illustrate with numerical
results some ramifications of these symmetry con-
siderations.

The results presented in this paper were obtained
from our two- dimensional integral expressions for
electron-hydrogen scattering amplitudes in Byron's
unrestricted Glauber approximation. ' Section II
reviews the expressions and their evaluation with
details pertaining to numerical integration in the
appendices. Section III contains results derived
from numerical calculation of 1s-1s, 1s-2s, and
ls -(2s+2p) scattering amplitudes. Differential
cross sections from both the unrestricted and con-
ventional Glauber versions for Is -(2s+2P) were
plotted for comparison with the absolute measure-
ments of Williams and Willis. ' Also, we discuss

the calculation of the orientation and alignment
parameters' as applied to hydrogen I.y- n radiation
detected in coincidence with the scattered electron.
In addition to graphs of these parameters for vari-
ous energies and scattering angles, we have in-
cluded a plot comparing the measured linear polar-
ization fraction with various calculations.

II. INTEGRAL EXPRESSIONS

In Ref. 1, Byron's six-integral expression

E(i f, q)= —„,f -)'(R, R"')

~ g
&&exp — Vdz u*u dR dr

Sv f

with

V(R, R ) =e'(1/R —I/R), (2)

for electron-hydrogen scattering, was reduced to
a two-integral expression. In Eqs. (1) and (2),
mv =5k is the incident electron's momentum (which
defines the z axis), R and r are the coordinates
(relative to the nucleus) of the incident and bound
electrons, respectively, R is defined by R =8
—r, the momentum transfer is defined by q = k~l—k, and u,. and u& are the initial and final hydrogen
bound states.

Since u&u, is a product of polynomials and a
factor exp[- i(r+i(m, —m&)P], it. can be expressed
as a linear combination of terms generated by dif-
ferentiating exp(- ijr+iy r) with respect to p and
y. ' Symbolizing this operation by D(p, , y), we use
D(p, , y) =1, g =2/a„and y =0 for u,*,u„. For
u,~,u„we apply D(ij, , y) =2 —a, 'd/d p and then set
(L(=3/2a, and y=0.

By evaluating the integrals of Eq. (1) as far as
possible before applying D(i). , y), we obtained Eq.
(17a) of Ref. 1, which is
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2

E(i-f, q) = —2' '"m[I'(- i'd))] 'I'(1 —i')kI)C&,D(py)4 pd.d JtL

f 00 1
X dl, X-'"-' dye'[P(1, 0, 0, 0] P(1, 1, 0, 1)]),

4 0 0
(3a)

where

( ~p, , = '( —
)].)' '( '+q")'" ( —q,')-'"-"

(3b)

~ = I]'(1—X)'+»~X(1- X)y.+ I 'X+y'X(1 —X)t'",

q'=q- it(1 —)])a+ay,

(4a)

(4b)

C~, is the appropriate normalization constant,
]7 =e'/Sv, and X and y are variables introduced by
integral transformations.

The two remaining integrals in Eq. (3a,) required
numerical evaluation. Hence, it was necessary to
first take the derivatives implied by D(p, , y)
&& 4I],(d/d p')'. Because of the symmetry of the
1s -2p scattering amplitude and the properties of
F, , it was convenient to transform from a spheri-
cal to a Cartesian basis for the 2p hydrogen wave
functions. In the coordinate frame of Fig. 1, we
chose the basis defined by

niques for the scattering amplitudes and total cross
sections are discussed in Appendices A and B, re-
spectively.

III. RESULTS

A. Cross sections

For fixed energy, the conventional Glauber
1s -ns amplitudes diverge as lnq' at small q and
decrease as q

' at large q, while the 1s -np am-
plitudes diverge as q-' at small q and decrease
as q-' at large q.' The unrestricted version is
algebraically identical to the conventional expres-
sion of Ref. 3 at small q for elastic scattering and
decreases as q

' at large q for any state.
Hence, in Fig. 2 for 100- and 500-eV electrons

u(2p„) = —i]T ' '(2ao) ']'x exp(- r/2ao), (5)

with similar expressions for 2p, and 2p, . This
choice means that D(I],, y) =d/dy„ for E(ls-2P„, q),
D(p, , y) =d/dy, for E(ls-2p„q), and D(p, , y) =d/dy,
for E(1s -2p„q). The numerical integration tech-
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FIG. 1. Collision frame. The electron and photon de-
tectors are positioned at angles 0 and 8&, respectively,
in the scattering x,z plane.

FIG. 2. Elastic differential cross section vs momen-
turn transfer at 100 eV (in a.u.). The solid curve is
our result while the dashed curve is that of Franco
(Ref. 18).
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scattering elastically from hydrogen, both versions
should merge at small q and become parallel at
sufficiently large q. The more rapid divergence
of the unrestricted version as q - 0 is the result
of the nonconvergence of the numerical integrals
as q-0.

Since q' - (AZ)'/2E for inelastic forward scatter-
ing, where AE is the energy loss, it is not sur-
prising that our numerical integrals also converge
poorly at 500 eV for angles less than 1 . Figure
3 shows this occurring for the 500-eV 1s-2s scat-
tering amplitudes. For comparison, we calculated
1s- 2s and 1s -2p conventional Glauber amplitudes
from the equations of Ref. 3. Both conventional
and unrestricted 2s amplitudes are similar at
small q, but the conventional results are an order
of magnitude larger at large q. However, as seen
in Fig. 4, our total 2s cross sections agree with
the conventional results of Ref. 9 and the unre-
stricted result of Ref. 5 except at 50 eV.

The relative behavior of the 2p Glauber ampli-
tudes as a function of angle is typified by compari-
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FIG. 4. Total 1s-2s cross section vs incident energy.
The solid curve is the conventional Glauber result of

Tai et aI,. (Ref. 9). The squares are the Monte Carlo re-
sults of Byron (Ref. 5). The circles are the results of
this paper.

son with the recent 54.4-eV close- coupling result
of Brandt and Truhlar. " Both 50-eV Qlauber 2p
cross sections are within 12% of the c.c. result for
aogles between 5 and 10 . At 0' the respective
conventional and unrestricted values are 36% and

16% lower than the c.c. value, and at 180' they are
45/o and 51/o lower. The effect of the q '-vs-q '
large-angle dependence of the conventional and un-
restricted 2p cross sections is apparent at 500 eV
where the conventional 2p result is less than 10/o
of the unrestricted 2p amplitude at angles greater
than 90 . Figures 5-7 plot the absolute measure-
ments and total error estimates of Williams and
Willis' for comparison with the conventional and
unrestricted Glauher 1s - (2s + 2p) differential
cross sections. Both versions agree with experi-
ment at the smallest angles. As the angle increas-
es, the conventional Glauber value remains closer
to the experimental values, first because of the
larger 2p amplitudes and later because of the
large 2s amplitude. Neither version is very good
at large q.

Figure 8 compares the total 1s-2p excitation-
cross-section results of this paper with the unre-
stricted results of Ref. 5 and the conventional re-
sults of Ref. 9. The two unrestricted calculations
are in agreement at all common energies and in
agreement with the conventional result at those
energies where Fig. 4 of Ref. 9 shows agreement
of the conventional results with experiment.

r

IP' Ip Ip

FIG. 3. 1s-2s differential cross section vs momentum
transfer (in a.u.).

B. Orientation and alignment parameters

Recent experiments which detect radiation emit-
ted by a collisionally excited atom in coincidence
with the detection of a scattered particle enable
one to deduce the relative phases as well as mag-
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FIG. 5. 1s (2s+2P) differential cross section vs
electron-scattering angle at 50 and 100 eV. Data points
are those of Williams and Willis. The solid curves are
the present calculation. The dashed curves were calcu-
lated using the conventional Glauber analytic expressions
of Thomas and Gerjuoy (Ref. 3).

FIG. 7. Same as Fig. 5 for 680 eV. The solid curve
includes only the dominant Rutherford terms. The is
our calculation including all terms.

nitudes of complex excitation amplitudes for de-
generate magnetic sublevels of the excited atom. "
The relative phases depend on the dynamics of the
scattering and the transfer of angular momentum
to the atom; hence, their measurement provides
a sensitive test of the qualitative correctness of
scattering theories.

The predictions of the conventional and unre-
stricted Glauber approximations and the Born ap-
proximation will be discussed in terms of the
Fano- Macek parameters, ' which are components
of tensors of rank 0, 1, and 2 constructed from the
elements of L. For electron-hydrogen scattering,
where there is reflection symmetry about the scat-
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FIG. 6. Same as Fig. 5 for 200 and 500 eV. There
were no measurements at 500 eV (lower curve).

FIG. 8. As in Fig. 4 except for 1s-2P total cross
section.
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tering plane, the only nonzero parameters are
given by Eq. (42) of Ref. 1. They are

o-' =((e IL I t))/c
A '=((413L', L'IP))/C,

A; = ((PI L„L,+L,L„
I
g))/C,

A; =((qlL'„L;
I g))/c,

(6a)

(6b)

(6c)

(6d)

where the superscript col refers to the collision
frame whose coordinate system is chosen with s
along 4, y along k&&k, andx perpendicular to z
andy, as shown in Fig. 1, and C =l(l+1)+IF
(l is the orbital-angular-momentum quantum num-
ber of the excited state). Using the basis defined
by Eq. (5) for ls-2P, we obtain

I () =F.,„l.„„)+F.„lm.„), (7)

observing E2p 0 because u» has odd parity under
reflections in the scattering (x-g) plane. Substitu-
tion of Eq. (7) into Eq. (6) allows one to express
the parameters explicitly in terms of the complex
excitation amplitudes as

—Im(Fa p+2p, )
IF I'+ IF I' '

2px 2pz
(8a)

(8b)

-Re(F,*, F„)
~+

2px 2pz

--'
I F I'

geol
2 2 p~

2+ IF I2+ I~ I2
'

2' 2pz

(8c)

(8d)

In the experiments of Eminyan et a/. "for elec-
tron excitation of the He(2'P), the angular distri-
bution of radiation in the scattering plane is mea-
sured by detecting the He(2'P 1'S) d-ecay photons
emitted at polar angle 8, from the incident z direc-
tion in delayed coincidence with electrons scatter-
ed through the angle 8, . The azimuthal angles 4,
and 4, of the photon and electron detectors are 0
and m, respectively, in the coordinate system of
Fig. 1. The intensity of coincidence radiation is
given by Eqs. (14) and (18) of Ref. 7:

I= SCS[l —&h"'(j &j &)Ao" + &
h" '(j&,j&)A2~' cos2p+ 2 h" '(j &j&)O~~' sin2p], (Qa)

with

0 "=0,'" sin8 sing, ,

A' =A;"2(3 cos'8„- 1)+A; 2 sin28„cosp„+A';,' —,
' sin'8„cos2p„,

and

A;,' =A'o' 2 sin'8, cos2$„+A; (sin8„sing, sin2(+ sin8, cos8„cosy„cos2()

+4 +[&(1+cos'8„) cos2p„cos2$„—cos8„sin2q&„sin2tl ] .

(9b)

(9c)

(9d)

F2p„ I F2p I

(1pa)

(In this discussion, C and S remain undefined quan
tities which cancel out of the final equations. )
Vixen the photon detector is insensitive to polari-
zation, Eqs. (9) must be averaged over the angles
P and g, where P is defined by the elliptical polar-
ization vector e —= (cosP, i sinP, 0) as discussed
following Eq. (3) of Ref. 7, and g is the third Euler
angle required to identify the orientation of a linear
polarization analyzer. Because we are using
eigenstates of orbital angular momentum L, the
coefficient h'(1„ z) /as defined by Eq. (8) of Ref.
7 is equal to -2 for 2p-1s transitions. So Eq.
(9a) for this case becomes

I = —,'CS(1+Ad ),
which, using Eq. (9c) and the definitions

and

~= IF„ I'( F„ I'+ IF„ I')-, (lob)

Ao" = —,'(1 —3X),

A';,'= —[X(1—X)]' ' cosy,

A; =-,'(~ 1).

(1lb)

(11c)

(lid)

becomes

I = —,CS (Xsin'8 + (1 —X) cos'8„

+2[X(l - X)]'~'cosysin8„cos8„). (l,pc)
Having determined X and )f from Eq. (lp), one

can then determine the experimental values of the
alignment and orientation parameters of Eq. (6)
after expressing -them explicitly in terms of A. and

y to obtain

0',"= [X(1—X)]' ~' sing, (1la)
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Differentiating Eq. (10c}with respect to 8„, one
finds that the minimum coincidence rate is obtained
for the photon scattering angle given by

tan28, „=-2(2X —1) '[X(l —X)]~~' cosy

2A«l / (A«1 A«)

=2Re(F.*,.F.,„)/(IF.,„I'- IF...I').
(12a)

(12b)

(12c}

%hen y =0 as in the Born or conventional Glauber
approximations, Eqs. (10) and (12) show that the
minimum coincidence rate is zero when the photon
detector is aligned parallel or antiparallel to the
z or q direction in the Born approximation or the
x axis in the conventional Glazer approximation.
In both these approximations only a single mag-
netic substate is excited, and hence the radiation
pattern is that of a single dipole oscillator. The
Born approximation assumes very high incident
energies where the interaction exciting the dipole
can be considered instantaneous; hence, the dipole
must be excited in the direction of recoil.

The conventional Glauber approximation can be
made to give the same dependence of coincidence
rate on angle by ad hoc redefining of the z direction

as perpendicular to q.4 Then both the Born and
conventional Glauber transition operators have re-
flection symmetry in the x, z and x,y planes. To
see this explicitly, one can transform to the new
(primed) coordinate frame defined by

z =z cos8+x sin8,
= —z siI18+x cos8,

which implies

F2p F2p cos 8 + F2p sin 8

(13a)

(13b)

(14a)

F2~ =-F» sin8+F» cos8.
x g x (14b)

Hence the rotation 8=- —,'g transforms the single
nonzero Glauber amplitude F» to -F,~ in the Born
frame, where 8 „=0. In the frame 8 „=0, hence-
forth referred to as the major-axis frame, the
Born and conventional Glauber orientation and
alignment parameters defined by Eq. (6) are all
zero except A'"' = —1.

In contrast, in the unrestricted Glauber approx-
imation, the parameters in the major-axis frame,
obtained using Eqs. (8) and (14}, are

0',"=—[Im(F,*~ F,p ]/c,
A;"' = [ IF,~ I'(cos2p —sin'p} —IF» I'(cos2p+ cos'p) —3 Re(F,*~ F,~ ) sin2p]/o,

A;;"=—[IF,~ f'cos'8 „+IF.,~
I'sin'8 „-Re(FJ~F,~ ) sin28 „]/2o,

and

~ -=IF.,„I'+ IF.„I'.

(15a)

(15b)

(15c)

(15d)

1(u,.le ~ r
I q) I'= (s d.)'+(~ d, }'

where

(16a)

d, =(u„fx fu,', ) IF,', fx',

d, =(u„ lz Iu,', ) fF,', lz'.
This distribution is the average over one period
of radiation from two classical oscillators d, and
d oriented along x and z, respectively, oscillat-
ing 90' out of phase, and with magnitudes propor-
tional to IF2~„1 and IF2~, I

(16b)

[Equation (12b) shows A';,' =0.]
A better physical understanding of the preceding

discussion can be obtained by picturing the situa-
tion in the absence of spin with a semiclassical
model. " Equation (12a) shows that the choice of
the major-axis coordinate frame ensures

I

g'I =0.
The intensity of Ly- n radiation is then proportion-
al to

In an experiment where there is unresolved fine-
structure splitting of the excited state, the radia-
tion detected is that from a coherent superposition
of states of slightly different energy. As discussed
in Sec. III of Ref. 7, the resulting modulation of
the intensity, anisotropy, and polarization of the
emitted light requires multiplying the irreducible
tensor components T'~', by the modulating factor
G'~'(f), given by

where S~~,~=E~, -E~. The T"', are formed from
products of orbital-angular-momentum operators
so that the h'~'(j„jz) of Eq. (Ba}become h'~'(I„ lz),
where l, and l& are quantum numbers of orbital
angular momentum. %hen the time resolution"
of such coincidence experiments is no better than
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I IIstate one must use thethe lifetime of the excited s
average (G (~'), given by

(a) & — G (t.')
( f) e tl -T df

Since (,, J+r (d +1) '=0 for j Wj, we obtain

~ ~

(a& (2j+ 1)+ (2s+1) l l sI

(18)

(19)

I20-

g 90-

60-
.6
CD

~ 30-

0-
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circular-polariza ion anbe done using a
red circular polari-(8„=v/2, (t „=7(/2). The measure car

zation P, is then defined by

(20)

(21b)

iright lleftP, —

9a),nition of ~ as used in Eq.Recalling the defini ion
= ((/4 or -z/4 should be su s ie aP=/

. (9a) to obtain the intense ies
' ed li ht, respectively. After1 ft circularly polarized lig, r ' . r

x ressions from q.substituting the resulting exp
(9) into E(l. (20), we then obtain

(21a)P = 30~et/(1+Ao~")
C

without spin, and

—3(G( ))Q t/(] y (G( ))Adet)

(G"')=—', . Since 8„=$„=7(q2, E(i. re u

(22)Odet = Oco&
0 1
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by

I' = (I„-I,)/(I„+I,), (23)

where I and I, are the intensities of light polarized
parallel and perpendicular to the z axis, averaged
over all scattering angles. In terms of the Fano-
Macek' parameters, Eq. (23) gives their Eq. (15):

APPENDIX A: NUMERICAL INTEGRATION

Applying D(p, y).4 p(d/d p, ')' to Eq. (3}using Eq.
(18}of Ref. 1 generates a sum of terms containing
integrals of the form

I(g;h;m, P, r, s)

3n"'(j;,jy)A,'
"'(;,j,) ."' (24)

dXX '" ~
' dy ~ 1 —

y
"f gyes, p, ~, g

0 0

Including fine structure, Eg. (24) becomes the re-
sult of Percival and Seaton, "which is

3(2o,/o„—1)
14o,/o„+ 11 (25)

In Eg. (25), o, and o„are the total cross sections
for exciting the 2P, and 2P„states. Because the
Born and conventional Glauber theories predict
excitation of the same magnetic substate when the
integration axis is redefined as done by Gerjuoy
et al. , any differences in I' arise from the differ-
ent shapes of the relative differential cross sec-
tions. The fairly close agreement of all the calcu-
lations of Fig. 14 shows that the polarization frac-
tion is not very sensitive to differences in theo-
ries.
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L 1s~2p

The integration for the 2P amplitude was per-
formed using the Gauss product formula"

1 ~l n

JI dx dy f(x, y) = g A;'"'B'"'f(x,'"', y' ."'), .
-1 ~-1

(A2)

with x and y defined by

x =[~(1—~) —1][~(1—~) + 1]-',

y =2y-1.
(A3a)

(A3b)

The integration points x,'."' and y,'."' are the zeros
of the nth degree Legendre polynomials. The in-
tegrand f(x, y) consisted of the sum of all the terms
generated by diff erentiation.

2 Isis

(A1)

where g~ 2 is the total number of differentiations
implied by D(p, y)4 p, (d/d p')', and h ~ 0, m ~ 1,
p ~s ~ 0, x ~ 0 are the other integer exponents
which parametrize the terms.
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In order to discuss the solution to the conver-
gence problems that occurred when evaluating Eq.
(3a) for s states, it is necessary to recall and gen-
eralize results from Sec. III of Ref. 1, where we
found an expansion of the integrand of Eci. (A1) in

powers of p/q. We also found an upper bound to
the exact integral of Eq. (A1) which showed that in
the case of 1s-2P scattering the dominant term at
large q for fixed energy was I(3;0;1,7, 0, 1),
arising from the electron-nucleus interaction and
having q

' dependence. The generalization of Eq.
(37) of Ref. 1 gives

~I(g;h. ;m)p, r, s) e""p' q
' q, (-,')—B( ,'s, ,'(P —s))-—

B(Z+ ,'(s —P), jg+1—), (A4)

FIG. 14. Polarization fraction vs energy. The dashed
line is the prediction of the Born approximation, the
dotted line is the calculation of Gerjuoy et al. (Ref. 4),
the diamonds are the Monte Carlo result of Byron
(Ref. 5), the open circles are the present calculation,
and the solid circles are the measurements of Williams
and Wij.lis (Ref. 6).

which shows that the scattering amplitude d'or any
excited state is dominated at large q by one or
more q '-dependent terms arising from the elec-
tron- nucleus interaction.

For s states, these terms are not bounded by
Eq. (A4) because g+ —,'(s —p) =0. With the change
of variables f =X(l —)f)/(p, v)f), which gives



INELASTIC ELECTRON- HYDROGEN SCATTERING IN THE. . . 1V69

00 1

$(g h m P r S) ti
(nss 2 dtt i'n iss(l +t2) i /

dlt )ts is(s 2 (n)/2 (I )t)
(2+

2(q
2 2iq tit)il /2 + t/2)t) (n m

0 0

(A5)

we see that the integrand of these dominant terms
is proportional to y

' as y„-0. This divergence
was removed using the asymptotic expansion of the
integrand of Eq. (A1). To lowest order in ti/q,
this consists of

integrand f,(t, )t), we then use the identity

dt dy t y = dt dy
~ 0 0 0 0

(q2 2iq @teal
/2+ t/2~)in m (q2)in m (A6a)

+ dt dy t y. (A7)

ftl~l /2[(1+t2)1/2 t] iq }-(n-r ( iq )-(n~

(A6b)

which is also valid for arbitrary tl/q as X-O,
which is substituted into the integrand of Eq. (A5).
Calling the exact integrand f(t, )t) and the small-)t

The term fo dt f'od)( f,(t, )t) was evaluated analytical-
ly using Eq. (32) of Ref. 1. To see if the first term
of Eq. (A7) converges, one must examine the be-
havior of the second-order terms in the expansion
of f(t, g), since f,(t, )|) is the first-order term in
the expansion for large q or small y. We obtain
as y-0

f(g; h; m, p, r, s; t, )t) -f,(g; h; m, p, r, s; t, )t)

- ((i)7 —m )(- 2iq, ) f(&(g; h; m + 1,p, r, s + 1;t, )t) + (ir/+ r) [t(1 + t') ' /' —1]f,(g; h; m, p —1,r+ 1,s; t, )t)},

where

f (g. h. m p r s. t )t) q2in-2m( iq )-(natl-in+s-Pt-in-1+a(I+t2)-2/2 ~s-1+(s-p-(n)/2(I ~)insh

(A8a)

(A8b)

Inspection of Eq. (A8) shows that the difference
integrand of Eq. (A7) for the s-state terms with
g+2(s —p) =0 is proportional to )t

'l' as )t-0.
This mild divergence can be removed from the
summation in the Gauss formula

&a

n

2() (x)f(x) dx = Q A i"'f [xi"'], (A9)

by choosing the orthogonal polynomials defined by

l n

dx t dy (1+y) '/'f(x, y) = Q A'"'B'"'f [x,'"' y'"']
~-1 ~-l '=l12-

(A12)

where f(x,y) is the original integrand times the
factor (1+y)' '. The A,'"' and x,'"' are the weight
coefficients and zeros for Legendre polynomials
P„(x) and the B,'."' and y(n& for Jacobi polynomials
P(Oi-1 /2)(y) 17

n

b

2U(x)P„(x)P„(x)dx = C„5„„
a

(A10) APPENDIX B: TOTAL CROSS SECTIONS AND

RADIATION PARAMETERS

so that the divergence is contained in the weight
function 2()(x). For Jacobi polynomials P„' ~ 2)(y),
Eq. (A10) is

1 n

Jt (1 —y) (I+y)2f(y)dy =QB/(n&f[y/(n&]. (A11)
-1 j=1

With the change of variables y = 2y —1, the diver-
gence )t

' '=(1+y) '/' is incorporated into the
weight function by setting n =0 and p= —2. With
the additional change of variables x = (t —1)(t+1) ',
we obtain the Gauss product formula

The Gauss quadrature formulas of the previous
sections were used to obtain F(1s -2s, q),
F(1s-2p„,q), and F(1s 2p„q) for 8=0 to 180'
at 10' intervals plus additional points needed for
good interpolation using IBM scientific subroutines
DATSM and DALI.

The interpolated values of ~F„~' and ~F» ~' at
1' intervals were integrated numerically using the
IBM subroutine DQSF (Simpson's rule and Newton's
—', rule). The Glauber amplitudes peak sharply at
8 = 0' for high energies, while the total integrand
drops sharply to zero at 8=0' because of the fac-
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tor sin8. Hence, the 1' interval was too coarse
for Simpson's rule to work well near 8 = 0' for
500-eV incident energy. In addition, the poor con-
vergence of the Gauss quadratures at 8=0 and
500 eV gav( ~uncertain values of 2p, 2nd 2s amp1. i-
tudes at th~'. point, making interpolation uncertain
for small angles. However, the Glauber 2P am-
plitudes approach the Born values as q-0. Thus,
the total cross sections 0»„, v», and 0, were re-8' 2p
calculated using the Born amplitudes for the con-

tribution from 0'» 8» 1' at both 200 and 500 eP.
The total cross sections are virtually unchanged
at 200 eV and about 10% larger at 500 eV when
this is done. The polarization fraction I' of Eq.
(25) is then in good agreement with other calcula, —

tions.
The parameters 8

~
& g 0, A and A2",

were calculated using interpolated values of both
real and imaginary parts of the amplitudes
E(ls -2p„q) and E(1s -2p„q).
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