
PHYSICAL REVIEW A VOLUME 12, NUMBEH 4 OCTOBER 1975

Transient behavior of the amplification of the Stokes field by thermal Rayleigh
and Brillonin effects

A. Bambini, R. Vallauri, and M. Zoppi
Consiglio Wazionale delle Ricerche, Laboratorio di Elettronica Quantistica, Via Panciatichi 56/30-50127 Firenze, Italy

(Received 3 February 1975; revised manuscript received 19 May 1975)

We derive analytical solution for a, signal field amplified by stimulated Rayleigh and Bril-
louin effects. The presence of light absorption is taken into account. The solution. describes
the transient behavior at all frequency differences between the pump and the signal waves.
The validity is demonstrated for the simple case of no absorption, and the particular time be-
havior at ~ =0 is stressed.

I; INTRODUCTION

In 1970 Pohl and Kaiser published an article'
that can be considered the conclusion of the work
of many years on the study of the transient be-
havior of the amplification of an electromagnetic
wave interacting with a strong field by density and
temperature fluctuations. The very accurate ex-
perimental techniques used allowed measurement
of the very fast phonon lifetime and investigation
in the transient regime to ascertain the character-
istic time before the steady state is reached. ' '
The addition of small quantities of dyes also al-
lowed the study of the influence of heat absorption
on the Brillouin line of gain.

The differential-equation system of Ref. 1 was
solved by Pohl and Kaiser by introducing a series
expansion in the z coordinate to first order, with
various expressions for the input and pump waves
as a function of time. The same theoretical method
was used by Rangnekar and Enns, who extended the
calculation to second order. ' They were also in-
terested in the transient behavior near the Ray-
leigh line which was studied in previous works."
In this region the first-order perturbation approach

used by Pohl and Kaiser in Ref. 1 fails.
A different approach was used by Rother' in or-

der to solve the differential-equation system (15)-
(17) of Ref. 1. He succeeded in integrating by 1"ou-
rier-transforming the system and by separating
the contribution to the spectrum of the amplified
signal into three different parts, namely, the Ray-
leigh and Brillouin (Stokes and anti-Stokes) fre-
quencies. In particular, he was able to explain
the experimental results obtained" when the inter-
action between a strong pumping field at frequency
w~ and a signal wave at the same frequency occurs
in liquid CC14.

We have obtained a nonperturbative solution to
Eqs. (15)-(17) of Ref. 1 in terms of the amplitude
of the signal field for arbitrary frequencies of this
field. As will become apparent, this solution a1.—

lows one to consider the influence of all the com-
ponents of the amplified field on any particular
region of the spectrum.

II. THEORY

We start from Eqs. (15)-(17)of Ref. 1, which
we write out in the proper form
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This set of d iffe rential equations des cribes, in
the slowly-varying-amplitude approximation, the
interaction of two electromagnetic fields: a Stokes
wave, with amplitude Ez(z, t), traveling in the z-
direction with frequency u~ and propagating vector

k~, and a strong field, with amplitude E~, traveling
in the +z direction with frequency u~ and propagat-
ing vector k~. The interaction occurs through den-
sity and temperature fluctuations. These fluctua-
tions have amplitudes indicated by p(z, t) and
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T(z, t), respectively, and propagate in the +z di-
rection with frequency u and propagating vector
k. Energy and momentum conservation requires
hat &I —ops =u and k~+ ks =k =2k~. Other para

eters are defined in Ref. 1.
In our derivation we neglect any depletion of the

field E~ and consider a step-function pulse input
Ez, i.e., Ez(z, t) =El independent on z and t, and

Ez (L, i) = E~' denotes the signal amplitude which
we assume to be constant at any time t &0. Here,
L, denotes the input position of the Stokes wave.

We take the Laplace transform of Eqs. (1)-(3)
using the above stated initial conditions in conjunc-
tion with p(0) =0, p(0) =0, and T(0) =0. Then the
resulting equations are solved, and the slowly
varying amplitude of the Stokes field turns out to be

(o) a

E,*= . ' exp A(z) p+-,'yr~ ——,(de+i(d (i) —n, ) '(p —0, ) '(p —0,)
'

2mi p y' (4)

A(z) =i(y'kEI, )'(d~ (e ' —e )/32~ncp, n .

The Qj are the roots of the characteristic equation
derived from the Laplace transform of Eqs. (1)
and (2), and are given by

Q2 = -2 ((d + (ds) —2 Fz e

Oi, —-z((d —(dz) —,Fz e

where m~ represents the frequency shift of the
Brillouin peak from the frequency of the incident
radiation, and is given approximately by the well-
known Brillouin relation. F~ is given by
I'z+ —,'(y —1)I's. For detailed calculations of (dz
and I'~, we refer to Ref. 7.

In order to get an analytical expression for the
Stokes field E~, we must calculate the residues
of the four poles of the integrand in Eq. (4). The
residue in the pole p =0 is easily derived and
yields the steady-state contribution to the electro-
magnetic field. For the other three singularities,
we proceed as follows. First of all we expand the
exponent in the integrand:

a

A(z)(p+",'zr ——,re +ier) [(p —ir, )(p —ir, )(p —ie,})

=A(z) ' + ' + ' (8)
P —0, P —02 P —Q3

where

B, = [II,+i (d + ~r~ —(y'/y')(d s]/(&, —&,) (&, —&,),
(7a)

&.= [II~+ i~+ ~zF& —(y'/y')(d&1/(fl, —II,)(&. —II,),
(7b)

&g = [0,+i(d+ ~2I'~ —(y'/y')(dz]/(0, —Q,)(n, —0, ) .

(7c)

Then for each singularity we divide the exponential
into two parts, one of which is singular while the
other one is regular. For example, for the Q,
singularity we get

3

exp Az ' exp t
]

=exp Az ' + P —O, t
p —0,

B,xexp A z ' +Q,t
p —Q.j=2 j

(8)

By the use of the generating function for Bessel
functions,

1 1
exp —x y —— = g y'g, (x),

S=-oo

it is possible to expand the integrand in a series
of (p —0,)', where l ranges from -~ to +~, and
to extract the l = —1 contribution. By this method
we evaluate the inverse Laplace transform on the
right-hand side of Eq. (4). The expression for
the slowly varying amplitude Ez(z, t) is inserted
in Eq. (9) of Ref. 1, obtaining for the Stokes field
g~ (which conta. ins also the optical frequencies)

a
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where

where b (0,. ) are coefficients independent of time

t; e.g. , for j =1 it reads

1)m dm- z

b (n, }=( ), „

The physical meaning of the result derived in Eq.
(10) is easily understandable. The first term rep-
resents the input wave spatially amplified in the

steady-state regime. The other three components
describe the transient behavior as the sum of a
Rayleigh process (term labeled by 1) and a, Bril-
louin process (the anti-Stokes and Stokes compo-
nents labeled by 3 and 3, respectively). The fre-
quencies of these three components are imposed
by the thermal fluctuations stimulated in the medi-
um by the coupling of the two electromagnetic
fields.

In order to compare our results with experimen-
tal data, one should take the square modulus of the
electric field expressed by Eq. (10), because any
detector reveals the intensity rather than the field
itself. Because the time resolution of photodetec-
tors is approximately 0.3 nsec, one can drop the
fast oscillations which arise taking the square
modulus of the electric field.

First we wish to consider the case in which the
Rayleigh component vanishes. This can be
achieved by setting n =0 and A. =0. These two con-
ditions mean that both the thermal heating and the
presence of spontaneous temperature fluctuations
are neglected (i.e. , ) '=0 and I'R =0). In this phy-
sical situation the argument of the Bessel functions
on the right-hand side of Eq. (11) is real or pure
imaginary, as j is equal to 2 or 3, respectively.
The coefficient C, (z, t) turns out to be a sum of

Bessel functions evaluated on the real axis and
tends to zero as the argument (i.e., time t} in-
creases. In contrast, C, (z, t) tends to infinity as
the time t increases, being the sum of Bessel func-
tions evaluated on the imaginary axis. We find
the well-known result that anti-Stokes components
cannot be excited by the stimulated Brillouin effect.

Away from the limit n =0, we study the behavior
of the amplified signal at co =0. In the range of
frequencies near the Rayleigh line the process is
recognized to be wholly transient during the time
duration of experimental pulses. ' " This result
was confirmed by Daree and Kaiser, "who analyzed

their experimental results using Rother's solution"
in order to take into account the time variation of
the pumping field.

Even if our solution is restricted to the case in
which the laser intensity is kept constant during
the interaction, the present treatment makes it
possible to distinguish the influence of different
components on the total amplified intensity. From
Eq. (10) we see that the main contribution to the in-
tensity comes from the Rayleigh component (name-
ly, the square modulus of the term labeled by 1)
and from the beating between the Rayleigh com-
ponent and the stationary term. These two terms
have a decay constant approximately equal to 1/I s,
thus confirming that the temperature fluctuations
drive these components. But, in addition to this,
we can also take into account the contribution of
other components. In particular, it turns out that
the beatings between the Stokes component (labeled
by 3) and the stationary and Rayleigh components
are important in some cases, namely, when the
phonon lifetime is so long that it becomes com-
parable with the time duration of the temperature
fluctuations. This result is apparent in Figs. 1 and
2.

In Fig. 1 we show the contribution of the above-
mentioned terms for liquid-CC14 parameters. In
this case the ratio ls/I's is =36, and it appears
that only the steady-state and Rayleigh components
are important. Thus, the approximation used by

80
t (n sec)

FIG. 1. Various contributions to the amplified inten-
sity of the signal field vs time. The material parameters
are those of liquid CC14 (Ref. 7); & =0.06 cm ~, interac-
tion length=0. 3 cm, and laser intensity PI =1.6x10~~
W/cm~. Curves a and b show the behavior of the

~C&~ exp(—I'st) and 2Re (COC& exp( 2I'st)) terms, —re-
spectively. The other contributions to the intensity are
not to scale. Here, Co indicates the amplitude of the
stationary term.
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Bother, who separated the contribution of the
Stokes and Rayleigh poles, can adequately describe
the transient regime.

In Pig. 2 the results obtained using the liquid-
CS, parameters are reported. The ratio I'e/I'„
is now =1.21, and the beating between the Stokes
component and the stationary and Rayleigh com-
ponents is not negligible during all the transient
regime. The beating occurs with a frequency mod-
ulation equal to ~~.

FIG. 2. Contributions to the amplified intensity using
liquid-CS2 parameters (Ref. 1), with the same values
for G. , PL, and interaction length as for Fig. 1. Curve
c shows the beating between the Brillouin and the sta-
tionary and Rayleigh components.

III. CONCLUSIONS

In conclusion, we have derived an expression
for the Stokes field amplified by the interaction
with a pump field via thermal fluctuations, which
seems to be easily handled both in the steady state
and in the transient regime. The solution is valid
for arbitrary interaction length, extending the
range of validity of Pohl and Kaiser's results.
Furthermore, the method used allows the descrip-
tion of the amplification of a signal field interacting
with a strong field for any frequency difference
between the two waves.
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