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In this paper a general perturbation method is developed for a kinetical analysis of the role and the
influence of collisions on the nonlinear effects occurring in weakly or partially ionized gaseous media.
The nature of the collision operators leads to an expansion of the electron distribution function in a
basis of irreducible Cartesian tensors and to the study of the coupled differential system thus estab-
lished. It is shown that this system, coupled with Maxwell’s equations, can be uncoupled only in
weakly dissipative media, where multiple time and space scales can be defined and where the distri-
bution function as well as the electric field can be expanded as a function of a suitably chosen small
parameter. The procedure is applied to different physical situations characterized by the order of mag-
nitude of the collisional parameters. It is shown that three cases may be distinguished: collisional,
weakly collisional, and an intermediate case. In each of these cases, the propagation of a single wave
(longitudinal or transverse) is studied and it is shown how these techniques allow one to determine the
orders of magnitude of various nonlinear effects (such as collisional heating and generation of har-
monics) as well as'the time or space scales at which they occur. Finally, there is a brief discussion of
other applications and extensions of the method (such as the influence of a plasma inhomogeneity, the
role of the Coulomb collisions, the coupling of several waves, and the low-frequency approximation).

I. INTRODUCTION

In this paper, a method of kinetic analysis is
proposed for various nonlinear effects linked with
the propagation of electromagnetic waves in colli-
sional plasmas, weakly or partially ionized. Be-
side purely theoretical considerations, the inter-
est of such a method lies also in a synthesis of the
many papers of these latest years devoted to the
study of the nonlinear behavior of different plas-
mas in which collisions may not be neglected,
whether being predominant in the analyzed phe-
nomenon or perturbing it notably.

In the first case—collision-dominated plasma—
the dielectric properties of the medium are modi-
fied by the dissipation of the electromagnetic
waves. Then, collisional terms appear from the
linear approximation and the nonlinear phenomena
are caused by a plasma heating due to the energy
drawn from the electric field by the electrons
through collisions. There have been many exper-
imental and theoretical works devoted to the anal-
ysis of harmonic generation and nonlinear mixing
of frequencies in collisional plasmas weakly or
partially ionized,*™*? in addition to those dealing
with the study of nonlinearities in semiconductors
and gaseous discharges.’?

In the second case—weakly collisional plasmas—
the rise of nonlinear effects (coupling of modes,
etc.) is not due to dissipative processes; but these
can greatly perturb the studied phenomena, al-
though they can be neglected in the linear approx-
imation. This is the case, for example, in the
resonant three-wave interaction: here, the non-
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linear coupling is due to the Lorentz force, but
the importance of dissipative effects has been
made evident and discussed in different works,
especially for the stabilization of media where cer-
tain (explosive) instabilities grow in the absence
of collisions; on the other hand, another type of
coupling may also be expected.'®*** Likewise,
the influence of Coulomb collisions on the be-
havior of a turbulent plasma cannot be neglected
and may give rise to appreciable changes in the
turbulent spectra.?®

As is well known, a phenomenological descrip-
tion of the collisions is insufficient to account in
detail for these various phenomena, so that we
are led to do a kinetic analysis. So, we have to
solve the coupled system of Maxwell’s equations
and kinetic equations in which occur cumbersome
collisional operators. On account of the great
complexity of this problem, we can only obtain
approximate solutions which must be adapted to
each particular problem. But, as there is a large
diversity of possible physical situations, the var-
ious corresponding approximations ought to be
founded upon a general perturbation theory in
which the expansion parameters are made evident.

In the present paper, such a method is proposed
for weakly or partially ionized media with colli-
sional operators of imperfectly Lorentzian®"?? or
Fokker-Planck®® types. On account of the proper-
ties of these operators, we are led to expand the
electronic distribution function f, according to the
well-suited basis of irreducible Cartesian tensors
of the velocity space P, We obtain thus for the
9 instead of the kinetic equation, an infinite sys-
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tem of equations which is itself coupled to the
Maxwell’s equations.

In Sec. II, we give these general equations, point
out the physical parameters, and discuss their
ordering.

Then, generalizing the results of previous
works,?!? we seek solutions of this system by ex-
panding the electric field and the electronic dis-
tribution function according to the powers of a
small parameter characterizing the nonlinearity
of the medium. As the utilization of such expan-
sions makes secularities appear in the successive
approximations, we are led to use the “multiple
time and space scales method” of Krylov-Bogo-
lioubov-Frieman and Sandri,?*"?" by introducing
time and space scales associated with the powers
of the selected small parameter. It can then be
shown that one has to distinguish different kinds
of behavior of the plasma according to the values
of the ratio 7/w. We so define the socalled colli-
sional (¥/w= 1) and weakly collisional (V/w = €2)
cases, for which we analyze, in Sec. III, the ini-
tial-value and boundary-value problems. We thus
see that explicit solutions can be obtained in the
stationary case, only if we assume the medium
weakly dissipative, a notion which is introduced
in Sec. IIIC. In Secs. IV and V, we apply our gen-
eral perturbation techniques to particular cases
for which simplified expansions can be used, and
we give the essential results so obtained for lon-
gitudinal and transverse waves. Finally, we dis-
cuss in Sec. VI the various possible extensions
and applications as well as the domain of validity
of these methods.

Thus we obtain a coherent and systematic pro-
cedure for the analysis of various collisional me-
dia which includes, as particular cases, all the
approximations proposed in other papers for spe-
cial problems. This technique allows one to de-
termine accurately the order of magnitude of each
term and to obtain exact kinetic expressions for
the nonlinear effects of successive orders, as
well as the time and space scales at which they
occur. We are thus able to discuss thoroughly the
role played by the collisions in various types of
weakly dissipative media.

In view of the lengthly algebra involved by these
techniques, this paper is only devoted to the analy-
sis of the basic formulas of our theoretical method
for a simple model (an initially homogeneous and
isotropic plasma in the absence of waves), while
the various particular applications—some of them
are quoted in Secs. IVA, IVB1, and VI—will be
the object of further publications. Nevertheless,
in order to make clearer the purposes of this pa-
per, we wish to emphasize now several significant
results:

(a) In the stationary case, our method allows
one to uncouple the field and the kinetic equations
at zero order and to obtain the equations verified
by the isotropic part of the electronic distribution
function, FQ, in which is taken into account the
reaction (thermoeffect) of the waves crossing the
plasma [see, for instance, Eqgs. (4.3) and (4.11)].
These equations, which were never obtained be-
fore, to my knowledge, are essential for deter-
mining exactly the state of the plasma, because
all the successive approximations are expressed
in terms of FQ. We see thus that FQ becomes in-
homogeneous under the effect of the wave (depen-
dence on X, in our examples) and that we can so
determine the longitudinal stationary field &g, in-
duced by this inhomogeneity (see Secs. IVA and
IVB2).

(b) We can then calculate, in the stationary case,
the complete expression of the electric field at
second (and higher) order. We so obtain different
expressions for collisional and weakly collisional
media [see Eq. (4.5) and the results quoted in
Secs. IVA and IVB2], which one allow to describe
nonlinear effects such as the generation of har-
monics and mixing of frequencies for several
transverse waves interacting through the plasma.

(c) In the weakly collisional case and for an ini-
tial-value problem for instance, we can also cal-
culate the higher-order approximations (€* order)
of the electric field for the three-wave resonant
coupling. It is thus possible to obtain exact Kkinet-
ic formulas for the various collisional contribu-
tions to the so-called third-order terms; we are
thus able to analyze the role played by the colli-
sions in stabilizing processes of explosively un-
stable media (Sec. IVB1).

(d) Finally, we see that our method is well
adapted to describe the different behaviors of the
medium according to the order of magnitude of
the collisional parameter 7/w. [Note for instance
the difference between Eqs. (4.3) and (4.11).] Be-
side the collisional (7/w= 1) and weakly collision-
al (7/w= €?) cases studied in Sec. IV, we are thus
led to discuss in Sec. V, as an example, an inter-
mediary situation (with 7/w = €) for which we ob-
tain new formulas for the various phase shifts
[see Eq. (5.4)].

II. GENERAL EQUATIONS

Here plasmas weakly or partially ionized are
studied such that we can restrict ourselves to con-
sider the kinetic equation for the electrons only.
(The conditions under which this is realized are
discussed in the Appendix.) It is also assumed
that this plasma contains wave phenomena char-
acterized by a frequency and a wavelength, whose
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order of magnitude is w and A, respectively.
Under these conditions, the evolution of such a
plasma and of the electromagnetic fields propagat-
ing in it depends essentially on the following char-
acteristic quantities: the time scale £,=1/w and
the length scale A, associated with the regarded
periodic phenomenon, the thermal velocity of the
electrons in the plasma at rest 7= (3kT/m,)"/?,
the electronic gyrofrequency wg, associated to the
external magnetic field B, if any, and finally the
order of magnitude E, of the electricfield in the plas-
ma. As we are interested in perturbation methods,
we define with these quantities reduced variables by
T=wt, X=F/x,, W=V/3, F,=f,7°, 1)
¢=E/E,=T/T, (with T=eE/m,),

where F,(W,X,7) is the reduced electronic distri-
bution function and €(X, 7) the reduced electric
field in the plasma.

With these definitions, the electronic Kinetic
equation takes the form

oF . . Wyoa) =
€4y V2. N F, + a2V F, + (fxw) -V, Fe

aT
1 (oF,
== (e 2.2
(U< o7 )coll. ’ ( )

where we have put @, =@, +@,, @, being the elec-
tronic gyrofrequency associated with the magnetic
field of the wave. As in previous works,?! we have
introduced in the left-hand side of (2.2) the two di-
mensionless parameters o’ and n’ defined by

a@'V2 =T /Pw, n'Y2=7/Aw. (2.3)

It will be seen that they characterize the nonlinear
behavior of the medium, «’ being linked to the ef-
fects due to the electric field intensity, and n’ to
the inhomogeneity produced by the wave propagat-
ing through the plasma. The physical meaning of
these two parameters has been discussed in detail
in Ref. 21a, in which we had also introduced the
parameters o =I'2/7%9® and n =7°/A2V%, where ¥
characterizes in fact the order of magnitude of
electron-neutral collision frequency (see the Ap-
pendix). We remind the reader only that o’ (or «)
is equal to the square of the ratio of the electronic
velocity increase due to the electric field during a
period (or a mean free path), to the thermal veloc-
ity of the electrons with the temperature T (of neu-
trals); likewise n’ (or n) is equal to the square of
the ratio of the mean path during a period (or of
the mean free path [=7/7) of the electron, to the
inhomogeneity length A,.

On the right-hand side of (2.2) is the collisional
operator which is generally made up of two terms.
The first is an imperfectly Lorentzian operator
describing the electron-neutral (e-») interactions

in which occur two characteristic times: a time

of mean free path, t,~1/7, associated with the
momentum transfer (or with the transfer of higher-
order anisotropies) and a relaxation time, ¢,~1/
o7, relative to the energy transfer between elec-
trons and the heavy component (with 6 =2m/M,

M being the mass of heavy particles); for more
precise definitions, see Appendix formulas (A2)
and (A3).

The second is a Fokker-Planck type operator
which describes the Coulomb interactions between
charged particles, including the electron-ion (e-)
and electron-electron (e-e) collisions: For the
situations studied in this paper, the exact opera-
tors can be replaced by the simplified expressions
(A11) and (A12) of the Appendix. By these formu-
las, it is seen that a Coulomb characteristic
time ¢, ~7°/NY occurs, and that the relative im-
portance of Coulomb collisions with respect to
e-n collisions is determined by the dimensionless
parameter NY/7°7.

The meanings of the different terms of the kinet-
ic equation (2.2) being thus specified, we have the
following remarks:

(a) It is seen that this equation depends on four
characteristic times, viz.: ¢, associated with the
period of the wave, the two characteristic times
t, and ¢, which occur in the imperfectly Lorentzian
term and the Coulomb characteristic time ¢,
which proceeds from the Fokker-Planck terms.

In the following, it will be assumed that the degree
of ionization is weak enough to have NY/7°7 ~ 6,

so that the state of such a plasma will depend es-
sentially on the two ratios 7/w and 67/w. Besides,
it will be assumed in this work that w >7, whence
w> 67, so that one will be able to use the “high-
frequency approximation” [see Ref. 21(a)] for cal-
culating the approximate solutions of the Kkinetic
equation.

(b) In (2.2), only one inhomogeneity length X, has
been introduced. In the case of an inhomogeneous
plasma, at least two characteristic lengths would
be needed: one, L, linked to the density gradient
of the medium; the other, 2,, to the wavelength of
the considered wave, the ratio AO/L being then es-
sential. In the following, we shall study only ini-
tially homogeneous plasmas, which become inho-
mogeneous only in the presence of one or several
waves: in this case, the inhomogeneity length is
merely equal to the characteristic wavelength 2,
which determines the parameter n’. However,
with the effects of wave dissipation, a new inhomo-
geneity length A} occurs, which is defined by
means of the absorption coefficient of the wave
(or a new characteristic time ¢, associated with
the attenuation coefficient). As the collisional
part of the absorption (or attenuation) coefficient
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is proportional to 7/ w, it is seen that the value of
the ratioA,/A, is closely linked with the analysis
of the influence of collisions.

(c) By Maxwell’s equations, the contribution to
the Lorentz force of the wave magnetic field,
(@0,/w)x W, takes the form

- T
%X #= a;l/z,,,u/z(f (¥,x3) dT') X ; (2.4)
in the absence of an external magnetic field, this
is the only contribution to the Lorentz force, and
one has @, =w,. Otherwise, if there is an external
magnetic field Eo, the plasma is anisotropic, and
one has to introduce the additional parameter wy,
which is, as is well known, essential for the de-
scription of plasma properties. To simplify the
analysis, it will be assumed in this paper that
there is no external magnetic field, i.e., wy, =0
and W, =®,; but the methods here employed can
also be applied to an anisotropic plasma, whose
properties depend also on the dimensionless pa-
rameter w, /w.

Finally, in this paper, a homogeneous plasma is
considered (in the absence of the wave), isotropic
(w,,o =0), weakly or partially ionized (but with a
rather weak degree of ionization), for which the
electronic kinetic equation takes the form (2.2)
with the Lorentz force given by (2.4). Of course
this equation must be coupled to Maxwell’s equa-

J

o) 2 r1/2
oF +n;1/2w_§ LWL o
3 3w?

w\ 0T

BF(” r1/2 (EE)F“'”)D 1+1
w

11/2( -0y &
P +n' YRV, FU)0 4 ™ +2l+3

2 35. gy = L (OFC
aw(w & ¥ colL’

(77' 1/2wzvx RO

tions for the electric and magnetic fields.

We thus have a nonlinear integrodifferential cou-
pled system to determine the electronic distribu-
tion function F,(W,%,7) and the electric field &(X,7)
in the plasma. The complexity of this system,
already very great in the absence of collisions,
is increased even more in our problem by the
presence of the collisional terms of the right-hand
side of (2.2). Therefore, to handle this system,
one is led to seek for F, an expansion well adapted
to the mathematical properties of these collisional
operators. Referring to the results established in
the Appendix, it is seen that it is convenient to
expand the distribution function F, in the basis of
the irreducible Cartesian tensors (W%« -« W)’ of
the velocity space [see Refs. 21(a), 22, and 23).
We thus put

F,=F%w,%,7)+W- FW, %, 1)
toee (W W)V FPw, X, T) 40, (2.5)

where F@w,X,7) and the irreducible tensors
FPw,%,T) are, respectively, the isotropic part
and the anisotropies of the electronic distribution
function. Carrying this expansion into (2.2), one
obtains for F© and F® after some algebra (cf.
Refs. 21 and 22) the following coupled system:

(2.6)

w

T =g _ 1 (6F?
—laluznu/z(f (Vxxe)d'r’) XF(I)=—<—> ) ,
coll.

172
o il 21+3%, TU+D
w e F
21+2 8w( )

w \ o1
=1, (2.7)

where the notation (--+)° means a symmetric divergenceless tensor. To complete this system, we have

to specify the collisional terms on the right-hand sides.

Under conditions which are made more precise

in the Appendix, these terms are given, for the first values of I, by the expressions (Al1l) and (A12) set
up for partially ionized media. In this rather general case, we have thus an infinite integrodifferential
coupled system for determining F© and the various F®,

But in the particular case where the ionization degree of the plasma is weak enough to have NY/7°7 « 1,
it is seen in the Appendix that the collisional terms between charged particles may be neglected except in
the equation for F© and that we can use simpler expressions (see Appendix). Then the integrodifferential
equation (2.2) is replaced by the infinite system (2.6) and (2.7) in which the right-hand sides must be

written

w\ or T20 w? aw 3 aw

_ov NY
=$I(F(o)) +‘%cee(F(O)) ,

i(bf‘(n> :_zulﬁ(“ =1
w\ 67 /con. w7 ’

(0) - ()
1 <5F > _ov 1 a8 [ijz (wF«,) +l oF >] +_51_3vz
coll.

_a_, ) 770 M_} 10 10 aF(O)
dw (F lo+3 %) w

(2.8)
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where the vi(v) are defined by (A4).

In any case, the system (2.6) and (2.7) must be
coupled with Maxwell’s equations which, after hav-
ing eliminated the magnetic field, may be written
in the form

= o WP%E_ 4me , , _.,0]
)\—gvxx(vxxe)'*cz Tz_-_mczﬁ(a ) ar’ (2.9)
a/1/zn/1/2wz’v§x B '”ep , (2.10)
with the equation of continuity
9p n/llz_. -
— +j=0 2.11
ar T Vel (2.11)

With these notations, the electronic charge and
current densities are defined by

p=47ref w?F®dw — Ne=e(n - N),
° (2.12)

-~ 47T (P L=
i= ﬂevf w“F“’dw,
3 0

where N is the density of the positive background.

The equations (2.6)—(2.12) constitute the funda-
mental system of this problem; its complexity is
so great that it cannot be rigorously solved in the
general case and that it is necessary to use per-
turbation expansions. The presence of the two
parameters o’ and n’, which couple between them
the equations of (2.6) and (2.7), suggests that one
expands the F® according to these parameters
which are assumed small; this procedure will have
a precise physical meaning by virtue of the defini-
tions of o’ and n’. As, on the other hand, this
fundamental system depends also on the three oth-
er parameters 8, ¥/w, and NY/7?w, it is seen that
very different physical situations can occur depend-
ing on the respective orders of magnitude of these
five parameters. Thus, for a particular problem,
it must at first be decided which is the small pa-
rameter € adequate for the considered situation,
by ordering between them the five parameters o/,
n', 8, V/w, and NY/?Pw.

In order to make easier the statement of our per-
turbation method, it will be always assumed in the
following that the degree of ionization is sufficient-
ly small to have NY/7°U~ 6. With this condition,
the differential system (2.6)—(2.8) depends only on
four parameters: «’ and ' on the one hand; V/w
and 6V/w on the other hand which are respec-
tively associated with the two characteristic
times ¢,~1/7 and ¢, ~1/5V. More precisely, it is
seen that the equations for the anisotropies F* de-
pend on the ratio ’/w=¢,/t,, which is a measure
of the order of magnitude of the momentum trans-
fer, while the equation for the isotropic part F©
depends on 8V/w =t /t,, which characterizes the
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energy transfer for the e¢-» collisions.

Now, for the parameters a’ and ’, the follow-
ing situations may be distinguished:

(i) n’ < a’, to which corresponds the condition
7# << Tyh,: This is the case for cold plasmas with
relatively long wavelengths or relatively strong
electric fields; in this case, the terms in ¥V, can
be neglected in the first approximation in the sys-
tem (2.6) and (2.7) which becomes thus homoge-
neous.

(ii) o’ <n’, corresponding to the condition T'y},
« P2 This case is realistic for warm plasmas
with relatively short waves or weak electric fields,
in this case, the effects of the plasma inhomogene-
ity are dominant, and no harmonics occur in the
first approximation.

(iii) @’ ~n’ < 1: This is the case studied in this
paper, in which the effects due to the intensity and
to the inhomogeneity of the electric field are of the
same order of magnitude.

The orders of magnitude of o’ and n’ being thus
fixed, one has still to compare them to §. In the
Secs. III-V, only the case o’ ~n’'~§ will be stud-
ied, for which the order of magnitude of nonlinear
effects and of energy exchanges between electrons
and neutrals can be compared. As will be seen,
this condition is satisfied in warm plasmas (with
7%/c® ~ 6) and for wave amplitude and frequency
satisfying the relation E2/3mkTw?~5. In Sec. VI,
the other physical situations will be briefly dis-
cussed.

Finally, one has to consider the collision param-
eter U/w, which is essential for the analysis of the
dissipative effects of the waves in weakly ionized
plasmas. According to the value of this parame-
ter, the “collisional” case, with ¥/w=1, and dif-
ferent “weakly collisional” cases, with 7/w<1,
will be successively studied. In these latter cases,
one has to compare the orders of magnitude of
7/w and 6; we shall consider, in Sec. IV B, the
case U/w=~ 6 which is called precisely “weakly col-
lisional” and, in Sec. V, the “intermediary” case
7/w= 62, which may be interesting for the study
of the coupling of several waves.

III. PERTURBATION METHODS IN THE CASE o' ~7'~§,
NY/2%=~6

This section is devoted to the analysis of the per-
turbation method proposed for solving the funda-
mental system (2.6)—(2.12) in the case o’ ~n’ =~
and NY/7*D~5. It is discussed for two values of
the parameter 7/w, which may be of the order of
unity (collisional plasma) or of the order & (weakly
collisional plasma). It will be seen later that to
solve effectively the equations, especially for con-
tinuous waves, it must be assumed that the absorp-
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tion (or attenuation) coefficient of the waves is
small, that will lead to the definition of weakly
dissipative media and to the analysis in detail of
the actual effects of the collisions.

By virtue of the structure of (2.6) and (2.7), one
is induced to choose, as the small parameter, €
=g/ 2~ 52, and to expand F® and F¥, on the one
hand, and the electric field € on the other hand,
according to successive powers of €. But with
such a procedure, it is known that secularities ap-
pear in the calculation from the second approxima-
tion. Thus, by relying upon the existence of the
two time scales ¢, and ¢,, with ¢, ~ €%*¢,, one is led
to use the well-known method of “multiple time
and space scales” of Krylov-Bogolioubov-Frieman-
Sandri®**”?" which proceeds from nonlinear dynam-
ics; this method, which has been largely used in
statistical mechanics and plasma physics, espe-
cially for the study of mode coupling,?®~3! has been
applied for the first time to the weakly ionized
plasmas by Caldirola et al.**

According to this method, we at first define time
scales Ty, T;, Ty, ..., as well as the correspond-
ing space scales X,, X,, X,, ... by putting

T=Ty, T,i=€Tgy Ta=€Tgye.-}
(3.1)
X=%,, X,=€%,, X,=€%,,...3;
it follows that we have for the derivatives /57
and V,=58/0%:

3.2)

and that the unknown functions F(7,%,w),
FP,%,w), and &(r,X) of this problem become
functions of these new variables, viz.,

FOr &Ko, 71y -« 50),
FO(T oy TiXyy oo o 3),
BT Xps T Xppe o)

This being the case, we seek for the solutions
of the system (2.6)—(2.12) expansions of the form

© = p© ©
FO=FQ+eFQ+FQ+---, (3.3)
0 — 7 (1) 201
F()"on)*-e:['?(l)'*'€ F(Z; ) l>0, (34)
S - 25 ...
€=@q tey TE €y + s (3.5)

where each approximation, FS, FJ, or &, is a

function of 7%, 7,X,, ... . Putting these expan-
sions into (2.6)—=(2.12), this fundamental system is
split into a sequence of equations which can be
solved step by step, by annulling the secularities
in each of these equations. One can thus calculate
the successive approximations of the charge den-

sity p and current density j; by (3.3) and (3.4),
they are written

- 2
P =P +E€P@ +E P +

=e(ng = N) +eeng +€%eng ++ -+,
* = - Pre 3.6)

1=l t€lw t€ )@ *+°*°

Of course, one has to distinguish several cases
according to the order of magnitude of ¥/w; in the
following, the “collisional case,” V/w=1, and the
“weakly collisional case,” V/w= §~¢?, are suc-
cessively studied.

A. Collisional case: V/w =1

This case is essentially characterized by the fol-
lowing properties: (i) the anisotropies relax at the
time scale T1,; (ii) the field equations, at zero or-
der, include dissipative terms which depend on

F{Q; (iii) for continuous transverse waves, these
equations and the equation for F{ are not uncou-
pled, except if the absorption coefficient is small.
To verify these different'points, one has to consid-
er the general equations obtained by putting (3.3)-
(3.6) into the whole system (2.6)~(2.12). We can-
not give here all the calculations, which are long
and tedious; so we limit ourselves to pointing out
the essential results and stages of argumentation
(for a more detailed discussion, see Ref. 33).

Let us first consider the kinetic equations (2.6)
and (2.7); starting with the equations of zero order

0) 1e))
dFQ _ o Fao._

Lgw  2Pa_g
T, 70T, w

[(OX] 3T ’ (3'7)

it is seen that F{) and P are independent of 7,
while the variation of F%), at the scale 7,, is given
by the exponential e~%1/“" which goes to zero

when 7,—~ . Thus, one can write, by (3.7),

© _ [0 .
Fo=Fo®oTXyy...;w),

Po =P(o)(X0,T1X1, LR ); (3.7')

SO R =y wiT
Fo=Fone " o,

so that one has F&(r,~ ©) =0; so, we check the

relaxation of anisotropies of zero order at time
scale 7,.2% 3¢

Then, using the successive equations of higher
orders and assuming that the medium is homoge-
neous in the absence of the wave (viz., F{, inde-
pendent of X,), it can be shown more generally
that

(»)(To"w) =0, p<li; (3.8)

so, all the anisotropies f‘ﬁ’,}, (with p<1) relax also

at the time scale 7,; therefore, it follows from
this result that F is the first term different from
zero in the expansion (3.4), if the transient terms
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g'p’) (p< 1) are neglected.

This being the case, it can still be shown that
F{9 depends only on 7, and eventually on other
time scales of higher order, and that _F'ﬁﬂ and €,
can be split into two components, according to

F(D = fig'(Toxo:anzXz: cosw)

n .
g) (men zxz’ . ;w) 1 (3 9)
B = o) (T %oy Xyy ToXps -+ - )

+8(Xos X1y ToXps -+ )

where F3” and &}, do not depend on the time vari-
able 7,; €p is the zero-order stationary field (at
time scale 7,) generated by the wave €, crossing
the plasma. Note that one has also such decompo-
sitions for anisotropies and approximations of high-
er order.

Considering now the field equations (2.9) and
(2.10) for which we seek periodic solutions, we ob-
tain for the oscillating electric field €, at zero
order the two equations

%8 >
w? aTg = —jwiw,0(w,) &y, (3.10a)
0
e >
wz——i—LL —‘9’——=-zcu,:.,.),Lcr(c«),)e(’(,,l , (3.10p)

973 xg %2
in which o(w,) is the usual conductivity defined by

4 © wS aF(O)
o(w,) smol [ 220 g,

3NJ, v, +iw, dw (3.11)

and where €, and €,, are, respectively, the lon-
gitudinal and transverse components of &,.

So, one finds again, at order zero, the usual
equations for the wave propagation, but with a dis-
sipative term which proceeds from the real part
of 0(w,). This term defines either an attenuation,
if the shape of the wave is given at an initial time
(initial-value problem), or an absorption if the
wave amplitude is fixed on a certain surface, for
instance the plane x =0 (boundary-value problem).
In the first case, w, is complex and the wave vec-
tor K, real, whereas in the second case it is K,
which is complex and w, real.

For an initial-value problem, one can put w,
= wyp +iw,, and o(w,) =Vog —iw o}, with obvious
definitions for o} and o} by (3.11). As the complex
conductivity o is independent of 1, it is seen that
one can always solve, in this case, the field equa-
tions at zero order independently of the evolution
of F; in fact, the influence of the electric field
€l on FQ appears only at the time scale 7,.

If w,; is of the same order as w,z, one has an
attenuation at the time scale 7,; of course, this
case is of no physical interest, the field being
damped during a wave period. Therefore, only

situations for which o?, <« w?; are considered; in
the longitudinal case, this condition entails 7%

<« wiy, so that one has the usual plasma oscilla-

tions, namely w,p ~ w,, with the attenuation coef-
ficient w,,/w given by

Wy Y
w 2w F’
47 (= L oFQ (3.12)
P =T = ©)
TR=7 3N ), viw o aw ;

in the transverse case, it is found with the same
condition:

@, % T n
w Wi 2w R’
(3.13)
o 4 viw® 9FQ 3FQ o
RTT3N), 1 +V,/o.>m dw

It is thus checked that in order to satisfy the con-
dition w?; < w?;, one has two different situations:
(a) for longitudinal waves, one must have neces-
sarily a weakly collisional plasma, with 7%« w?;
(b) for transverse waves, one can have either a
collisional plasma (V/w= 1) with waves satisfying
the condition w?/w?, « 1, or once again a weakly
collisional plasma,

As a boundary-value problem, we consider the
case of continuous transverse waves, with w, real
and K, complex. Then, by puttmg o(w,) =(1/w?)

X (Vo —iw,07) with o and o} defined by (3.11), Eq.
(3.10b) yields the usual equation of propagation of
transverse waves:

2 2%
%%"’—L l:l %0’22(0, +z::—cR)]€(’0‘§l =0,

0 0 1 (3.14)
where &, =€/3(%,, X,,...)e!““ 0 +c.c. But, in
(3.14), o} and o} are now functions of %X, through
F: Then, it is not possible, in the general case,
to solve (3.14) independently of the knowledge of
Fg.

On the other hand, the equation for F is deduced
from the equation (2.6) at second order, in which
the terms varying with 7, must be separated from
the stationary ones. One thus gets an equation in
which occurs the wave absorption by the interme-
diate of the term &g, - €37, so that this equation
is coupled with the field equation (3.14). More-
over, the Poisson and continuity equations give
two supplementary conditions: first, one has, by
(2.10), (3.5), and (3.6), pg =py =0, whence ng =N,
ng =0, which determine the normalization of FQ
and show that the electronic density at zero order
remains constant and equal to N; second, the con-
tinuity equation at second order allows one to de-
termine the longitudinal induced field &, which
corresponds to a thermoelectric effect of the wave
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crossing the plasma.

So, in the general case, one has to solve simul-
taneously this system of coupled equations, which
is a very difficult problem. But if F$ is a “slowly
varying” function of X,, one can seek solutions for
(3.14) of the form of the first approximation of geo-
metrical optxcs, in which the complex wave vector
Ko KOR -zKo, is a slowly varying function of X%,.

In such a case, it can be seen by the equation for
F{) that one must have K2, < K2, which corre-
sponds to a weak absorption. With this condition,
one can separately solve Eq. (3.14) and the equa-
tion for FQ); one thus gets the usual dispersion
equation which yields for K,; and K, the approx-
imate relations

=~ olof +TI§29&, (3.15a)
ko~ T Kpog (3.15b)
2w, 2[1 = (w/w?)o} ]’ :

where o} is given by (3.13), with w,z =w,.

By (3.15b), it is seen that the condition for weak
absorption can again be fulfilled in two cases: (a) a
collisional plasma with waves satisfying the condi-
tion w?/w?« 1; (b) a weakly collisional medium,
with 7/w, < 1.

B. Weakly collisional case: ¥/w~8~¢"

In this case, one has to consider the same suc-
cessive equations as in Sec. III A, but with colli-
sional terms which are now incorporated into high-
er-order equations. This fact entails two impor-
tant consequences: (1) The field equations at zero
order have no dissipative terms and the uncoupling
between these equations and the F equation is now
insured by the condition /w=~86=~¢% (2) The F{
do not relax at the time scale 7, but at the time
scale 7,, so that these initial anisotropies may not
be neglected in the general case, for an initial-
value problem.

Indeed, the zero-order equations (3.7) relative
to FQ and p, are still valid, while the equation
for ¥ becomes

Ty
89F

=0
aT,

whence

FG = g;(xo, TRy oo 5w), (3.16)

so that F%) is now independent of 7, as F{Q and pg).
Then by applying the usual technique of the multiple
time or space scales method to the kinetic equa-
tions of first and second order and assuming that
the plasma is initially homogeneous (in the ab-
sence of waves), it can be shown®®: (i) that F is
independent of 7, and that decompositions of the

type (3.9) can also be used (but with oscillating
terms depending both on 7, and 7,), and (ii) that
F{ now relaxes at the scale 7,, according to

(D
¥ _ _,iF0
3T2 140
whence
(l) = F(X) -111’7'2 s (3 17)

so that the relations (3.8) are no longer valid.
On the other hand, the field equations at zero
order are now given by

2—349———wi'é('0,” , (3.18a)
0
928! c? %@/ "
PO O - 2B, (3.18b)

S

which are independent of the F equation; one thus
gets, at zero order, the usual dispersion relations.
Then the field equations at first order allow one to
calculate the variation of €, at the scales 7, and
X,, which is due to the coupling between the oscil-
lating field and the initial anisotropies F@, ¥@,

For an initial-value problem, it can be shown®*®
that there occur frequency shifts of order € which
are due to this coupling. But if it is assumed that
the initial anisotropy is only due to the electric
oscillating field, one must put ) =0 and one can
establish, by considering the higher-order equa-
tions, the following general results: (a) one has

F) =0, with p<1, so that F{}) is again the first
term d1fferent from zero in the expansion (3.4);

(b) one can eliminate the odd scales 7,X,, 73X,
etc., so that one will be able to replace (3.3)~(3.5)
by expansions according to €2.

For a boundary-value problem, one must con-
sider the equation for F$: This one is now deduced
from the equation of fourth order (relative to F©)
since, as we have 60/w= €*, it is the time scale
7, which is characteristic for the evolution of F.
But, at this scale, all the anisotropies f‘ﬁ’}) (with
p<I) are cancelled by (3 17) and similar relations
at higher orders; so, F(,) is again the first term
different from zero in (3.4), and a stationary state
is set up in which F{) is generally non-Maxwellian
(as in the collisional case) and depends only on the

even length scales %,, %,, etc.

C. Weakly dissipative media: Effect of collisions

From the previous results, it follows clearly
that the nature of the solutions of our fundamental
system (2.6)—=(2.12) is closely linked with the or-
der of magnitude of the coefficients of attenuation
w,; or of absorption K,;. One is thus led to define
weakly dissipative media, for which these coeffi-
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cients are small compared to the corresponding
real parts w,p or K,p; particularly, it has been
seen that this condition is necessary, for a station-
ary situation, to uncouple the field equations at
zero order and the equation for F{), and to obtain
solutions “slowly-varying” in X,. But, for such a
case, the methods of geometrical optics are in
fact not well adapted because one is dealing with

a nonlinear problem. Thus, one is led to use the
method of multiple time and space scales and to
associate with w,; or K, a new characteristic time
or length which will be large with respect to ¢, or
Xo-

So for an initial-value problem, one introduces
the new time scale t},~{,w,,/w,; > t, and one has
to compare the ratio w,;/w,, with the small param-
eter € of the problem. Likewise, for a boundary-
value problem, one associates with K, the new
characteristic length A=~ A K,5/K,; and one must
compare the ratio K;/K,, with e. Then, by the
approximate formulas (3.12) and (3.13), it is seen
that the ratios K,;/K,; and w,;/w,r have the follow-
ing properties: (a) they are proportional to 7} or
of and thus closely dependent on the (e-n) inter-
action law by means of the reduced collision fre-
quency relative to the momentum transfer; (b)their
order of magnitude is determined by that of 7/w in
the two cases, and by that of «w2/w? (or w}/wl,) in
the case of transverse waves.

Finally, one can study weakly dissipative media
such as either K, /K (Or w,;/w,p)~€=q' %~ 52,
or Kor/Kog (OF wy;/wip)~€?=a’ ~5. In the latter
case, it follows from the previous arguments that
one has to consider the two following cases:

(a) Weakly dissipative collisional media, with
transverse waves such as V/w=1, «}/w®=~e€*(=a’).
Here, it is the condition w}/w? = €* which allows
one to uncouple the F{ equation and the field equa~
tions at zero order, for a boundary-value problem.
Moreover, this condition entails that the solutions
of the system depend only on the even time or
space scales. It follows that, if one neglects the
vanishing transient terms (at the scale 7,), one
can replace (3.3)-(3.5) by expansions in €? which
may be written

— T 0
. :w)'el(Fg;"'Eng+2)+' : '),

1=0,1,2,..., (3.19)

PO T z
FP1 Xy, ToXoy - -

TRy ToKpy o+ - ) =6 + €8+ 7+ . (3.20)
(b) Weakly collisional media, for which one has
V/w=~e*(=a’). For a boundary-value problem,
this condition is sufficient to get uncoupled equa-
tions at zero order and it has been seen that one
can use expansions in €* of the type (3.19) and
(3.20). For an initial-value problem, this is only

possible if one assumes that the initial anisotro-
pies are due to the existence of the oscillating
field €,; when this is not true, one must use the
more general expansions (3.3)-(3.5).

For plasmas with a dissipation of order €, one
can consider an “intermediary case” character-
ized by the condition 7/w=~¢ (= a’Y?), from which
it follows that w,;/w,, (or Ko /Kqe) = € in the ab-
sence of any assumption on the magnitude of w3/w?.
The analysis of this situation is outlined in Sec. V
and can be made with a method similar to that em-
ployed for the weakly collisional case.

IV. EXPANSIONS IN ¢’: COLLISIONAL AND WEAKLY
COLLISIONAL CASES

In view of the previous discussion, one can use
the expansions (3.19) and (3.20) to study the colli-
sional case with transverse waves fulfilling the
condition w?/w?= €%, and the weakly collisional
case when the initial anisotropy of the medium is
only due to the oscillating field E:O) . Of course,
one must then put (3.19) and (3.20) in the general
system (2.6) and (2.7), and solve step by step the
successive equations so obtained, by eliminating
at each stage of the calculation the secularities
which appear. We do not give here the details of
these calculations (as are shown in Refs. 33 and
35), and we note in this section only the main re-
sults that we can so obtain.

A. Collisional case

If one makes appear in the source term of (2.9)
the ratio wj /w?= €2, it is seen that the field equa
tion at zero order is nothing other than the field
equation in the vacuum; this means that, at this
scale, the electric field is not modified by the
plasma, whose effects occur in the higher-order
equations. We consider in the following a bound-
ary-value problem in which the transverse wave
is given on the plane x =0 and propagates along
Ox in the half-plane x>0; thus, one has only one
time variable 7=7, so that one has to cancel all
the terms 8/ Ty, 8/ T4 - .. in the successive equa-
tions.

This being the case, one finds for the electric
oscillating field EQO,L at zero order:

=7 > ig -B-)? +ig X
€y =l e e P12 e e, (4.1)

with ¢ = (w,/w)7, =K, %, +9,, K, -8 ), =0, Where
@, is an initial phase, and K,=|K,|=2w,/c is the
real wave vector at zero order. In (4.1), the ab-
sorption coefficient B(X,) and the phase shift ¢,(X,)
are given by
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wz
B =g o o [ ohax,
(4.2)
K X2
0 &)= % [ op ax,

in which o} and o, defined in Sec. III, are func-
tions of X, through F(J). The phase shift ¢,(X,)
allows one to obtain the dispersion equation at €?
order for transverse waves.

On the other hand, the equation for F{} is de-
duced from the equation (2.6) at second order by
using the method outlined in Sec. IIIA. Atfirst,
it is seen that one gets for the stationary com-
ponents &, = ng” =0, while the Poisson equation
yields n, =N, by virtue of the transversality of
the waves. Then, one gets the equation for F{J}

of the form:
2_),/"027/‘2;0)‘L e'ZB(Xz)

I(FES;)chee(FEg;):— EE)

0)
XB_( V']w2 8F(o)>
aw \vi+wi ow /'

(4.3)

where a’/6=y’=0(1); so F(J) is now a function of
X,: it is determined by (4.3) to which one has to
add the definition of 0%, given by (3.13) with w,;
=w,, and the condition of normalization,

47 J; w?F Q) dw =N. (4.4)

One sees that, for a sufficiently weakly ionized
plasma, one can neglect on the left-hand side of
(4.3) the Coulomb term after I(F(J)); one thus
finds for F{Q)(X,;w) a usual expression.®® Finally,
it is seen that F(J}(X,;w) is determined by two
functional relations deduced from (4.3) and (3.13).

In conclusion, one thus sees that the plasma be-
comes inhomogeneous at zero order and at the
space scale X, under the effect of the electric -
oscillating field E'(O) 13 it follows that, even at the
“linear stage,” the conductivity o is, in fact, a
nonlinear function of the field amplitude. Moreover,
as the electronic density remains constant at this
approximation, it results that €, produces essen-
tially an increase of the electronic temperature
given by the term y'w?i2,, , €728 /12 +w?: itisa
thermoeffect assoc1ated with the crossing of the
wave in the plasma. It can also be shown, with
the next approximation, that this inhomogeneity
induces a longitudinal stationary field of €* order,
En(Xs).

Because of the length of the calculations, one
cannot here discuss the second approximation.
One notes only that, by calculating the various

terms F(3), Fgg, F(é), ..., one gets the expression
of the nonlinear source term 83(3)/870, thus, it
can be shown that the electric field € ,, at € order

is of the form (cf. Ref. 33)

By =180, 1(K,) €' +%819 (%,) ¥ +c.c.] +8,,(%,).

(4.5)

Note that these results will be the subject of a
further publication devoted to the study of the
propagation of continuous waves in weakly ionized
media.®®

B. Weakly collisional case

In this case, the collisional terms of the kinetic
equations are carried over to the next order equa-
tions. On the other hand, as we do not make any
assumption concerning the ratio w}/w? the field
equations at zero order are now given by (3.18).
Let us consider now longitudinal and transverse
waves successively.

1. Longitudinal waves

If we investigate an initial-value problem for
which the wave is given at an initial time 7=0,
one then has only one space scale, X=%,, and one
must cancel in the successive equations all the
terms in 8 /8%, ... etc.

With the equations of orders 0 and 2, one gets
for the longitudinal field at zero order

80,1 =870, 1(1y) expli[(w,/w)To— Ky * Xy +,  +cc.,

(4.6)
with

2
870 1(1,) =1, , eXp(—3 7|7,) ex i—w——KOT
©) I\T2 ©) It €Xpl=2 V)T P o, 2 T2
»

(4.6")

where U o, is the wave amplitude at 7,=0, ¢, an
initial phase, and 7} is given by (3.12). It is thus
seen that the varlatlon of e(o) ; at the scale 7, in-
cludes two terms: an attenuation, e’ 2’2, due
to the collisions, and a phase shift

w? K2

2

Ko ko
wp 2 w

-
2 2
(since €2 =17'=72/23w?) which gives the first cor-
rection to the dispersion relation; so, with this
term, one finds again the dispersion equation
of plasma waves at the electronic tempera-
ture T.3% Using the same equations, it can also
be shown that, for an initially homogeneous plas-
ma, one has 8%,=0, 83,=F@)”=0, for the station-
ary components; one finds in addition the first
even harmonic ?&/,,, which may be written:
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23 B .Ja0 g0 i @o g _
€y i=—i—35K, €0) 1€ 1 €XP 2 To—= Ko Xo+Py c.c. ;.
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With the fourth-order equations, it is first seen
that F() depends only on the time scale 7,, so that
it is not modified by the presence of the field 520) I
(attenuated at the scale 7,); thus, by the previous
results, it is seen that the only effect of the colli-
sions at order €® is a damping of the plasma wave.
But the advantage of this kinetic formulation lies
essentially in its application to the analysis of
wave-wave interaction, in which the longitudinal
modes are coupled with the transverse ones. In-
deed, the e*-order equations allow one to calcu-
late the nonlinear current3®® BT(E)/BTO,' then, it
can be shown with the fourth-order field equation
that the coupling coefficients (at third approxima-
tion) include new contributions due to the colli-
sions (cf. Ref. 37).

2. Transverse waves

If we consider the same boundary-value prob-
lem as in Sec. IV A, the equations of orders 0 and
2 give for the electric field at zero order:

>, > M w = .
€0)L=U )L EXP [l (:1 To— K, 'xo+(po>}
xexp [-B&,)+i y,(&)] +c.c., (4.8)

with Ko *Uy,, =0 and where one now gets the usual

) (©0) , Wl Zam, Y 8
I(F(o))+Cee(F )=‘)/ —?V"Z.F(“ +3w2 % w-e

©)

in which F (3" must be expressed in terms of
v, F & and e(’z,(XQ) and where F§) (X,;w) must
sat1sfy the normalization condition (4.4); one sees
again that the medium becomes inhomogeneous
under the effect of the transverse field €/,,, which

generates a thermoeffect in the plasma.

V. INTERMEDIARY CASE: v/w =e(=a'"?)

The essential difference with the previous cases
is that one cannot use here the expansion (3.19)
and (3.20) in €. Indeed, as we have U/w=¢, the
attenuation or absorption coefficients are of order
€, so that the odd scales 7, and X, must now be
kept. This taken into account, one can do the same
analysis as in Sec. III B and show that F? is also
of order €’ if the initial anisotropy of the medium
is only due to the electric oscillating field. For
such a situation, one can then replace (3.3)-(3.5)
by the expansions:

RAYMOND JANCEL

}_2
(4.7)
r
dispersion relation for transverse waves:
2
k2=2oi (1 - > . (4.9)
c? w?
In (4.9), the absorption B(X,) and the phase shift
#,(X,) are then given by
X
B(xz)——o——z— @ : vydx) ,
2 wi-wh o, (4.10)
2 x ’
n)=te e S (BT gy

wi-w? Wi 3

in which 7} [given by (3.12)] and the electronic
temperature T} are functions of X, through
F@)(X,;w). As previously, the phase shift allows
one to define the e?-correction to the wave vector
K, and to find thus the dispersion formula of trans-
verse waves in temperate plasmas with an elec-
tronic temperature such as 7%2/c2~ 2,38 With the
equations of the same order, one also gets: (i)
the expression of the 1ongitudinal stationary field,
ezeg’z)(xz), in term of V F(g; ; (ii) the first even
harmonic, of €® order and of longitudinal type,
which is induced by &/, .33

Then, the e€*-order equations give various high-
er-order terms, such as the variation at the scale
X, of the first odd harmonic %8, (%,), and the equa-

tion for F{3) which may be written

. 2 w22 e-zﬂ 9 F40)
R (0) L 2 ©)
Foyr > w? ™ (4.11)
r
F O (168 7y - W)= (F ) +eF 82y 4000,
1=0,1,2,..., (5.1)
8(ToXo, Ty Xy, .0 ) =8 g, +€6 ), + (5.2)

By putting (5.1) and (5.2) in the fundamental sys-
tem (2.6)—-(2.12), one again gets a system of coupled
equations that one has to solve step by step. As
the involved techniques are essentially the same
as previously,3(® we give only the main results
for longitudinal and transverse waves and point
out the essential differences with those of the Sec.
IVB.

A. Longitudinal waves

Considering again the same initial-value prob-
lem as in Sec. IV B, the equations of the two first
orders allow todetermine the electric field at
zero order and its variation at the time scale 7,.
One thus gets’
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EQO) i =-ﬁ(0) 1l e-(u;/z)rl exp{i[(u)p/w)'ro - Ko ‘ .io + %]}
+c.c., (5.3)

where 7] and U ,, , have the same meaning as in
Sec. IV. If one compares (5.3) with (4.6), it is
seen that one gets the same attenuation factor,
but on the time scale 7,, while the phase shift of
(4.6) is now missing, since it is of order €%, and
is removed.in. the next order equation. One also
gets in the present case (homogeneous plasma)
for the stationary components: &, =87, =0,
whence F )7 =0.

By using the equations of second order, one
first gets the expression of the first even har-
monic which is of order €2 and is given by an ex-
pression identical to (4.7). One then finds for the
amplitude &3, of the first perturbation of the
electric field:

i w

> - -(v! VT) —
eii’) 1=UoynTy€ 1/ 2 o [Krz) - (2= i Viz)] ’
Wp
(5.4)
with
—  4r OF Q)
1z m— vi2wd —Q) dy . 5.5
TETRN ), dw (5-5)

It is seen by (5.4) that €&, includes a term of
the form i €3(w/w, )(K%/2) which is nothing other
than the first term of the expansion in € of the
phase shift exp[i (w/w,)e2(K2/2)7,] in Eq. (4.7); but
in the present case, one has also the supplemen-
tary term (73/w?)(v? - § 7;%), which brings new
collisional effects characteristic of the inter-
mediate case and which modified the dispersion
relation which may be deduced from (4.10). One
finds lastly that one has to put, at this approxi-
mation, &%,=0 and F{)”=0.

Naturally, we may also consider the next ap-
proximations which allow one to calculate the
higher-order harmonics. Particularly, itis seen
by Eq. (2.6) at €® order that F§} depends only on
the time scale 7, and is not influenced by the elec-
tric field &}, (which is attenuated at the time
scale 7,), as in the weakly collisional case.

B. Transverse waves

We consider here the same boundary-value
problem as-in Sec. IV A; as before, one gets for
the electric field &(,,,:

—éI(O)L =ﬁ(O)J- e"Prv exp{i[(wx/w)To - ko %, +‘Po]}
+c.c. (5.6)

in which K, satisfies the dispersion equation (4.9)
and where B(X,) is given by a relation analogous to
(4.10). But, now, the absorption B(X,) depends on

the space scale X,, since U/w, is of order €; thus,
7, is also a function of X, through F{§} which is de-
termined by Eq. (2.6) at € order. One finds again,
by the Poisson equation, ng,=N,n,,=n4,=0,
while the sga.tionary field €/, may be determined
in term of V, F{g}.
With the equations of second order, one finds a
first even harmonic of order €?, &,,,, which is
of longitudinal type and generated by the Lorentz
force. It is also possible to obtain the linear
equation verified by the first perturbation &{},,(,)
of the oscillating electric field: it includes a term
corresponding to the phase shift y, defined in
(4.10), a collisional term

— 1 W
VIZ +____2__L_g/2 ‘élo L
VT i-wl )T

1 ?

analogous to that of (5.4) and a contribution due to
the nonlinear conductivity associated with F}).
The equation for F () is deduced from the equa-
tions of order €. One thus gets an equation identi-
cal to (4.11) in weakly collisional case, but de-
pending on the space variable X,: as previously,
its solution is generally a non-Maxwellian distri-
bution F§)(%,;w). At the same order, one also
finds the first odd transverse harmonic which is
of order €? and includes collisional contributions

characteristic of the intermediate case.

VI. POSSIBLE EXTENSIONS, DISCUSSION AND
CONCLUSION

In order to illustrate these methods, we have
considered here simple physical situations char-
acterized by the following properties: (i) the
plasma is homogeneous and, for weakly collision-
al media, initially isotropic in the absence of the
wave; (ii) one has a’~n’=~5, so that the effects
linked to the inhomogeneity and to the amplitude
of the wave are of the same order and equal to
those due to the e-n energy exchanges; (iii) one
also has NY/7°0 ~ 6, so that the electronic kinetic
equation is reducible (under conditions made pre-
cise in the Appendix) to an infinite differential
system of coupled equations; then, the collisions
between charged particles give contributions only
in the F© equation; (iv) finally, it has been
assumed that one has only a single wave, of longi-
tudinal or transverse type, with a frequency w
of the same order of magnitude as 7, at least
(“high-frequency approximation”). Of course,
these perturbation techniques can be applied to
other and more sophisticated problems that we
now discuss briefly.

(a) Firstly, they can be applied to initially in--
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homogeneous plasmas, in which the positive back-
ground becomes itself inhomogeneous so that N
and T are now functions of X. One then has to
associate to this inhomogeneity a new character-
istic length L that one has to compare to A,; after
having ordered A, and L, one can apply again these
perturbation methods. For a weak inhomogeneity,
one can consider, for example, situations such as
Xo/L=~ €® for which the effects of the positive back-
ground inhomogeneity appear at the scale X,; in
this case, one can use the €% expansions. When
the directions of wave propagation and of inhomo-
geneity gradient are orthogonal, one obtains an
even harmonic of transverse type due to the cou-
pling between the wave field and the inhomogeneous
medium. 10 12

It is seen, on the other hand, from the argu-
ments of the Sec. III B, that one can treat the case
of an initially anisotropic plasma by using the
complete expansions (3.3)—(3.5); for a weakly
ionized plasma, one thus finds coupling effects
between the wave field and the initial anisotropy
of the medium. It can be observed that this meth-
od can be extended to the study of wave propaga-
tion in presence of an external electrostatic field;
in this case, in effect, the static field maintains
anisotropies (independent of the wave field) such
asFQ, fﬁ}" , etc., which are now different from
zero. Naturally, the present perturbation tech-
niques may also be applied to the important case
where the plasma anisotropy is due to an external
static magnetic field _]§0; one then has to introduce
the supplementary parameter wy /w that one must
compare (and order) with the other ones.

(b) We can also consider physical situations
characterized by other relative values of the three
parameters a’, n’, and §; in this case, they must
be necessarily reordered in view of defining the
new small parameter relevant to the problem.

For example, we can have the following situations:

(i) n’ < o’ =€ ~5. Here one has a “cold plas-
ma” in which the effects of the thermal motion
are smaller than those due to the wave ampli-
tude. Indeed, from the results of Sec. IV B, the
condition ' < § is equivalent to 72/c% <5, for
transverse waves, and to [3/A2<5 (I, is the Debye
length at temperature T) for longitudinal waves.

Of course, our methods can then be applied and
one finds equations in which the terms in Gx now
give higher-order contributions, while the dissi-
pative effects due to the collisions remain un-
changed.

(ii) n’ =~ @’ < 6. One has, in this case, a weak
perturbed system in which the nonlinear effects
are smaller than those due to the (e-n) energy
exchanges: In this case, the term [(F(Q))+C,,(FQ

(0) (0)
is dominant compared to nonlinear terms so that

one has, for a boundary-value problem, a system
weakly perturbed around the Maxwellian state:
then, the first perturbation is of order y’=~a’/3,
which is no longer of first order [see Ref. 21(a)];
moreover, the nonlinear contributions of fg; (and
]?(3,), being of order a’=n’, are consequently
smaller than 6, so that they can often be neglected.
(#ii) 6<a’=~7n'=€2<1. This is the inverse
situation for which the nonlinear effects become
dominant compared to those due to the (e-%) en-
ergy exchanges. It can easily be seen that, for
an initial-value problem, the characteristic time
of the (e-n) energy exchanges is yet of higher order
than the attenuation time of the wave; then the re-
sults of Secs. IVB and V remain valid for weakly
collisional plasmas, while one has, for the colli-
sional plasmas of Sec. IV A, a system of two cou-
pled equations which determine the evolution of
F(Q) and &|,,, at the time scale 7,.33® For a
boundary-value problem, the heating terms in
F{) equation being greater than those due to the
energy exchanges, one no longer gets stationary
solutions; then, the decompositions (3.9) are not
valid. Nevertheless, it can be shown that one
gets a new stationary state if a reduced velocity
w’=w/y’ is introduced (now with y’ > 1), corre-

" sponding to a new scale for the electronic thermal

motion.

(c) Of course, the previous methods may also
be applied to partially ionized gases for which
one has to use the more general expressions (A11)
and (A12) for the collisional terms of the kinetic
equations (2.6) and (2.7). For example, if one
assumes NY/7°7=~1, it can be easily proved that
(i) for weakly collisional plasmas, the essential
results of Secs. IVB and V are little modified,
the Coulomb terms giving contributions only in
the high-order equations; (ii) for collisional plas-
mas, one gets greater modifications because the
differential equations (2.7) now become integro-
differential with the integral operators L,, L,,
etc., introduced in the Appendix.

(d) One can also study with these methods the
propagation of several waves in such plasmas;
in this case, one has to fix the relative order of
magnitude of the various amplitudes and then de-
fine the adequate small parameters. Thus, one
can investigate: (i) the coupling of several trans-
verse waves (generation of harmonics and of sums
or differences of the initial frequencies®®(®’); (ii)
the effects of collisions on the wave-wave inter-
actions in weakly ionized media (three-wave reso-
nant coupling, coupling coefficients at third-order
approximation.33(2). 37

Finally, these techniques can be adapted to the
study of low-frequency oscillations with w << 67 or
w =47, for which one has to use the parameters o
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and n (defined in Sec. II) instead of o’ and n’. As
has been seen in previous papers,?!(*) one can
exhibit in this case explicit solutions only if one
has y=a/6<<1. The results so obtained allow one
to study frequency- or amplitude-modulated fields,
for which the modulation frequencies often fulfill
the condition w < 67; these techniques thus provide
a theoretical basis for many previous works.39~4

In conclusion, the perturbation methods pro-
posed in this paper allow one to determine, in
each particular problem, not only the relative
order of magnitude of the various nonlinear ef-
fects, but also the time or space scales at which
these phenomena occur. The physical interpreta-
tion of the results so obtained is very easy, since
the expansion parameters are directly linked with
the quantities characterizing the state of the sys-
tem, viz. v, T, 6, w,, w, A, and E,. More-
over, one can make a kinetic analysis of the role
played by the collisions in the nonlinear behavior
of the medium; indeed, they occur in the definition
of weakly dissipative systems, but they occur also
in the general formulas describing the various
nonlinear effects through the reduced frequencies
v; (v), v4@),..., which are determined by the
e-n interaction law. Thus, the involved phenom-
ena closely depend on the nature of this law: par-
ticularly, one can establish again the privileged
role played by the Maxwellian interaction (in 1 /r®)
and then prove, in the stationary case, that the
first odd harmonic of € order cancels and that
Fgg; is Maxwellian with an electronic temperature
determined by the wave intensity.

Let us close this paper by emphasizing two es-
sential features of this method.

(a) The use of Cartesian tensors in W, as a well-
suited basis of expansion, has led to the replace-
ment of the kinetic equation by a system of coupled
equations which is in fact equivalent to the system
of moment equations.??*2® Thus these techniques
have the same domain of application as the moment
equations and present the same limitations as those
quoted by Buneman®; especially, they cannot be
applied without modifications to plasmas where
Landau damping must be taken into account. Nev-
ertheless, they may be adapted to the analysis of
the influence of collisions on the spectra of weakly
instable or turbulent systems, in the spirit of the
methods discussed in Refs. 46-48.

(b) By the definition of the small parameters e,
these perturbation expansions are generally equiv-
alent to expansions in powers of the electric field,
so that one is involved with singular expansions.
Thus, the domain of validity and the limitations
of these approximations are those of expansions
of this kind, whose convergence difficulties have
been analyzed in other works.*

APPENDIX

In a partially ionized plasma, constituted of
electrons (e), ions (i), and neutrals (n), the colli-
sional term relative to the electronic distribution
function may be written

() =) () ()

(A1)

in which the three terms of the right-hand side
represent, respectively, the effects of e-¢, e-i,
and e-n collisions. One has now to express the
various contributions to these terms when f, is
expanded in the basis of the irreducible Cartesian
tensors which have been defined elsewhere, ?'~23

Let us first consider the e-n collisions; as in
previous works,?*) (5f,/6t),., can be split into
two terms: (i) one, called perfectly Lorentzian,
in which the neutrals are considered at rest and
the ratio 6(=2m /M) is zero; at this approxima-
tion, the collisional operator is invariant under
rotation group and has spherical tensors as eigen-
functions; (ii) the other, called imperfectly Lo-
rentzian, which is proportional to 6 and which
acts only on the isotropic part of f,. Thus, one
can write

ofe =i_3_[z ( © ’Q&)]
(6t>e_,, 2?au U vf T Tow
-3 i, (A2)
1>0

where the expansion (2.5) has been used with ¥/v
instead of W. In (A2), the neutral distribution
function is assumed Maxwellian at the temperature
T, while the v,(v) are given by
u,(u)=zn1v,,uf [1-P,(cosx)|bdb, * (A3)
o
where N, is the density of the neutrals. Let us
remind the reader that these v, depend on the e-n
interaction law and that they are independent of
v, for a Maxwellian-type interaction (in »~%). Note
also that v,(v) is nothing other than the collision
frequency relative to the e-n momentum transfer.
On the other hand, it is assumed in this paper
that the v, are approximately (at least for the
small values of 1) of the same order of magnitude
as 7. Thus, the reduced quantities v{(v), defined
by

vi)=v,(v)/7, (A4)

can be introduced.
Finally, one sees that (6f,/5¢),_, includes two
terms: (i) one, which describes the relaxation
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of the various anisotropies?‘” under the effect

of collisions,?!(2):22(2):34 gpq whose order of mag-
nitude is V; (ii) the other, which corresponds to
the energy exchanges by e-n collisions, and whose
order of magnitude is 67.

Let us now consider the collisions between
charged particles; one describes the Coulomb
interactions by using Fokker-Planck terms ex-
pressed by means of the Rosenbluth’s potentials.5°
Thus, one can write for the collisional term of
particles of species j and k:

<§£—> —41rY ffk+m¢—f- ViV,
+VV9i2VVf1 , (45)

with the usual definitions of the “potentials” 3¢(¥)
and $(¥) and where

Z,Zkez 2
Y =4nw < m) logA,
in which A is the usual large parameter defined
by the ratio of the Debye length to the minimum
impact parameter b,,.

Shkarofsky has given®! general formulas for the
expansion of the collisional term (A5) in the basis
of Cartesian tensors, expressions which are very
intricate and nonlinear inf%’. From our point
of view, it is sufficient to use the corresponding
linearized formulas that one has to apply to e-e
and e-i collisions. For these latter ones, it is
also assumed that one can neglect the recoil of
the ions whose distribution function is then ap-

<5T<;>> P
ot o—e 31) v

J

- Y 8 /@ + Y
+817Yf‘e”f‘e°’+5 v (a3 +J12)'+151)2

(1°+J<11)+—?<1>( —310+710=2J°,)+

proximately Maxwellian, as well as that of the
neutrals. Under these conditions, the electronic
kinetic equation is disconnected from the other
kinetic equations and may be studied as indepen-
dent. So, according to Shkarofsky,? one can use
the following expressions: For the e-i collisions,
one introduces an e-¢ collision frequency defined
by

YIS NY
Vei =30 =5 (A6)

where N is the density of the positive background.
One then gets

of© 6 o kT 8f‘°’>}
L e =__ (0)
<6t >e_; 207 9v ["“”(”f twm av)l

(AT)
5 W 51@) -
<_3ZL> e-ig _Veif(el): <—5t.e-> = _3Ve(fg)y
(A8)

in which one recognizes formulas similar to (A2),
with v,; instead of v,(v); thus, at this approxima-
tion, the effect of e-i collisions can be compared
to that of e-n collisions, their respective weight
being determined by the order of magnitude of

Ve; and v,. On the other hand, for the e-e colli-
sions, one gets for the isotropic part f {:

5f© Y 8 v 3f
(55),., 5 s [remse suserma 2]

ot v
(A9)
and for the first anisotropy f {:
3Y a;g) o= 13+2J%)
3" (_sf1,aFt, +511), (A10)
v

as well as similar expressions for the higher anisotropies; in (A9) and (A10), the [ and J are the integrals
introduced by Allis.®* Finally, by (A2), (A7)-(A10) and by introducing the reduced variables (2.1), the
whole collision term (A1) may be written for the first anisotropies:

5Fg°>> v [ , < © 18F‘°’>1
< ot ).y  2w° ow Wi)ew® (wFe "3 Tow )T 7wt

SF - = NY -
( —EEL> coll =P FG = LES,
@) (A12)
(%) I el F(Z) T NY L (F &
€Ol

where L,, L,,... are integrodifferential linear
operators depending on F® and defined by (A10),
.., and where

NY
7w ow

<]
(F‘°’I'° sRups w,)%«’—), (A11)
, NY 1
Wy =vi+ve=vi+==—3,
3NY 1 (a13)
(W) =vg+3vgi =vi+ —=—5

let us note that in (A11), the primed integrals T
or J' are equal to (1/MI or (1/N)J.
It is thus seen that the relative effect of Cou-
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lomb collisions with respect to e-» collisions

is characterized by the dimensionless parameter
NY/2%0. K this ratio is equal to (or greater than)
unity, the Coulomb terms will be dominant in
(A11) on account of the presence of the factor &

in the e-n term, while one gets integrodifferential
operators for the anisotropies f‘”, F® ... But
if one has NY/7°7 <1, the Coulomb terms in

(A12) may be neglected (at least in the first ap-
proximations); thus, one can put (v]), =~v{ and
(v3); ~ v} and one thus gets the collisional expres-
sions given in (2.8). In this case, the contributions
of Coulomb collisions occur only in the equation
relative to the isotropic part of the electronic dis-
tribution function and one then has to compare
NY/35%V with 8.
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