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Stochastic transition in the unequal-mass Toda lattice*
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In this paper, the results of various computer experiments performed on the two-particle, unequal-mass Toda
lattice are discussed. These experiments indicate that this system exhibits a transition from near-integrable to
macroscopically observable stochastic behavior at a critical value of the total energy E, which depends on the
mass ratio of the two particles (rn, /m, ). This transition appears to occur for every mass ratio in the open
interval 0 & I,/m, & l. Details of trajectory behavior at selected energies and mass ratios are exposed through
presentation of a number of Poincare surfaces of section. The transition discussed herein will likely prove to
be significant for both mathematics and physics.

I. INTRODUCTION

j3oth computer experiment' and rigorous math-
ematical theory' show the Toda lattice' to be an
integrable system. In, view of the physical' and
mathematical' significance of the Toda lattice, it
is of interest to determine the extent to which in-
tegrable or near-integrable behavior persists
under perturbations of the Toda Hamiltonian. Now

certainly almost every perturbation of the Toda
Hamiltonian, no matter how small, would yield a
nonintegrab1. e system. ' However, the Kolmogorov-
Arnold-Moser (KAM) theorem' ensures that, for
sufficiently small change, the nonintegrnble Ham-
iltonian will remain at least near integrable in the
sense that most trajectories will continue to lie on
smooth integral surfaces. Moreover, various
computer experiments' ' show that the KAM-type
near-integrable behavior can persist far beyond
the small perturbation range assumed by the KAM
theorem. Nonetheless, when a nonintegrable per-
turbation becomes sufficiently large, many (if not
most) system trajectories are wildly erratic, cov-
ering much of the energy surface in a seemingly
ergodic and mixing fashion. " In this paper, we
seek to determine via computer experiments the
type of behavior which occurs as the perturbation
parameters vary.

In the computer experiments to be discussed
here, we chose to perturb the Toda Hamiltonian
by introducing unequal masses into the lattice.
This is a somewhat natural perturbation in the
sense that isotopic mass impurities do occur in
nature; in addition, this modification permits easy
control of the perturbation strength. Although we
have studied the effect on integrability of intro-
ducing mass defects into the many-particle Toda
lattice (to be reported elsewhere), the experiments
to be discussed here treat only the two-particle

unequal-mass system using fixed-end boundary
conditions. In particular, the Hamiltonian system
we investigate here may be written

H= , Ip', /m, +—p,/m, ]+e '~+e '2 '~'+e'2 —3

where P„P, are particle momenta, q„q, are par-
ticle displacements from equilibrium, and m„rn,
are the particle masses. This two-particle system
has several virtues. First, it displays all the
essential properties of the many-particle system;
second, it allows study of the complete range of
mass ratio m, /m, from zero to unity; third, it
permits use of an easily viewed, graphical survey
of a complete energy hypersurface via a Poincare
surface of section"; and last, it has only two
relevant perturbation parameters, namely, the
total energy & and the mass ratio m /m, . Although
the size of the total energy E does not appear to
determine integrability or its lack for this system,
we nonetheless choose to regard & as a perturba-
tion parameter because, regardless of mass ratio
m, /m„ for sufficiently small E most system tra-
jectories lie on integral surfaces close to those
of the integrable harmonic-oscillator system ob-
tained by expanding the exponentials in Hamiltonian
(I) and retaining only terms through quadratic
order. Increasing the energy & at fixed m, /m,
thus allows the possibility of converting the be-
havior of most system trajectories from near-
integrable to wildly erratic.

In Sec. II, we first show that a transition (the
so-called stochastic" transition) from near-in-
tegrable to wildly erratic, obviously nonintegrable,
behavior appears to occur for every mass ratio,
except for the endpoint values m, /m, = 0 or I which,
of course, yield precisely integrable Hamiltonians.
%e then present a set of Poincare surfaces of sec-
tion showing the detailed behavior of trajectories
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as the mass ratio or the energy varies. Finally in
Sec. III, we present our conclusions.

II. RESULTS OF COMPUTER EXPERIMENTS

In phase-space regions where the unequal-mass
Toda Hamiltonian yields near-integrable behavior,
the separation distance D, given by
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between members of an initially close trajectory-
pair, grows linearly' with time; a typical case is
shown in Fig. 1. On the other hand, wildly erratic
(stochastic) trajectories separate exponentially"
from their initially close neighbors; Fig. 2 shows
a, typical example. For each mass ratio m, /m,
that we investigated (excluding the endpoints zero
and unity), we always found a transition from lin-
ear to exponential separation as we increased the
total energy E. In Fig. 3, we graph an empirically
determined curve of E„an approximate value for
the critical energy at which the linear to exponen-
tial transition occurs, versus mass ratio m, /m, .
The curve in Fig. 3 should for several reasons be
regarded as only a very crude estimate of E,.
First, as detected by the computer, the transition
from linear to exponential separation occurs quite
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FIG. 2. Graph showing a typical curve of exponential
growth in separation distance. Here, a curve of log&OD
vs time is plotted, and one notes that D has increased
by six powers of ten during the same time interval shown
in Fig. l. As in Fig. 1, m2/m& ——0.54 and E=7; but here
initially q&

——-0.66, q2
——0, p& =-0.037, and p2 ——4.92. The

initial condition for the second trajectory differed from
the first only in that q& =q~+ 10 . This trajectory pair
was initiated in a stochastic region of Fig. 8. Compar-
ing Figs. 1 and 2, whether or not one accepts the labels
"linear" or "exponential", one cannot ignore the strik-
ingly different growth rates of D in the two figures.
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FIG. 1. Graph showing typical linear (on the average)
growth of separation distance D = [(pg —pg) +(p2 —p2)
+(qq-qq) +(q&-q&)'l vs time, measured in differential
equation seconds. D is the separation distance between
two initially close trajectories. Here m2/m& =0.54, and
E =7. One trajectory was initiated at q&

——1.74, q2=0,
p& =1.50, and p2=2. 72; initial conditions for the second
trajectory were obtained from the first by changing only

q&, setting q&=q&+ 10 . 'This trajectory pair was initi-
ated in a near-integrable region of Fig. 8.

FIG. 3. Curve of transition energy E~ vs mass ratio
m2/m&, where E, is the approximate energy at which the
computer detects a transition from linear to exponential
growth of D. Dots denote linear growth, awhile asterisks
denote exponential growth. For the particular trajectory
pair we chose to integrate, the curve rises very steeply
for mass ratios greater than 0.9 and less than 0.07. Re-
gardless of trajectory pair, the curve must somewhere
rise quite steeply as the mass ratio approaches the in-
tegrable values of zero or unity.
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smoothly over a more or less small interval DE.
Second, distinguishing between linear and exponen-
tial separation depends heavily upon integration
accuracy and upon the length of time the trajectory
is integrated. Third, since each mass ratio we
studied yielded (at sufficiently large energy E) a
clearly "divided" energy surfa. ce on which certain
trajectory pairs separated linearly while others
separated exponentially, E, depends very much on
the initial conditions of the trajectory pair inves-
tigated. Finally since Fig. 3 indicates that this
system is nonintegrable at large energy E for
every mass ratio m, /m, &0 or 1, one expects" the
energy surface to be "divided" no matter how
small the total energy E & 0. Thus, mathematically
speaking, there is no transition at all, there being
only a smooth increase in the size of the region
containing erratic or stochastic trajectories;
from the physical (or computer) viewpoint, how-
ever, the transition may be regarded as occurring
when the regions of erratic trajectories first be-
come "macroscopically visible" on the energy
surface or, more or less equivalently, when the
exponential separation of trajectory pairs becomes
sufficiently rapid to be observable using routine
computer aeeuracy and reasonable computer inte-
gration times. Despite all these equivocations,
the curve in Fig. 3 does provide, as we shall
demonstrate in greater detail later, a useful di-
viding line below which the system exhibits pri-
marily near-integrable behavior and above which
the system exhibits primarily stochastic (noninte-
grable) behavior.

We obtained the data for Fig. 3 by numerically
integrating a single trajectory pair for each mem-
ber of a set of increasing energy values, holding
the mass ratio constant. We bounded E, by com-
puting the least E for which the trajectory separa-
tion was obviously exponential and the largest E
below this for which it was clearly linear. We
repeated this process for many mass ratios. We
arbitrarily selected one member of the single tra-
jectory pair which we integrated by first choos-
ing a value for q, and then numerically setting
q, = s q„p, =

Q q and p = qy' changing q, is then
equivalent to changing the total energy E and, of
course, we computed E for each q, . Initial con-
ditions for the other member of the trajectory
pair were obtained by holding q„p„and p, con-
stant and by then adding 10 to the original qy
coordinate. We integrated each trajectory pair
for 300 sec of diff erential- equation time. We then
divided this 300-sec interval into three equal sub-
intervals, and computed the average slope of the
trajectory-pair separation distance D vs time for
each subinterval by computing a least-squares
straight-line fit to 240 equidistant points in each

subinterval. At the same time, we similarly com-
puted the average slope of log» D vs time. From
data similar to that shown in Figs. 1 and 2, we
determined that, when the separation distance D
grows linearly, the slope of D vs time had the
same order of magnitude in each subinterval, for
example (10 ', 10 ', 10 '). On the other hand, for
exponential growth, we found the slope of D vs
time changed like (10 ', 10 ', 10 ') or (10 ', 10 ',
10 '), while the three slopes of log„D vs time
were then constant in order of magnitude. Finally
in all calculati. ons, the mass ratio m, /m, was
varied by setting m, = 1 and varying m„we con-
sidered only the mass-ratio interval 0 &m, /m, &1,
because Hamiltonian (1) is invariant to interchange
of m, and m, .

In order to present a survey of the character of
system trajectories as a function of total energy
E and mass ratio m, /m„we now display a set of
Poincare surfaces of section. Each surface of
section presents a relatively complete graphical
survey of trajectory behavior at fixed E and m, /m„.
in particular, it shows the points of intersection
made by selected trajectories with a two-dimen-
sional, cross-sectional plane cutting through the
three-dimensional energy hypersurface. In regions
of near-integrable behavior, most trajectories
yield intersection points which line on curves';
erratic trajectories, on the other hand, yield a
wild scatter of intersection points' which appear
to rather uniformly cover some region of the sur-
face-of-section plane.

Examining Fig. 3, we note that, at energy E =2,
Hamiltonian (1) should yield near-integrable be-
havior for all mass ratios. Figures 4-6 present
surfaces of section at E =2 for the three mass-
ratio values m, /m, =0.33, 0.54, and 1.0; in these
figures we note, as anticipated, that all the tra-
jectories we integrated yielded a set of intersec-
tion points lying on some smooth curve. Here and
in the following figures, when a trajectory yielded
a set of points obviously lying on a smooth curve,
the curve has been drawn in freehand. In each
case studied, we have selected the (q„p,) plane
as our surface of section, and each curve in Figs.
4-6 gives the set of (q„p,) coordinates of phase-
space points on a system trajectory at which q, = 0
and P, ~ 0. The outermost, bounding curve in all
surface-of-section plots is not a curve generated
by a single trajectory; it represents the boundary
of the intersection region between the (g„P,) plane
and the energy hypersurface. This bounding curve
in all figures is given by

E= ~ p', +e '&+e'& —2,
since m, =1 always. Thus, at fixed energy E, the
bounding curve is independent of mass ratio.
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Further inspection of Fig. 3 reveals that the
mass-ratio values m, /m, =0.33 and 0.54 should
exhibit at least some erratic trajectories at
E=7.0; the mass ratio m, /m, =I, of course, yields
integrable behavior at this and all other energies.
Figures 7-9 verify the predictions of Fig. 3. Both
Figs. 7 and 8 exhibit the "divided" energy surface
mentioned earlier. Again, as discussed earlier,
each curve in Figs. 7 and 8 was generated by a
single trajectory, but, in addition here, the set of
"random" intersection points in each figure was
also generated by integrating a single trajectory,
although there is a serious question (to be dis-
cussed in Sec. III) concerning computer accuracy
in integrating such exponentially unstable orbits.
Figures 7 and 8 make it graphically clear that
linear versus exponentialbehavior depends strongly
on trajectory-pair initial conditions, again em-
phasizing that Fig. 3 provides only a crude esti-
mate for E,. Finally, in Figs. 10-13, we present
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FIG. 5. Surface-of-section plot at total energy E =2
for mass ratio m2/m& =0.54.

2.0
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FIG. 4. Surface-of-section plot at total energy E =2
for mass ratio m2/m& =0.33. Each curve represents the
surface-of-section intersection points generated by a
single trajectory. Here and in Fig. 5, --all trajectories
we investigated (not all are shown here) generated
smooth curves; however, for reasons mentioned in the
main body of this paper, we believe that at E =2 this
system is actually near-integrable rather than precisely
integrable. Here and in all surface-of-section plots, the
numbers appearing just outside the bounding curve along
the q& and p& axes are the q& and p& coordinates at which
the bounding curve intersects these axes.

FIG. 6. Surface-of-section plot at total energy E =2
for mass ratio m2/m~ =1.0, the integrable case. Here,
these directly integrated curves are in excellent agree-
ment with those which may be calculated algebraically
for this integrable case.
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surfaces of section at E = 30 for the four mass
ratios m, /m, =0.33, 0.54, 0.92, and 1.0. Figures
10 and 11 show that, at this relatively large en-
ergy, the mass ratios m, /m, =0.33 and 0.54 yield
erratic (or stochastic) trajectories over most of
the energy hypersurface. Figure 12, at m, /m,
=0.92, shows the decrease in erratic trajectories
as the mass ratio tends to unity, which is the in-
tegrable case shown in Fig. 13.

Pl
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III. DISCUSSION OF RESULTS

Let us open this section with a discussion of
computer integration accuracy. All our numerical
integrations were performed using a standard
fourth-order Runge-Kutta subroutine with a fixed
integration step size of 0.50 or less. All runs
were performed on a UNIVAC 1108 using 16-digit
double-precision arithmetic. We assured our-
selves that our computer program was actually
integrating the differential equations obtained from
Hamiltonian (1) by comparing the directly inte-
grated m, =rn, surfaces of section shown in Figs.
6, 9, and 13 with surfaces of section computed
algebraically using the known, additional constant
of the motion' which is available for the equal-
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FIG. 8. Surface of section at E = 7 for znass ratio
m2/m& =0.54. The stochastic region is here even larger
than that appearing in Fig. 7.

Pg8 1

2.18

FIG. 7. Surface of section at total energy E=7 for
mass ratio m2/m& ——0.33. The set of unconnected points
were generated by a single erratic trajectory. This
figure presents an example of a system having a divided
phase space.

FIG. 9. Surface of section at E =7 for the integrable
mass ratio m2/mg =1.0 presented for comparison with
Figs. 7 and 8.
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mass case. In addition, we numerically integrated
the equal-mass case at E = 1 &&10 ', obtaining the
almost-harmonic surface of section shown in Fig.
14. This figure is in excellent agreement with the
surface of section algebraically computed using the
harmonic-oscillator approximation to the equal-
mass Toda lattice. Integration accuracy was fur-
ther checked by time reversing several of our
longest, near-integrable trajectory integrations
and regaining the initial state to at least six- or
seven-digit accuracy, by noting that energy was
always conserved to at least ten-digit accuracy,
and by estimating error growth using data similar
to that shown in Figs. 1 and 2.

With few exceptions, trajectory integrations ran
for no more than 300 sec of differential-equation
time. Grossly overestimating the initial error in
a single trajectory integration it 10 ", we see
from Fig. 2 that even unstable orbits would be in

error by no more than 10 ' after 300 sec. Con-
sequently, Figs. 1-13, which require at most
three-digit accuracy, certainly present accurate
data. The exceptions are the few erratic trajec-

tories we integrated to obtain the splatter of "ran. -
dom" points which appear in some surface-of-
section figures. These highly unstable orbits
were integrated for as much as 2000 differential-
equation seconds; thus, not all of the surface-of-
section points shown actually belong to a single,
true orbit. However, we ran many highly accurate
computer experiments to show that initially close
orbits do separate exponentially when the trajec-
tory pair is initiated anywhere within the surface-
of-section region covered by the "inaccurate"
splatter of dots. Moreover, in none of our cal-
culations, no matter how long, did integration
inaccuracy cause an erratic trajectory integration
to yield surface-of-section points lying in a region
known to contain curves. Finally, there are ana-
lytic arguments which support the belief that a
truly accurate long integration of a single erratic
trajectory would yield a splatter of points cover-
ing the same "erratic" surface-of-section regions
shown in our figures. For all these reasons, we
used an inaccurately integrated, single erratic
trajectory as a particularly convenient and valid
method for determining the size and shape of the
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FIG. 10. Surface of section at E =30 for m2/m& ——0.33,
showi. ag the increase in size of the stochastic region
which occurs as the energy is increased. PIG. 11. Surface of section at E =30 for m2/mf
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flection) fixed points" exist in the surface-of-sec-
tion plots for E =2, thus deciding the integrability
question at least for some range of energies below
E =2. However, these computer experiments are
so tedious and time consuming, and the probability
of obtaining an unexpected answer is so small,
that we could find little motivation for performing
them. A question of much greater interest and

difficulty, "which we also have not investigated
here, concerns the possible existence of micro-
scopically small, curve-bearing regions embedded
in the macroscopically "erratic" regions. This
latter question is worthy of investigation, since it
is mathematically undecided, and since such
curve-bearing regions might be of great signifi-
cance for statistical mechanics.
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