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The Enskog transport equation, suitably modified to give the proper short-time behavior, is used to
study the phase-space density correlation function of a dense fluid of hard spheres. The method of
kinetic models is used to obtain numerical solutions for the dynamic structure factor S(Q,w); in par-
ticular, results are obtained for liquid argon. It is found that for the hard-sphere calculations to give
a satisfactory description of the available experimental data produced by computer molecular dynamics
studies and neutron inelastic scattering measurements, the factor g(r,), the pair distribution at contact,
should be replaced by a wavelength-dependent quantity. Moreover, the wavelength dependence deter-
mined by fitting the experimental data shows a close correlation with the well-known behavior of the
static structure factor S(Q). Possible reasons for a nonlocal g(r,) are discussed.

I. INTRODUCTION

The generalized Enskog equation is the simplest
microscopically derived kinetic equation appro-
priate for describing dense fluids. There have
been several recent studies'™® of the general pro-
perties of this equation; however, no numerical
results have been obtained to assess its usefulness
as a basis for quantitative calculations. The pur-
pose of this paper is to present the results of the
simplest such calculations and to discuss their ac-
curacy in describing the density and current fluc-
tuations in liquid argon. .

In using the generalized Enskog equation in any
application, one must keep in mind certain obvious
limitations of this equation. It is well known that
Boltzmann-Enskog-type kinetic equations do not
take into account the dynamical processes that lead
to the long-time tails which have attracted a good
deal of current interest.®* The theory, as described
here, is also tied to the use of hard-sphere inter-
action; therefore, associated unphysical nonanalyt-
icities® in the time dependence of correlation func-
tions can be expected. Nonetheless, the theory is
appealing because of its simplicity and because it
can be derived microscopically. Since we know
what contributions have been neglected, we can
systematically improve upon the theory if we de-
sire to do so.!

We will analyze the generalized Enskog equation
using the method of kinetic models. In this paper
we will restrict the analysis to the simplest model
calculation. The model used will be called the -
dependent single-relaxation-time model (QSRT).
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By taking into account additional matrix elements
of the appropriate memory function, we can ex-
tend the calculation to higher-order models which
eventually should converge numerically to the ex-
act solution.®*?

In the present calculation three quantities have
to be specified, the structure factor S(Q), the hard-
sphere diameter 7, and the pair distribution func-
tion at contact g(r,). Although the method of Per-
cus-Yevick can be used to determine S(®) and
g(r,) once 7, is chosen, this procedure is not likely
to yield satisfactory results in comparing calcula-
tion against experimental data. The reason is that
g(r,) is a sensitive function of », and has a strong
influence on the spectral densities to be computed.
We have found that no single value of g(r,) will lead
to satisfactory agreement between the calculated
spectra and the neutron and computer molecular
dynamics data. Consequently, we will use the ex-
perimental S(Q) obtained by neutron diffraction,®
and then attempt to fit the data by choosing an op-
timal g(r,) value at each wave number. We know
of no theoretical justification for this empirical
procedure. On the other hand, it does give rea-
sonable results and the resulting wave-number
variation of the fitted g(r,) appears to be closely
correlated with the structure factor S(Q).

1II. GENERALIZED ENSKOG EQUATION

The phase-space correlation function to be ana-
lyzed is®
S(F-F,pp’, t—#') =(8fFpt) 6/ 'D't')  (2.1)
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where 6 f(F pt) is the deviation of the phase-space
density

FEBO= 3 oF - &, (1)5G - B, (1) (2.2)

from its equilibrium value {f(¥ pt)) =f,(p), and f,(p)
is a Maxwellian normalized to »n, the equilibrium
number density. In (2.2), {R;(?), P;()} are the
phase coordinates of the particles in the N-particle
system. We define the Fourier-Laplace trans-
form of (2.1)

S@,pp’, 2) —zfd're"Q’/ dt e'*'s@,pp’, ),

(2.3)
and consider a kinetic equation of the form

[2- @-B5/m)IS@, Bp’, 2)
- [ @%19@ 53, 25@Q 15, 2)=-5@ 55",

where ¢(Q, pD’, 2) is the memory function and Sis
the initial value of S(Q, p pp, b,

5@, 55 =) 8B = B") + £, D) (' NS@) = 1]/,

(2.5)

with S(®) being the structure factor of the fluid.

For a fluid of hard spheres with diameter 7, one
can show that an approximate expression for the
memory function is*

0@, PP, 2)=-@Q D/MC@Q)F,(p)

+8r )¢9 @, D), (2.6)
where C(Q) is the direct correlation function
nC(Q)=[S(Q) - 1]/5(Q) (2.1

and g(r,) is the pair distribution function at con-
tact. In (2.6) @ (Q, pp’) is the collision part of the
memory function for a low-density system of hard
spheres.® Inserting (2.6) into (2.4) one finds after
some rearrangements

-

[z - @-B/mIS@ 55", 2)+ @+ 5/m) /o PIC(@ ~g(r)Co(@)] [4°aS@, 35,2 =iglry) I[8] - 5@, 55",

where

Js)=r3 [ 42, &% (G- 5,)-#/mlo_+ B -B,)

<L pRIS@, B*", 2) - £l p)S@, BB’y 2)+ €10

and C,(Q) is the low-density limit of the direct
correlation function. The step function ©_(x) is
unity for x <0 and vanishes otherwise. The pre-
and postcollision momenta of the colliding hard
spheres are denoted as (P, p;) and (p*, p *) respec-
tively.

Equation (2.9) differs from the well-known col-
lision integral in the linearized Boltzmannequation
for hard spheres only in the presence of the phase
factor exp(z'éw”?o). This result has been pre-
viously derived'® ! and the phase factor was re-
cognized as arising from nonlocal spatial effects
in collisions between particles of finite extent.
Because the structure of (2.8) closely resembles
the Enskog equation, ** ** we will henceforth refer
to (2.8) as the generalized Enskog equation.
Whereas the Enskog equation does not give the
second frequency moment of the density correla-
tion function correctly, (2.8) does preserve this
moment by virtue of the term containing C(Q).

III. KINETIC MODEL REPRESENTATION

We employ the method of kinetic models to ob-
tain the density and current correlation functions

(2.8)

7of (PIS@, BB, 2) - 710 Fof(p)S@, BB, 2)]
2.9)

r
from (2.8). We will first cast (2.8) in the form of
a kinetic model equation which is amenable to
numerical calculations.

The method of kinetic models previously has
been used to study (2.8) in the case of dilute gases
where g(r,)=1 and C(Q) can be replaced by its low-
density expression.® Here we will use the same
basis functions in defining the matrix elements of
the memory function. It will be convenient to in-
troduce in (2.8) the memory functions =’ and z,

-

2@ pp)=22@ pp) +29 @, BD"), 3.1)

9@, 59) =@ 5/m)C@)f, D), (3.2)

g0 )L 2@ B/m) [ a°45@, 55", )

+iglry)Jls]= [ 4% 29 @, 59)5(@, 8", 2).

(3.3)
Now consider the expansion

R

*@ £&) BsENf(E)z(@lp), (3.4)
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where

2@lp)= [ a6 a* fy(ea BaE5 @ EE) .
(3.5)

The basis functions ¢ are orthonormalized with
weight function f,(£),

Yima(E) = W minl)~ VY 2H, (£ ) (£ H (L),  (3.6)

where E=%/v, and H,(x) =27/ 2H,(x NZ), H,(x)being
the Hermite polynomial. For simplicity each
Greek index denotes the integers (Imn). For the
memory function Z® one has

29 (tmn| 'm'n’) = —=QunC(Q)Bg; Somb 1100 OomOon? -
(3.7

J

[z - Qutqy + 10(Q)IS@, EE7, 2)

- -
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The matrix elements of Z° between hydrodynamic
states are given in Table I. In addition, we will
need the matrix element

2@ (011]011) = - 16 iVTnY 200 g(r,)

4 a4z /1.
X|:15+dx2 <x ]l(x»]x=070

(3.8)

which is related to the shear-viscosity coefficient.

Given the expansion (3.4) one has a rather stan-
dard procedure for constructing kinetic models.
Our wave-number—dependent single-relaxation-
time description is

=-8@, 88 +1,0)(i(@ + &5 (001]000)] [ a°E5@, EE,2)

+{£,[ix(Q) +2€ (001]001)] +(1V6)(£ — 3)2) (001 | E )} f 4°F T,5@, £, 2)

+{£,29 (E]001) + 1 V6)(£> - 3)[ie(Q) +=@ (E | E)] } 1/F)fd E(E - 3)5@, EE, z))

where the wavelength-dependent collision fre-
quency a(Q) is set equal to s (011]011).

The density correlation function S(Q, w) is ob-
tained from

S(Q, w)=(2/2)Im[S (Q, 2)|; =wsiec, (3.10)

$.Q 2)= [ a%ta*e's@, B, 2). (3.11)

Equation (3.9) can be expressed as a system of
coupled equations for

(3.9)

)=fd3§ dsg/ lpﬂ(gi)s(é, gg’, z) (3.12)
with ¢,() =1,

N
Sa(Q,2)=ia(Q) D" Dgo(@,2)740(Q)S;(Q,2)

0,0=1
=-nD61(Q,Z)S(Q) ’
(3.13)
fo(g ‘pu )‘PB(E)
UB Q Z deEZ_QUOEB.'_za—(Q)’ (3.14)

TABLE I. Hydrodynamical matrix elements **® [n72y g()] ™ 2¢) (e, B).

AN

| 000) | 00D | 100) |E)
| 000) 0 0 0 0
2
| o01) 0 —8ivT (é— + d%ﬂﬁx)) 0 (4r VB, (x)
T 2
| 100 0 0 —41'\/?[%- 1+gx—z>jo(x)] 0
|E) 0 “r N8)jy(x) 0 = $iVT 1 =jo (x)]

aHere x =Q7,, |E)=1//3[|200) +| 020) +| 002},

order i.

and j;(x) are spherical Bessel functions of

bNote the misprints in expressions (3.21) and (3.23) in Ref. 6.
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Yu8(Q) =0, +Z(v[B) /i (Q) . (3.15)

We have solved these equations for S(Q, w).
Following the procedure used by Verlet'® we ob-
tained 7,=1.020, 0=3.405 A, and we have used
neutron diffraction measurements® to determine
S(Q) and C(Q). We then chose g(r,) to give a good
fit to the data at various wavelengths.

Before discussing the fit of the data we note that
one does not expect very good agreement in the
hydrodynamic regime. The reason is that our
simple model does not contain all the matrix ele-
ments of the memory function associated with
viscous flow and heat conduction. We can calcu-
late the shear viscosity from our model,** thus
obtaining

=g amnirigry) + mur2/a(@=0). (3.16)

However, the result derived from the generalized
Enskog equation is®* 15

Ne =[mnr 2/a(@=0)]{1 + 0.761[ 37 nr 3 g(r,)]?

+ Ernrigr,)}. (3.17)

At high densities where g(r,) is larger than 1 the
difference between 7 and 7 is considerable. The
source of the discrepancy is easy to track down.
In our model we have assumed that all memory-
function matrix elements of the form
[ asate £, 2@, EEuaENSsn, (3.18)
where ), is a nonhydrodynamical state, are zero.
This is only approximately correct, and we see
from Eqgs. (7.33) and (7.38) in Ref. 1 that it is just
these terms that change the shear viscosity from
n to ngy. For a better description of the hydrody-
namical region we therefore must include more
matrix elements in our S(Q, w) calculation.

IV. DENSITY FLUCTUATIONS IN LIQUID ARGON

Among the simple liquids currently being inves-
tigated liquid argon is the system most extensively
studied. Density fluctuations in liquid argon have
been measured by means of neutron inelastic scat-
tering’® in the wave-number range @ =1.0-4.4 A~!

TABLE II. Parameters used in the analysis of neutron-
scattering experiments on liquid argon.

m g) 0.597 17x 102
n (em™3) 0.0213x 1024
B! (erg) 0.1176x 10713
ns (P) 0.277x 1072
7y (R) 3.4731

F. MAZENKO, AND SIDNEY YIP 12

and energy transfer E =Hw up to 10 meV, and the
S(Q, w) results analyzed in terms of various gen-
eralized hydrodynamics models.” Essentially
equivalent information, in the form of current cor-
relation J(Q, w) = w3S(Q, w)/Q? has been obtained
by computer molecular dynamics experiments’®
and used to test kinetic equation calculations®®
where the memory function =@ was modeled in a
single-relaxation-time approximation. More re-
cently, computer results on S(Q, w) which extend
to @ as small as 0.183 A~! have been reported, 2°
and these were used to assess the quantitative ef-
fects of potential-energy fluctuations in the kinetic
equation approach.?!

In the present calculations we are mostly con-
cerned with the behavior of S(Q, w) as revealed in
the neutron and computer data. Using (3.9) we
have computed S(Q, w) according to the parameter
values shown in Table II. The value of the hard-
sphere diameter 7, was found by fitting the analyt-
ical solution of the Percus-Yevick equation to the
structure factor S(Q) generated by computer ex-
periments.”® At a given @ we choose g(r,) on the
basis that both S(Q, w =0) and the full width at half-
maximum (FWHM) of S(Q, w) are in reasonable
agreement with the data. This procedure is not
precise because these two quantities cannot be
simultaneously fitted exactly. The general be-
havior of the fitted g(r,), labeled x(Q7,), is shown
in Fig. 1 along with the structure factor S(Q). We
have also used the relation®

~1(1+n+n?
g('ro)‘4n< (1 _n)3 '—1> (41)

with n =gmn7 3 to find 7, for a given value of g(r,).
It can be verified using x(Q 7,) in Fig. 1 that #, is

X (Qry)
S(Q) e}

3

FIG. 1. Wave-number dependence of the fitted g(7;),
labeled parameter x(Q7,), for liquid *¥Ar at 85.2 °K
(solid line). The experimental structure factor S(Q) is
shown as the dashed line. The values of the experimental
radial distribution function at 7, =3,4731 A and that found
from the hard-sphere equation of state (4.1) are indi-
cated by the lower and upper arrows, respectively. In
all the calculations presented below the empirically de-
termined parameter x(Q%)) has been used.
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a very slowly varying function of €. Thus our
physical picture of a hard-sphere fluid is still
reasonable.

It is noteworthy that the wave-number dependence
of X(Q7,) bears such a close correlation with the
structure factor S(@). As a purely speculative
comment we feel this behavior is consistent with
the intuitive expectation that effective collision
rates ought to be relatively lower at those wave-
lengths in the vicinity of near-neighbor separa-
tions. If this is the case, then the effect is more
related to the geometry of molecular packing than
any consequences of dynamics such as those due
to attractive forces.

The spectra of S(Q, w) calculated using the fitted
g(r,) are shown in Figs. 2—4. The results are
compared with neutron scattering data and the
more recent computer results. In Fig. 5 we show
the wave-number dependence of S(Q, w =0), FWHM,
the maximum value of J(Q, w), and the position
where the maximum occurs, En;x =#ZWmax . The
numerical values of these quantities are given in
Table IIT where they have been used to compute the
root-mean-square deviation o (Table IV). For @
<1.0 A~ we did not try to generate the current
correlation function because of the uncertainties
from reading the S(@, w) values from the graphs
of Ref. 20.

We can compare our results using the empiri-
cally determined g(r,) with those obtained by using
a constant value of g(r,). Once 7, is fixed g(r,)
can be calculated in two different ways. Using ex-
pression (4.1) and »,=3.4371 A we find g(r,)=5.43.
On the other hand, a value of 1.88 is obtained from
the experimental pair distribution® at the same 7,
value. In Table III we also show the results ob-
tained with g(r,) equal to 1.88 and 5.43. One can
observe that the lower g(r,) value gives better
agreement at large @ and w, whereas for smaller
@ and w the higher value of g(r,) gives better re-
sults. By giving g(r,) a @ dependence we obtain
significant improvement in the low-frequency re-
gion, a region where S(Q, w) has most of its
weight.

Inspection of the calculated S(Q, w) and J(Q, w)
shows that neither of the two constant values of
&(r,) give completely satisfactory results over the
range of @ values where either neutron or com-
puter data are available. The desired behavior of
S(Q, w) seems to be intermediate to those calcu-
lated using these two g(r,) values. By fitting g(7,)
we find that the modified Enskog equation can ac-
count for all the interesting features of S(Q, w) ob-
served by neutron scattering and computer experi-
ments. From Fig. 2 we see that the onset of a
resonant mode or the presence of collective exci-
tations is predicted correctly by the present ki-

netic theory approach. At the larger wave num-
bers the calculations are generally in good agree-
ment as can be seen in Fig. 3. When the spectra
are displayed at constant frequencies (Fig. 4) we
see that the hard-sphere kinetic equation with a
fitted g(r,) gives a rather good account of the @
dependence which varies in a subtle way with w.
The quantitative agreement achieved in Fig. 5 and
Table I is comparable to the generalized hydro-
dynamics calculations where a characteristic re-

T T ! T
0=.1834""

0.04 —
_,\0.02— —
>
(]
€ .
~ .

“ | |
o
@

Q=.259 Q=.401

0.04 —
0.02 -

.
* .,
e
[
i 2
E (mev)
T T T I
Q=.567 Q =.934

0.02

1
o
e

S(Q,E) (mev)~

Q=.744

E (meV)

FIG. 2. Dynamical structure factor S(@, E) of liquid
3Ar at 86.5°K at eight values of wave-number transfer
Q. Solid curves, QSRT calculations; circles, computer
molecular dynamics data.?
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FIG. 4. Dynamical structure factor of liquid ¥Ar at
85.2 °K at eight values of energy transfer E. Solid
curves, QSRT calculations; circles, coherent neutron

inelastic scattering data.!®
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FIG. 3. Dynamical structure factor of liquid *Ar at 85.2 °K at eighteen values of wave-number transfer. Solid curves,
QSRT calculations; circles, coherent neutron inelastic scattering data.l®

laxation time was used as a fitting parameter.'
Our agreement is also comparable to that achieved
in kinetic equation analysis using a modeled mem-
ory function.’ On the other hand, a formulation
taking into account potential-energy density fluc-
tuations®! apparently gives a somewhat finer de-
scription of the long-wavelength region than our
results.

V. DISCUSSION

In this paper we have applied a kinetic equation
for hard-sphere fluids to the analysis of thermal
fluctuations in simple liquids. Our results on
liquid argon show that over a wavelength region
where the density correlation function can take
on quite different behavior the theory is quantita-
tively successful if the factor g(r,) is reinterpreted
as a wavelength-dependent quantity. Because our
particular fitting procedure is neither operation-
ally precise nor theoretically well founded, the
results shown in Fig. 1 should be regarded as
having mainly qualitative significance. Nonethe-
less, we think that the fitted values of g(r,) are
reasonable because they lie within the estimates
obtained from the Percus-Yevick equation of state
and the experimental g(r) for liquid argon. More-
over, we find that the wavelength variation of the
fitted g(r,) is very closely related to the well-un-
derstood structure of S(Q). Even though we have
not been able to explain this correlation, we be-
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lieve this is an important observation, one worthy
of further investigation.

We can think of at least three possible sources
which can contribute to the manifestation of a
wavelength-dependent g(r,). All these effects a-
rise from the approximations we have made in
obtaining the numerical results; the approxima-
tions are (1) the replacement of the generalized
Enskog equation by the single relaxation time mod-
el QSRT, (2) the neglect of more complicated col-
lision processes, and (3) the representation of
liquid argon as hard-sphere fluid.

The use of model QSRT was motivated mostly by
its mathematical simplicity. While we do not
think this model is the reason for the behavior of
the fitted g(r,), we expect that it will begin to
break down as we approach the hydrodynamical
regime because of the neglect of certain off-dia-
gonal matrix elements of the memory function.
The effects of such matrix elements in determin-
ing the shear viscosity have already been noted in
Sec. III. Since the relaxation time in the model
was chosen to give the correct shear viscosity,
we expect the model to be even more inadequate
in calculating the thermal conductivity because
in the low-density limit the model would have

given a conductivity differing from the correct
value by the factor of 3. The inadequacies of
QSRT can be eliminated by working with extended
kinetic models which include enough matrix ele-
ments to ensure the correct Enskog transport co-
efficients. We know the @ dependence of each ma-
trix element® but it is difficult to anticipate their
effects on S(Q, w) in the range of @ values we have
considered here. Higher-order model calcula-
tions would be of considerable interest especially
when one can determine whether the behavior of
gr,) in Fig. 1 continues to give a good fit of the
data.

Approximation (2) is concerned with the inade-
quacy of the generalized Enskog equation in de-
scribing the dynamics of dense hard-sphere fluids.
It is clear that (2.8) describes only binary colli-
sions and therefore does not take into account re-
collision processes known to be important at high
fluid densities. In particular the Enskog expres-
sions for the transport coefficients must be modi-
fied by the Alder factor,”® n=A(n73ng. This cor-
rection factor is primarily due to the recollision
processes and can be quite important. We find
for n7r3=0.892 that A =1.403.

One can modify (2.8) by adding to the memory

FIG. 5. Wave-number
variation of S(&,0), the full
width at half maximum
(FWHM) of the dynamical
structure factor, the max-
imum value of the longitu-
dinal current correlation,
and the peak frequency of
longitudinal current corre-
lation. In all cases solid
curve denotes QSRT calcu-
lations. In S(Q, 0) the cir-
cles represent the compu-
ter molecular dynamics
data®? for @ =1.0 A™! and
for @ >1.0 A™1 they repre-
sent the neutron data.l® In
FWHM open and solid eir-
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TABLE IV. Standard deviation o(%) for the parameters shown in Table III.

Q@=0.18—-4.4 A1
(1) 2) 3)

o (%)

Q=1.0-4.4 A1 Q@=1.6—4.4 A

@) @) @) (\H) ) (3)

S(Q,0) 33.7 38.5 8.5
FWHM 131 23.0 19.8
Emax oo s e “e e
[J (@ ,E) max/ (E?)

31.4 36.8 9.6 24.0 38.6 7.0
148 24.1 20.6 71.5 23.0 14.4
19.9 16.4 18.5 15.2 10.2 13.8

8.0 44.6 32.0 8.2 39.5 24.2

function =@ the appropriate contribution from ring
collisions.! The calculation of S(®, w) using such
a kinetic description would become much more
difficult, but the results would be extremely inter-
esting and can tell us much about the relation be-
tween molecular collisions and the dynamical
properties of a many-body system.

Approximation (3) is of quite different nature,
and like approximation (2) it lies outside the scope
of the present generalized Enskog equation. It is
widely known that hard-sphere systems show cer-
tain pathological properties because of the nature
of the interaction potential. For example, the sum
rules for a hard-sphere system are intrinsically
different from those for a Lennard-Jones sys-
tem,®'!% and the effects manifest in the very short-

time behavior of the time autocorrelation functions.

A somewhat more subtle difference occurs in the
potential-energy contributions to thermal fluctua-
tions. Although these effects would not be present
in a hard-sphere fluid, they can be treated by con-
sidering a memory function like that given in Eq.

(6.37) of Ref. 1. Recently Jhon and Forster®! have
shown that the effects of potential-energy contribu-
tions can be important in the analysis of the liquid-
argon data at long wavelengths.

It is clear from our comments that to assess
the effects of approximations (2) and (3) additional
data on time correlation functions are needed. It
would be immensely helpful if computer molecular
dynamics results on hard-sphere fluids of com-
parable density and temperature were available.?
The analysis of such data using the method de-
scribed here will indicate the importance of the
more complex collision processes, and a compari-
son of the computer results for hard spheres and
Lennard-Jones atoms would be most enlightening in
delineating those effects that can be attributed to
the details of the interaction potential.
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