
PHYSICAL B E VIE W A VOLUME 12, NUMBEB 4 OC TOBEB 1975

Approach to transport theory using generalized Langevin equations*

Barry F. McCoyt
The James Franck Institute and The Department of Physics, The University of Chicago, Chicago, Illinois 60637

(Received 21 April 1975)

The use of generalized Langevin equations in the study of transport in simple classical liquids is extended by
the derivation of the second such equation in the hierarchy of coupled phase-space transport equations. This
set of generalized Langevin equations is applied to the description of self-diffusion. An approximation is made
to simplify the second generalized Langevin equation, and a perturbation solution is presented for the velocity
autocorrelation function. The method introduced is related to the Mori continued-fraction representation, but
poses a different point of view for analysis.

I. INTRODUCTION

A satisfactory theoretical description of trans-
port in realistic simple classical liquids remains
almost as elusive as when the analysis was first
attempted. Early formulations concentrated on
calculations of the transport coefficients. ' Much
more detailed information is now available from
computer dynamics and neutron-scattering experi-
ments and these new results must be explained by
the theory. For this purpose the older theories
are not adequate.

The existence of the new experimental informa-
tion has already stimulated some theoretical
progress. For example, the computer-generated
velocity autocorrelation function due to Rahman"
and Levesque and Verlet4 has led to the introduc-
tion of formalisms not based on solution of a kinet-
ic equation for the distribution function, and vari-
ous approximations to these formalisms. ' " Now
the velocity autocorrelation function provides an
excellent test of a transport theory. It is a rather
simple quantity to define, its power spectrum
possesses an uncomplicated structure, "and the
self-diffusion constant may be obtained from it in
the hydrodynamic limit. Analysis of the velocity
autocorrelation function is one aspect of the de-
scription of self-diffusion. It is also necessary to
describe the nature of the incoherent neutron scat-
tering, for which we need to calculate the inco-
herent scattering law S,(&, cu).

We shall analyze self-diffusion along previously
established lines. In particular, we shall follow
the theory of Akcasu, Corngold, and Duderstadt. "
Using the projection operator methods of Zwanzig"
and Mori, " these authors have obtained a classical
generalized Langevin equation (GLE) for the auto-
correlation function of the microscopic specific
s ingle-part icle phase-space density,

S' (x, P;t) =~[x-x (t)1~[p-5 (t)].

This single-particle operator gives the p. -space

probability density for the specific particle num-
bered o., where [x„(&),p„(t)] is the trajectory of
particle a. Since the trajectory of the particle
may be obtained from g„, it is clear that it con-
tains all of the information about the particle a.
Consequently, the autocorrelation function of g
is the most informative of all specific single-
particle time-correlation functions, in fact, all
other such specific single-particle time-correla-
tion functions may be obtained from (g„(t)g„(0)).

Formulation of the self-diffusion problem in
terms of calculation of (g„(t)g„(0)) offers great
advantages over past calculations of specific
"lower-order" autocorrelation functions, because
such reduced time-correlation functions satisfy
correspondingly reduced equations of motion from
which some details of the general dynamics are
omitted; these details are left explicit in the equa-
tions of motion for the single-particle phase-space
density g„.

The GLE obtained by Akcasu et al. [Eq. (2.14)]
introduces a damping matrix y, (k, p, p'; t); un-
fortunately only the initial value of y, is known

exactly. Low-density and weak-coupling perturba-
tion expansions of y, have been published, but
these are not useful for the case of dense gases
and liquids, e.g., argon near its triple point, to
which we address ourselves. In particular, the
time dependence of the damping matrix for a dense
fluid is not known. With the cautions previously
raised on this matter in mind, ' we do not believe
that the present status of the theory warrants
assumptions about this time dependence. To recti-
fy this situation we have derived a GLE for the
damping matrix itself, effecting in the process a
phase-space generalization of Mori's continued-
fraction hierarchy.

We review briefly the work of Akcasu, Corngold,
and Duderstadt in the next section. Following that
we present our work on the second GLE in Secs.
III-IX. Finally, we suggest a solution for the
velocity autocorrelation function based on the
simplest useful approximation to the second GLE.
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II. THE FIRST GENERALIZED LANGEVIN EQUATION

t t
+ d7 dp'y, , p';7 a ', t —7 =E, , t .

4 0

(2.1)

In Eq. (2.1) we have suppressed the I'-space de-
pendence of the dynamical variable, as we shall
continue to do consistently below. Equation (2.1)
is derived through the use of a projection operator
&„which is defined to project out the initial value
of the chosen variable, a(p) =a(p, t =0). It is also
necessary to define the inner product of two vari-
ables &(p, t) and c(p, t) by

(t)(p, t), c(p, t))= dI'b(p, t)c*(p, t)w(I'), (2.2)

where a)(i') is the canonical distribution and we

have allowed for complex dynamical variables.
Finally, we define an inverse (a(p), a(p')) ' for the
static correlation matrix (a(p), a(p')) as follows:

', dp" &a(p), a(p"))(a(p"), a(p')) -' = & (p —p').

(2.3)

With these definitions we are able to obtain
explicit representations for the remaining unde-
fined quantities in the GLE above: The first fre-
quency matrix 0, is given by

tn, (p, p') = fPp" (t«$), e$"))('$"),er)) '

(2.4)

the first generalized force & by

E(p, t) =e"" ~))~[(1-P, )iLa(p)],

and the first damping matrix y, by

(2.5)

p $P';t)= fpp'(p$, t), p$"))(o$"),o$')) ',

(2.8)

where L is the classical Liouville operator and

&(p) =&(p, t=o)

Suppose we are interested in a classical dy-
namical variable a(p, t; I') which is indexed by the
continuous vector variable p (as would be the case
for a microscopic phase-space density operator)
and which depends on the dynamics of a dense
many-body system. Akcasu and Duderstadt" have
pointed out that the GLE's of Mori may be extended
to this case to obtain the following exact equation
of motion for the variable a(p, t; I"):

a(p, t) —i ~fdp' Q, (p, p')a(p', t)

I'(p, p'; t) = &a(p, t), a(p')) . (2.8)

Taking the inner product of Eq. (2.1}with a(p"),
we obtain the first GLE:

"')- fd 'tt $, ')P$', ";t)

t
+ d~ dp'y, , p';« ', p";t-7 =0,

0

(2.9)

since by definition of P,

&Z (p, t), a(p"))=0 (2.10)

We now follow the development of Akcasu, Corn-
gold, and Duderstadt" who have chosen the dy-
namical variable to be

a(p, t) =Z.(k, p, t) —&g.(k, p, t)),
where g„(k, p, t) is the Fourier transform

(2.11)

( pp, ttt)= fdxe'" p (xp, t)*„, (2,12)

of the specific single-particle phase-space den-
sity defined in equation (1.1). We omit, occa-
sionally, the a and k dependence of the dynamical
variable for the sake of brevity.

Akcasu et al. demonstrate that the first fre-
quency matrix (2.4) for the above choice of vari-
able is

tel, (p, P) =(ik ply)~(p-p').
Thus the first Gl E (2.9}becomes

zk' p

(2.13)

dr dp'y, (k, p, p';r)I'(k, p', p";t —7)=0,
60

(2.14}

We also obtain an explicit formula for the action
of the first-projection operator P, on an arbitrary
phase-space function G(p), namely,

P, G(p) = J/di)" dp" (G(p), a(p"))(a(p"),a(p"')) 'a(p").

(2 7)

Nordholm' has pointed out that the static corre-
lation matrix (a(p), a(p')) may be singular for some
choices of dynamical variable, thereby preventing
one from solving equation (2.3}for the inverse
(a(p), a(p')) '. This does not occur for Akcasu's
choice of variable, but we shall encounter the
problem below.

Actually, we are interested only in time-de-
pendent autocorrelation functions and we define,
with Akcasu e~ al. ,



16SO BARRY F. McCOY 12

so that the frequency matrix contributes the free-
streaming term. The initial value of the first gen-
eralized force which results is given by

E, (p) = (1 P,-)tl,a$)

fleets a preference for the Mori-Zwanzig projec-
tion operator methods, which we believe afford
a distinct computational advantage over other
methods.

F . 6$ ) kk

Bpn
(2.15)

III. SECOND GENERALIZED LANGEVIN EQUATION

(&5),+.8'))=-&(&),- (,- + )MS)'h&-F),

where

{F.F.) =D(0) 1 (2.17)

and

while the static correlation matrix of this quantity
is

Having adopted the Mori-Zwanzig projection
operator approach, we now proceed to exploit the
formalism to obtain a GLE for the first damping
matrix (2.6). We see from the definition of the
first damping matrix that its time development
arises wholly from the presence of the first gen-
eralized force, E, (p, t) Th.us we proceed by de-
riving a GLE for the first generalized force; this
takes the form

M(p) = (P/21rm)~'e 8~2". (2.16) E, (p, t) —i dp' Q, (p, p') E, (p', t)

(p, (k, P, P'; t) =g(t)y, (k, p, p';t =0). (2.20)

Several workers" have pursued this idea, usual-
ly with exponential or Gaussian damping factors
g(t). It should be noted that a completely equiva-
lent development was given earlier by Lebowitz,
Percus, and Sykes,"who also presented a solution
for the model given above (2.20) for an arbitrary
function g(t}. Our use of the results derived by
Akcasu, Corngold, and Duderstadt merely re-

The result (2.16) is of fundamental significance to
the analysis presented in Sec. III. The occurrence
of the Fokker-Planck operator in (2.16) is remi-
niscent of the older kinetic theories of classical
liquids' and defines the dominant structure of the
present theory. The initial value of the first damp-
ing matrix may be obtained by the use of (2.16) and
is given by

w, (k, P, F;~=&)=-D(0),- (,-+ )'S-F).
(2.19)

Akcasu et al. close their article by discussing
the weak-coupling expansion and the low-density
expansion of the first damping matrix. They
demonstrate that the weak-coupling expansion re-
sults in a linear Fokker-Planck equation and they
suggest that the low-density expansion yields a
linear Boltzmann equation. The latter expectation
has been confirmed by the recent work of Mazen-
ko." Neither of these results is helpful in the
study of a dense gas or liquid. Akcasu et a~. con-
clude that the most useful technique in that case
is to model the damping matrix as a product of its
initial value and some decaying function of time,
z(t):

d dp'y, , p'; E, ', t — =E,

dp" &E $), E $")&{E,$"),E $')) ' =~(p —p') —~(p)

(3.2)

and we obtain an explicit formula for the second
p roj ection operator,

&,G 5) = )&P &i" (G 5), + $'))

x {E$') E (p"))-&E (p") (3.3)

The remaining undefined quaritities in the GLE
(3.1) are the following: the second frequency ma-
trix A2 given by

(3.1)

Equation (3.1) is derived by the use of a projection
operator P„which projects out the initial value of
the first generalized force E (p).

We must also define an inverse for the second
static correlation matrix {+(p), E (p')). At this
point we must deal with the singularity alluded to
above. Consider Eq. (2.16}for {E,(p), E, (p')). Now
M(p')6$ —p') contains a component which is an
eigenfunction of the Fokker-Planck operator with
vanishing eigenvalue. In a diagonal representation
in terms, say, of the eigenfunctions of the Fokker-
Planck operator, P;(p), E (p')) has a vanishing
component. Hence it is a singular matrix and its
inverse may not be defined as simply as Eq. (2.3).
This difficulty may be eliminated by simply re-
moving the component with vanishing eigenvalue.
The definition of the inverse which results from
this procedure is



APPROACH TO TRANSPORT THEORY USING GENERALIZED. . . i6Si

iQ, (p, p') = dp" (iI E (p), E $"))

x (E(p") E(p')) (3.4)

inverse static correlation matrix (E,$), E,$')) '.
Substitution of Eq. (2.16) for (E (p), E,$')) into the
definition of its inverse (3.2} results in the follow-
ing partial differential equation for the inverse:

the second generalized force & by

E,$, t) =e"&'-"&&'-'&&'[(1-I,)(1 -I,)iLE$)]; -&&0),- (,- + )M$)&)",&p), &&p')) '

and the second damping matrix by

(3.5) =6$-p')-i!f$).
(3.10)

V.$,p'; t) = dp" (E (p, t), E.(p"))

x (Ei(p"), E&$')) (3.6)

We are able to omit the troublesome component
of M(p')6(p- p'} for the following reason: The
appearance of the inverse matrix (E(p), E(p')) '
in the theory results from an implicit use of the
second projection operator P, given by Eq. (3.3).
The component omitted, in fact, makes no con-
tribution to the integral since

Equation (3.10) implies that the inverse is vir-
tually a Green's function for the Fokker-Planck
operator. One of the most convenient ways of
expressing the solution to such an equation is an
eigenfunction expansion. To progress further we
must digress to discuss the eigenfunctions of the
Fokker-Planck operator.

IV. EIGENFUNCTIONS OF THE FOKKER-PLANCK

OPERATOR

We identify the Fokker-Plaock operator:

dp'I E, ' =0. (3.7) Bp Bp SEE
(4.1)

Now by taking the inner product of the GLE (3.1)
with E, (p") and weighting the resulting equation
with (a(p"), a(p"')) ', we obtain a GLE for the first
damping matrix:

—„~,&&, ), )" )-) J~)')),&)', )')~,&), )', )";0
~t

dv dp' &I&', (k, p, p'; v))t), (k, p', p"; t —r) = 0,
dp

and its adjoint operator

FP ~ + (4.2)

and

Q/2m) (4.3)

and we define the dimensionless momentum vari-
able

(3.8} t'.&;$) =II.(4)II& (&,)II,(5,), (4 4)

where the inhomogeneous term vanishes because

(E~$, t), E, (p"))=0. (3.9)

We shall refer to Eq. (3.8) as the second GLE and
to Eqs. (2.9) and (2.14) as the first GLE.

It should be noted that although the two GLE's
could have been formulated by analogy with the
discrete-indexed continued-f raction hierarchy of
Mori, '2 we have actually derived these equations
to confirm the definitions involved. Our derivation
proceeds somewhat along the lines taken by Zwan-

zig,"but more specifically we have worked by
analogy with a discrete index derivation detailed
by Nordholm. " The detailed proof is straight-
forward, but lengthy, and we defer it to a separate
article.

We now prdeeed with the explicit development of
the second GLE for the given choice of dynamical
variable. We seek to calculate the second fre-
quency matrix and the initial value of the second
damping matrix. But first we must obtain the

where II„(()are Hermite polynomials. We adopt
the convention that any sum over these indices
below will cover the entire range of nonnegative
integers. Now t&„»(p) is an eigenfunction of the
adjoint operator (4.2),

LF'Pt'. &y$) = -(t!/m)(n+ l + j)t&.» $), (4.6)

just as

a. ;$)=i!I$)t.;$) (4.6)

is an eigenfunction of the Fokker-Planck operator
(4.1),

L»a„, .(p) =-(P/m)(n ~ l+ j)a„»$). (4. t)

Now define two renormalized sets of eigenfunc-
tions by

b.&g$) =( !l! !2""")''t&. »$),
a„,~(p) =(n! l!j!2""")'a„»(p).

(4.8)

Equations (4.8}provide two biorthonormal sets of
eigenfunctions which have the following orthogonal-
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ity relations:

dna. rj(p)tr. r g (p)=6: ~» &rr,

I"(k, P, P";t)= Z G."i~"(k, } r.-(P"}.rj(P},
nl jjhm

(5.1)

dpa. r, (p)&. r; (p}=6..6rr ~a .
(4.9) where the expansion coefficients may be obtained

from the orthogonality relation (4.9):

We may now obtain useful representations of vari-
ous quantities of interest. We find that

G!r& (k, t) = dPdIT" tr. r(P)t r..(P"}I'(k,P, P"; t).

~(p)~(p -p') =pa.»(p')a. »(p). (4.10)
(5.2)

nlj

The second static correlation matrix becomes

&Z (p), Z (p')}= Q(n+ t+ j)a„„.(p')a„„(p).
nlj

(4.11)

Note that the matrix is singular since the first
term vanishes. Equation (3.10) for the inverse
avoids this difficulty, and we obtain the following
solution for the inverse:

We may also think of these coefficients as momen-
tum moments of the autocorrelation function and the
first GLE to follow as a recurrence relation be-
tween these moments.

Similarly, we assume an eigenfunction expansion
for the first damping matrix of the form

err, (k, p, p"; t) = p SR „'"„(k,t)F),.„(p")a„„.(p},
nljih m

(5.3)

where

p ( ) ~@I})-r P ( no to Jo)1 —&

PD (0) „, n + l +j
X tr„r, (p')tr „„(p.), (4.12 r

m„"„' ' (ic t)= fdpdp r„„.(p)a"„..., (p")p, (ic, p, p";t)

(5.4)

while for the initial value of the first damping ma-
trix we find

q, (k, p p' t =0) = (n+l ~ j)~D(0)
nlj

From our previous calculation of the initial value
of the first damping matrix (4.13) we obtain the
initial value of the coefficient matrix above:

II"„Iq ' (k, t =0) =[)6D(0)/m](n+l+j) „5„, „5,' ,6, ,

».r;(p')a. »(p). (4.13} (5.5)

We will now use eigenfunction expansions to con-
vert the complicated GLE's to matrix equations and
to facilitate the solution of these equations.

V. REDUCTION OF THE FIRST GENERALIZED LANGEVIN

EQUATION TO A MATRIX EQUATION

In this section we reduce the first GLE (2.14)
to a matrix equation relating the various eigen-
function expansion coefficients. We assume that the
autocorrelation function possesses an eigenfunction
expansion of the following type:

Now we choose the orientation of the Cartesian
coordinate system in which we have expressed the
eigenfunctions so that the wave number & lies along
the x axis. We also take note of the recurrence
formula

P„a„„.(p) = (2m/P)"[aa„+r „.(p)+na„, „(p)].
(5.6)

Using (5.6), it is a straightforward task to take
matrix elements of the first GLE (2.14) to obtain
the matrix form

1/2

, G"„'„".~'(k, t)- te "'G„" 'r, ', ;(k, t)+(n+l)G"„r,rrj(k, t) + Q dwSR„"„(k,v)G;"»' ~ (k, t —v)=0.n-1, lg
jhm p

(5.7}

We observe that the momentum moment of the
autocorrelation function is coupled to one higher
and one lower moment through the first frequency
matrix and possibly to all other moments through
the first damping matrix. Since the initial value

(5.5) is diagonal the coupling occurs only through
the frequency matrix at short times, but progress-
es to higher-order couplings with increasing time.
This view is confirmed by our solution for the first
damping matrix below.
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VI. SECOND FREQUENCY MATRIX AND THE REDUCTION
OF SECOND GENERALIZED LANGEVIN EQUATION

TO MATRIX FORM

a/2

iQ, (p, p') = i k — Q (1 —&„p&tp& jp)b„t j(p')
mP n).

First we turn our attention to the calculation of
the second frequency matrix. We obtain, quite
readily, the result

(i I.F, (p), F, (p" ))

=-D(o) - M(p} - 6(p-P") .8 ik p 8

Bp m Bp

(6.1)

Use of (6.1) reveals that the frequency matrix
may be expressed as

n()t+1+ j —1)x —,a„, .u(»)+ )
. a„, ,g(t))n+ +2

(6.4}

We now employ (6.4) to realize a matrix formu-
lation of the second GLE. First we assume an
eigenfunction expansion for the second damping
matrix of the form

y, (k, P, P'; ~) = 2 &.lj (k, i)&;k (P')(t lj(p),
nl jibe

(6.5)

iQ, (P, P') =-D(0) M(p)
Bp m 9p

"&F (P), F (P')& ' (6.2)

where

t". ''(» ')= Jt»tt"';(»)';;(t")(,(»tt";)), ,

which, with the aid of the recurrence relation

f. , (p) =~(2P/m)"b. -, , ;(p), (6.3)

Eqs. (5.6} and (4.12), may be expressed as the
e igenfunction expansion

(6.6)

Taking the appropriate matrix elements of the
second GLE (3.8) with Eq. (6.4) for the second fre-
quency matrix, we obtain a matrix version of the
second GLE.

"„»"»"(t»)—i»( "' (( —il„, ll„ll,,)»»„"' ' (», t) ' " . ' SIP (»t)' ',
t

+Q d78„'"tj(k, T)5R"t„' ' (k, & —&) =0.
(6.7)

Now the matrix elements of the second damping ma~
trix contain all of the difficulties of the many-bo'dy
problem. Formally, the second damping matrix
is more complicated than the first damping matrix,
because while the first damping matrix evolves in
time with the orthogonal Liouville operator
(1 —&,)L, the second damping matrix evolves with
the doubly orthogonal operator (1-P,)(1 -P, )L.
Additionally, as we shall see, the initial values of
the two damping matrices have about the same
ratio of complexity; the initial value of the second
damping matrix presents us with a. great deal of
structure. Our hope is that, in fact, the resulting
time dependence is simplified by the additional
formalism and by the removal of significant struc-
ture in the two calculated frequency matrices and
initial values of the two damping matrices.

S,(k, (p) = d t e- t t( &(i»)k R (t ) et k' R (p) q

(7.1)

Equation (7.1) can be expressed in terms of & in
the following manner:

S,(k, (p) = 1
dt e ' ' dp dp" I' k, p, p"; t .

(7.2)

However, use of Eq. (5.2} simplifies this result
to the form

It was demonstrated by Van Hove'4 that the inco-
herent inelastic neutron scattering could be in-
terpreted in terms of the incoherent scattering law
which is defined by

VII. MATRIX FORM OF THE PHYSICAL VARiABLES

Now that we have obtained a matrix representa-
tion of the two GLE's it is desirable to find matrix
expressions for the quantities of physical interest.

S,(k, (P) = (1/2)))GPpPpPp(k, (P),

where

Gnl j (k (d) J( di e-( at Gnlg (k i)

(7.3)

(7.4)
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(p, (t) p,)=lim [G'„",(k, t)+G,' (k, t)+P ,'(k, t)].
a-0 &

(7.6)

Finally, we may derive an expression for the
self-diffusion constant by the use of the Green-
Kubo2" ~ formula,

D=' dtpt p (7.7)

Substitution of the matrix representation (7.6) into
this last expression (V. 7) yields the following re-
sult for the self-diffusion constant:

D = dt lim Gi~p k, t + Gpip k, t
6mP „„

+G',"]k,t)]), (7.8)

which becomes, by use of the Fourier transform
(V.4),

Now we focus attention on the momentum auto-
correlation function. We obtain the following re-
sult:

(P (t)'P)=»m dpdP" P'P" 1'(k, P, P";t) (7 6)
k~p

[where p, -=p, (0)], which reduces to the matrix
form

(7.6), and (7.9)] which connect our matrix versions
of the self-correlation function I' with measurable
physical quantities. Note that physically interest-
ing quantities are determined by the first two mo-
mentum moments, relating to the density and
velocity current, a fact which is known from hy-
drodynamics. The present formulation differs
from hydrodynamics in that instead of closing off
the hierarchy with the energy density term, the
third momentum moment, we shall attempt an
approximate solution of the GLE which relates all
of the moments, thus taking into account all higher
moments at least approximately.

VIII. INITIAL VALUE OF THE SECOND DAMPING MATRIX

As was pointed out, the initial value of the first
damping matrix has played a central role in pre-
vious models of the first GLE. In the same man-
ner, we expect that the initial value of the second
damping matrix will play an essential role in any
reasonable model of the second GLE. The calcula-
tion of this initial value proves to be of excessive
length and unenlightening detail; hence only a sur-
vey of the derivation will be given here.

From the definition of the second damping ma-
trix (3.6) we obtain for the initial value

D = lim lim [G',000(k, [))}+G",0(k, ~)
(d~p k ~p ™ 9) (k, P, P'; t =0) =

Jl
dP" (F,$),F (p"))

x(F (p"), F (p')& '. (8.1)
+G„,'(k, &u}]. (7.8)

Thus we have obtained three relations [(7.3),
Now, the &-dependent terms may be calculated
most easily, and we find that

)a, @,i, F;~=a)-a.(a=0, i, P;a=0)= Z() —a.,i),i);,)).„(F).„$) ) . — '
).nip n+ + n+ +j+

(8.2)

It is the &-independent terms which are the most difficult to calculate, since these all involve complicated
configurational averages of the fourth order in the force. After a lengthy calculation, one obtains the
following result for the initial value:

p, (k, p, p"; t =0) =Q(1 —b„ob,obgo)b„iy(p")

x a„, (p) I' ~ +I;(n+1+j)+&, n(n —1)+l(l —1)+j (j —1)
mP n+l+ j

k2 n(n+l+j —1) (n+1)(n+1+j) t

mp n+l+ j n+l+ j+1

+5 . [n(n —1)a„,~(p)il(l —1)a„, »(p)+j (j —1)a„»,(p)]
[13—6(n+ l + j)]

n+l+ j
—-',[a„,agi)+a„„,, g) a„. ..,(p)])

n(n-1}[a„,+ z(p)+a„, , z+~(p}] l(l+-1)[a„+22,.(p)+a„, ,&+2(p)n+l+ j
a [a —) )[a„.. . , ][i)+a„„,,(p)]), (8.3)
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where

I'0=(c2 —2c, +c4 —2c, )/mpD(0), (s.4)
I; = (3c, +3c +2c,}/mjlD(p) - pg(p)/m,

I; =(3c, +c,)/m]3D(0), (8.6)

Z, =c,/mpD(0), (8.7)
and the c's are defined by the following configura-
tional averages:

((6,'a,'&,')E,"}=c,( 6, 26,„+6(2&,„+6,„6,.R), (8.8)

&(s,'&)(8,'&,")&=,(6. 6.+6..6 )+ .6,'6. , (8 9)

where the indices refer to the Cartesian axes.
This simplification is a direct result of the use of
spherically symmetric interparticle potentials
which we have assumed. It is convenient to define
those parts of c, and c4 above which result from
pair correlations alone. Neglecting the triplet
correlations in the last result (8.9), we define

Jones potential. In the latter case we make the
integrals dimensionless by the change of variable

R =rg.

Then

(9.3)

R(D) =(4wm/2) I dRg(R)[R d(R)+ ', R K(R—)] (2.4)

=(2224ev/2) J d~g(~v)(22/~"- 5/r')

(9.6)

where «R) is the pair-correlation function, and

c, = I dgg(R'I[R K(R)+ ', R L(R)+—,
'—, R M(R)]

0

(9.6}

128one " 1001 Ip

and

(N-1)((8,'E,', )(8,'E,",))=c,(&„,6„+6„,&, )

+c,&;n&s.

Co ——C3 +4C4.

(8.10)

(8.11}

The calculation of the triplet-correlations contribu-
tion to c, and c4 is a difficult problem. For the
numerical calculations we have neglected these
triplet correlations hoping that the pair correla-
tions dominate (this implies that the results of the
calculation are best applied to dense gases):

Comparing the result (8.3}for the initial value
of the second damping matrix with the expansion
for the initial value of the first damping matrix
(4.13), we see that there is a great deal more in-
formation contained in Eq. (8.3}. It may be demon-
strated that our knowledge of the two frequency
matrices iO„and iO„and the initial values of
the two damping matrices y, (t =0) and y2(& =0)
is equivalent to the first four sum rules on the
original autocorrelation function I'(k, p, p'; &).

IX. EQUILIBRIUM CORRELATIONS

Cs —C3~ C4 C4~ (9.s}

c,=4' dRg R

X [RRJ (R) + RRJ(R)K(R) +—, RRK(R}]—
(9 9)

768en~' "
284 68

0

(9.10}

1 dV 1 dJ
dR ' R dR '

1 dK 1 dL
L(R) R dR, M(R) R dR '

(9.1)

At this point we shall give the explicit results
for the equilibrium correlations defined above.
First we introduce the radial derivatives

c4= — dRReg R R
0

12228nn~' ~" 49 28 4
J d~«~&) y26 y20+ ~14

0

(9.11)

V(R}=4et(g/R}'2 —(c/R)2],

with a'=3.40 A and c/& =120'. In the remainder of
this section we shall express the results first for
a general potential V(R) using the definitions (9.1).
Second, we give explicit results for the Lennard-

(9.2)

where V(R) is the assumed pair potential. In our
application to liquid argon we shall take V(R) to be
the Lennard-Jones (6-12) potential,

(9.12)

and co is given in Sec. VIII. The fact that the con-
figurational correlations may be reduced by par-
tial integration to terms dependent only on the
triplet- and pair-correlation function results from
the fortuitous fact that we are generally calculating
correlations of the total force on a single particle.
The reduction occurs because of a property of the
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canonical distribution function,

V, e —PF e (9.13)

The correlations above still contain information
about the simultaneous interaction of five particles
just as the mean-square force D(0) pertains to the
interaction of three particles.

X. FIRST APPROXIMATION TO THE SECOND
GENERALIZED LANGEVIN EQUATION

The only information which we have relating to
the second damping matrix is its initial value. In
order to avoid making further assumptions about
the time dependence of the second damping matrix
we shall approximate the entire convolution term
in the second GI E as

t
dvtl„"„(k, r)K'",,' ' (k, t —~)-t8„'",j (k, 0)SR";„' ' (k, ). (10.1)

This is correct at small times and it decays to zero at long times because of the Gaussian-like behavior it
induces on the first damping matrix. Use of equation (10.1) yields an approximate second GLE of the form

n(n-1)+ t(t —()+j(j—1) tt' n(n t j —1) (n ))(n+)+ j))~ +nil y j my n~l+ j n+l+ j+1

-t&, . [(n+1)(n+2)K"„,', '„(k, t)+(1+1)(l+2)SR"„'„',,(k, t)+(j+1)(j+2) K„",', j(2k, t}]
nial+ j g2

+-', [}lt"„','„.(it, tl+SR„" ', ', ;(it, t) ~It'„', ',:,(k, t}))

+l I2 l gal+2 l 2 g kP ~ +g+2 l g 2 k~ ~ +
l

~ ~Kg 2 l+2 g kP +5K' l+2 g 2 kPn~l ~ j fr+2 l-2 J x ++2, l, j-2 nglyj

where we have made the convention that

K„",j ' (k, t) =0 if n =l = j =0, or any n, l, p is negative.

[stt""'' ( t) ttt""",(, t)[) =0,
+ + j

(10.2)

(10.3)

&& gt['N""'(k ij]
@=0

(10.4)

The first coefficient in this expansion is the ini-
tial value obtained previously, namely (5.5). The
second coefficient is

[k 1]=ok
mP m

x [~ (n y l i j —1)6„„t6(,t6 j
~(n+1)(n+l+j)&„, „t&„.5j ].

(10.5}

Equation (10.3) is a trivial result of the assump-
tion (10.1). Its use as a convention allows many
cumbersome Kronecker deltas to be omitted and
the "simplified" equation (10.2} results. The first
condition, that SROOO

' (k, f) = 0, is important be-
cause it ensures particle-number conservation at
all times.

We then obtain a solution of the following form:

k2K" ' (k &) = exp ——1' +nlj t 2 0 ~P

Higher-order coefficients become exceedingly
complicated and we shall not present expressions
for them although several have been used in the
calculations below. All of the odd order terms
N[k, 2n+1] 'are proportional to a power of k. Thus,
the & = 0 limit makes the theory much more tracti-
ble and we work in that limit below. This restricts
us to a discussion of the velocity autocorrelation
function. The k =0 limit of the first GLE (5.7) is
clearly given by

t
G„"I; ' (0, t) +Q d&SR„'"„"(0,&)G";),„' j (0, t —v) =0.

fhm 0

(10.6}

Now we have a solution for Eq. (10.4) of which
we have calculated the k =0 limit through N[0, 4],
the third nonvanishing term. The analytical re-
sults for N[0, 2] and N[0, 4] are quite complicated
and we have had to resort to a perturbation solu-
tion of the first GLE (10.6), treating N[0, 2] and
N[0, 4] as perturbations on N[0, 0] [the initial
value (5.5)].

We shall be solving for the momentum autocor-
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relation function which can be written The zeroth-order solution is

where

(10.7)

G(0, t) =G~M(0, t)+GO~0(0, t)+Goo~(0, t). (10.6)

6m', ((u)

PD(0)(&o(~)+IB,(&) ™&IPD(0)]']'

(10.11)

G(0, (u) =
Jj dt e ' ' G(0, t), (10.9)

G(0, (u) = G[0, (u; 0] + G[0, &u; 2] + G[0, (u; 4]+ ' ' ' .
(10.10)

In fact, we actually present a perturbation series
for the Fourier transform:

where

a (e)=J ate '
. ~'cosvt,

0

B,(&u)= dte ' 0~'sin&A,
0

and the second-order solution is

(10.12)

l

3m&, A, (&)Q'„(v) —[B,(v) —m&/(0)] ]' 6m', B,(a&)A (e)[B,(&u) —m&u/pD(0)]

&(0) ]&'.(&)+[B.(&)™/»(0)]']' PD(0) ]&'.(~)+[B.(~)- m~/%(0)]']' ' (10.13)

where

A, ((a) = J d t t e ' "~ cos et. ,
0

B,((u)= t dtt e '
o stunt.

Jo

(10.14)

G(0, (u)

6mP
(10.15)

which leads, after application of the perturbation
series above (10.10), to the form

Because of its length we shall not detail the fourth-
order term G[0, ~; 4], but we have used it in the
calculations and given its hydrodynamic limit be-
low.

We observe that the self-diffusion constant D
is given by

region in the velocity autocorrelation function of
several molecular dynamics (MD) calculations.
The results of the present theory are to be com-
pared to the MD results.

Heretofore, the most successful model has been
a simple Gaussian approximation for the first
damping matrix. In fact, our first term in Eq.
(10.10), G[0, &u;0], is equivalent to a Gaussian ap-
proximation. When the Gaussian approximation
is compared with MD results, it is found (Fig. 1)
that the minimum of the velocity autocorrelation
function invariably sinks too low in the negative
region; the velocity autocorrelation function is
also predicted to possess a negative region for
densities lower than the liquid density, whereas

j./2

P'D(0) v
' (2a;)»

(1,'+ 30Z,')
(32vF3)1/2 (10.16)

co 8

.6

XI. RESULTS AND CONCLUSIONS

The numerical results that we have obtained
from the approximate solution presented in Sec. X
depend quite heavily on our ability to calculate the
equilibrium-correlation constants introduced in
Sec. VIII. Our calculations have been carried out
with the numerical-pair-correlation functions of
Verlet27 for nine sets of data (three distinct den-
sities ts =1.65, 1.91,2.16X10 cm, and three
different temperatures) although we present graph-
ical results at only the highest density and, usual-
ly, at T =86.3 K. The latter condition is of par-
ticular interest since it corresponds most closely
to the conditions of recent neutron-scattering ex-
periments and to conditions leading to a negative

C)

C)

C)

~2

0
CO

CLP)
—.2

0 .2 .4 .6
Time (10' sec)

.8

FIG. 1. Normalized-velocity autocorrelation function
versus time at density n=2. 16 x10 cm and tempera-
ture T = 86.3 'K. The curve labeled I is the Gaussian ap-
proximation while II and III represent the second and
third approximations, respectively.
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the MD curves no longer contain a negative region.
Additionally, the Gaussian-model autocorrelation
function oscillates between positive and negative
values, unlike the MD results.

Our second approximation, which contains the
first perturbation (G[0, &u; 2] in Erl. (10.10)]. in
addition to the Gaussian, is much more like the
MD results except that the predicted curve seems
to be even less oscillatory than the MD. The third
approximation, resulting from the inclusion of the
third nonvanishing term G[0, &u;4] invariably seems
more like the Gaussian approximation than it does
the second approximation. It does improve on the
Gaussian approximation in that the minima do not
go as far negative; however, there remain strong
oscillations.

Disregarding their depth, the locations in time
of the minima in all three approximations coincide
quite closely with the MD. The results also have
qualitatively the correct temperature and density
dependence; the velocity autocorrelation functions
for higher densities and higher temperatures decay
faster than those for lower values and the minima
move upward with increased temperature at con-
stant density. These temperature effects may be
observed in Fig. 2, which is based on our third
approximation.

Now consider the Fourier transform of the veloc-
ity autocorrelation function, the power spectrum
given in Fig. 3. Like past theories, the first ap-
proximation contains the "shoulder" of Rahman's
spectrum at about 8X10r2 sec-i In Rahman
suits this "shoulder" occurs on the tail of the

.8

.6

~8

E .6

L

o .2
CL

.5 l.5

Frequency (10' sec'}

FIG. 3. Power spectrum of the normalized-velocity
autocorrelation function versus frequency in all three
approximations at density n=2. 16 x 10 cm and tem-
perature 1'=86.3 K.

dominant peak at (2.5 - 8) X 10" sec '. Our results
do not display this dominant peak, though the sec-
ond approximation does suggest its presence. If
this peak were present the perturbation solution
we obtain would cause it to buiM up quite slowly
as successive perturbation terms are added. It is
clear that our spectrum [(10.11) and (10.13)] con-
tains only the single-resonance denominator of the
original approximation. Our results are incon-
clusive so far as this major peak is concerned,
because of the slow convergence of the perturba-
tion expansion.

The results of the three approximations for the
self-diffusion constant are shown in Fig. 4 for the
highest density. The MD calculations of Levesque
and Verlet" lie predominantly between our first
and third approximation. Levesque and Verlet
find empirically that at constant density the self-
diffusion constant is essentially linear in the tem-

C)

4
CD

CO

D .2
C3

O

C)
CD)

.2 .4 .6 .8
Yime (10 sec}

FIG. 2. Normalized-velocity autocorrelation function
versus time at constant density, n=2. 16x10 cm 3, for
three different temperatures: T& ——86.3 'K, F2=105.6 K,
T3 =152.7'K. All three curves are calculated in the third
approximation.

3.6—

CD

Ig
~ 2.4—

I52.7 K

i.s- t

86.5'K
/

105.6 K 129 K

9I.2'K
Temperature

FIG. 4. Self-diffusion constant as a function of tem-
perature at fixed density n=2. 16 x1022 cm 3. The dots
are our theoretical results while the crosses represent
molecular dynamics results of Levesque and Verlet (Ref. 4).
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perature. We have checked this result with our
calculations at the three densities and to each
order of perturbation theory separately. In each
case the temperature dependence is quite linear,
as is demonstrated in Fig. 4 for the highest den-
sity. This is remarkable considering the non-
linear combination of equilibrium constants (10.16}
given for the self-diffusion constant and the long
numerical calculation of these constants. Note
that the slope of the second approximation is in

good agreement with the MD while they differ by
an additive temperature- independent constant.

There are several directions in which this theory
could be improved. First, a reasonable model
for the time decay of the second damping matrix
is needed to replace the approximation (10.1}.
Second, great care must be taken in solving the
GLE's resulting from such an approximation to
the second damping matrix in order to allow the
dominant structure of the power spectrum to be
observed. The power-series solution used in this
work is instructive; but converges far too slowly

to make unambiguous numerical predictions. At
this second stage of development we believe that
models of the time dependence are warranted and

we agree with Akcasu, Corngold, and Duderstadt
that simple models of the time dependence offer
the best hope of making progress on the general
problem. The time dependence is generally known

through the molecular dynamics results of Rah-
man, Levesque, and Verlet, and useful models
should not be difficult to construct.
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