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The BBGKY hierarchy is analyzed to construct a theory of vi~eosity in liquids. The approach is an elabora-
tion of a previous theory of self&iffusion. The results reduce to Chapman-Enskog theory at low density and
represent a gene~b7~tion of Enskog theory at high density. The whole analysis is carried out within the
framework of Navier-Stokes hydrodynamics; quadratic and cubic contributions to the nonequilibrium corre-
lation functions do not affect the coe%cient of viscosity.

I. INTRODUCTION

Attempts to employ the time-dependent
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy as a basis for an approximate theory
of transport phenomena fluid systems slightly
displaced from equilibrium have met with limited
success. ' ' The two principal objectives of such
an approach are to develop an internally consistent
theory of transport that circumvents the problems
of N-body dynamics and to develop practical ap-
proximate methods for computing transport co-
efficients and nonequilibrium correlation func-
tions.

One important shortcoming of these efforts has
been a basic inconsistency between the theories
as constructed and the domain of nonequilibrium
behavior to which they are presumed applicable.
In the Navier-Stokes hydrodynamics, which we
exclusively consider, one treats effects linear
in the system gradients or equivalently, the wave
vector that characterizes a displacement. How-
ever, most previous attempts to analyze the
hierarchy have required detailed knowledge of
portions of the correlation functions quadratic
and cubic in the system gradients. ' ' A second
difficulty has been the theories' failure to reduce
to the Chapman-Enskog results at low density.
Another problem is that treatment of a decaying
self-diffusive wave and of steady-state self-diffu-
sion, which should ultimately lead to equivalent
formulations, fail to do so.'' Since the formal
justification for the various approaches must be
considered suspect, it is understandable that little
numerical analysis of the final equations has been
attempted. In fact, because of the failings of these
theories, the idea of using the BBGKY hierarchy
as the foundation of a theory of transport in the
Navier-Stokes domain has fallen into disfavor.

Here we attempt to revive interest in this idea
by concentrating on the first major goal of this
approach —the development of an internally con-
sistent treatment. We have recently shown that

a treatment of the hierarchy for the case of self-
diffusion can be given which only requires con-
sideration of terms linear in the system gradients. ~

Furthermore the approach reduces naturally to
Chapman-Enskog theory at low density.

We shall extend our arguments to discuss shear
viscosity. The present formulation is general and
should admit of later applic. ation to treatments of
thermal conductivity and bulk viscosity. Our ex-
pression for the shear viscosity is rather com-
plicated; we can demonstrate that when simplified,
our results contain those of Enskog dense-Quid
theory. This suggests that our formalism might
be approximated in ways that achieve the second
goal of developing practical computational tech-
niques.

In Sec. II we discuss construction of asymptotic
solutions to the BBGKY hierarchy. The major
emphasis is on a modification of the familiar
Bogoliubov approach to the kinetic theory of
gases. ' As previously indicated, ' the imposition
of dynamic'al superposition leads to a closed set
of equations. The evolution is governed by a non-
dynamical operator composed of two parts. There
is an effective Liouville operator in which the
potential of mean force replaces the ordinary
intermolecular potential and a specific nonlocal
interaction which can couple with the free-par-
ticle streaming. This latter feature is important
and greatly modifies the results. This point was
not fully appreciated in our previous treatment
of self-diffusion4; hence a modification of the
theory is presented in Appendix B. As we rely
upon a modification of the Bogoliubov technique
to extract asymptotic solutions, these suffer from
a problem due to the singular nature of the basic
equations. There are long-range correlations in
the nonequilibrium contribution to the two-par-
ticle reduced distribution function in a limited
region of phase space. No equilibrium property
is affected nor do these correlations affect the
integrals which determine the transport proper-
ties.
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In Secs. III and IV we apply our formalism to
Wavier-Stokes hydrodynamics. Our treatment is
demonstrated to be consistent with general sta-
tistical-mechanical theories of transport, at least
to lowest order in a wave-vector expansion of the
nonequilibrium correlation functions. We consider
shear viscous flow and develop expressions for
the coefficient of viscosity and for determining
the linear term in a wave-vector expansion of
the correlation functions. The relationship to
Chapman-Enskog theory and to Enskog dense-
fluid theory is also demonstrated. Section V
deals with a summary of the theory, a compari-
son with previous approaches, and consideration
of its extension to the problems of thermal con-
ductivity and bulk viscosity.

II. GENERAL THEORY

We limit discussion to a fluid system of N
structureless particles interacting via a short-
range pair potential u(r). The particles are con-
fined in a volume V to which periodic boundary
conditions are applied. The system is slightly
displaced from equilibrium so that linear
nonequilibrium thermodynamics is applicable.
Macroscopically the temporal and spatial

behavior can be of many forms. We con-
sider the evolution of a system prepared
so that a single independent orthonormal func-
tion (IOF) of wave vector k is the only non-
equilibrium displacement. ' ' There are a limited
number of such functions corresponding to each
k. In a one-component system there are five—
two shear waves perpendicular to k, two sound
waves traveling in the + k and —k directions, and
a thermal (or entropy) wave. The IOF have the
property that each decays independently to equilib-
rium without exciting any other; the relaxation
time is (G&') ' where G is the generalized diffusion
coefficient specific to the IOF under consideration.
Their general functional form is

nx(r, t) =~x,e*"' 'f(t),
(2.1)f (t) = exp[(- G&'+i ~)t ],

where 4x, is the specific combination of thermo-
dynamic and velocity displacements which describe
the IOF; +, the frequency of oscillation, is equal
to + ck for the sound waves and zero otherwise.

Our procedure is to use (2.1) as the basis for
postulating forms for the asymptotic behavior of
the low-order reduced distribution function (RDF),
E„(nj.We assume that

L J

n tl

) „(n)=)' " rp(()g(wj 1++ v, (i)+Pg ~, ((j)+ ~ ~ +v„((, n)),
4 —1

(2.2)

where y(i) is the Boltzmann factor, g„is the
equilibrium n-particle correlation function (in a
fluid g, =1), and o„(nj is the nonequilibrium per-
turbation function; o„(njhas the cluster property
that it is only nonzero when all n particles are
close together. Using (2.1), we introduce specific
forms for the 0„,

o„(nj—=f(t)exp(ik R„)U„((p,j,(r,.~j; k),
(2.3)

where R„is the center of mass of the n-particle
group,

The v„(njmay be expanded in powers of k,

v„fnj=V„+iaW„I(2X„- (2.4)
The V„have already been determined from gen-
eral statistical-mechanical considerations. ' Our
emphasis is on the W'„which are the Navier-
Stokes terms. These are needed to determine
the transport coefficients; it is, however, equally
important to show that the higher-order terms,
X„,are unnecessary. In a one-component system
the v„are invariant under exchange of any pair
of particles; they are also restricted by the
symmetry of the IOF to which they refer.

In order to find equations determining the v„,
we examine the first two equations of the BBGKY
hierarchys

~ ~ ~

~

~
~

8 2—+ p, V, +p, V, —V, u S„E,(12)=(N-2) d g, Q V, u(i3) 8,. F,(123),
0 =1

(2.5)

where 8=V~ and d(= dpdr U—sing (2..2) these become
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+L, O, 1 =~11;2 @12 +@212I 1
~~ I tI l 2 9 (2.6a)

~

~

~

~ ~8 2 2—+I., o, (12)=8„+o, (i)+J,(12;3) o, (3)+P o, (i3)+o,(123) +g J,(i;3)[o,(j3)+o,(123)],
i =1 i~j

(2.6b)

where

d((;2)=p Jd(. g(2)2(»)gg(») (g, -p),

M(12; 3)=p f d(, g (3)
g 12

xQ V,. u(13) (8,. -p, ),
j =1

J,(12; 3) = M(12; 3) —J, (1;3) —&, (2; 3) .

(2.6)

To this point our treatment of the nonequilibrium
hierarchy differs from earlier work only in its
generality. ' '

Most previous attempts at solving (2.6) have
relied upon direct substitution of the asymptotic
forms (2.3).' ' ' A more satisfactory procedure is
to construct the formal solution to (2.6) and then
determine unde~ &chat conditions our postulated
forms are consistent with the formal solution.
This can indeed be done. No change occurs in

the equation for v„.however the equation for v2

is much altered.
The formal solution to (2.6a) is

o, (l;t) =O, &x, (1;t=o)

[
t

+ dso, J, (1;2)[o,(2; t —s)+ o(12;t —s)],
0

(2.9)

1 Pl 1 s 2 Pl 1 P2 2 12 t 12 12

(2.7)
with u)= —Ing(12) the potential of mean force and

where 0, =exp(- tI,,). After introducing (2.3}and

performing the time integration, we obtain

[ —O'G+i k p, +i(t) ]v, (l k)

=J, (1;2)[e'" ' » v, (2; k) + e'" ' » 'v, (12;k)];
(2.10)

this result is identical to that obtained by direct
substitution of (2.3) into (2.6a).

We now seek an asymptotic solution to (2.6b)
which takes into account the singular nature of
this equation. This singularity is due to the free-
particle streaming which takes place whenever
particles are outside the range of interaction and
which can introduce long-range correlations among
particles initially well separated. ' To isolate the
singularity, we have decomposed the integral
operators which occur in (2.6b) into two classes;
J, (12; 3) is specifically short range and vanishes
when r„-~. The terms which involve J,(i; 3)
may be long range if o', (j3) or o,(123) have long-
range contributions; they must therefore be
handled with the Liouville operator L, which
causes the singularity. By means of this separa-
tion we can construct an iterative scheme which
affords the possibility of being soluble and handling
exactly the significant mathematical peculiarities
of the hierarchy.

In order to proceed we assume that o, (123) is
a short-range function of the interparticle co-
ordinates; this is preparatory to truncating the
hierarchy by means of dynamical superposition
in which o,(123)—= 0. Then a formal solution to
(2.6b) is

t 2 2

g (12 t)=2 g (12 0) f d 2 9 Q g (1 ', t —g')+2 (12 3) tt (3;t —t)g Q g ((3 t g)).
0 i =1 i =I

+M(12; 3)o2(123; t —v) (2 11)

both v, (12;0}and the bracketed expression in the
integral are short-range functions of &». The
operator 3, = exp(- tL) is not the simple dynamical
operator 8, =—exp(- tL, ). Instead f (12; t ) =82f (12; 0)
is the solution of the associated integrodifferential
equation

—+L f(12; t) =0,

2

Lf(12) =I.,f(12)—g J,(i;3)f(j 3) .

(2.12a)

(2.12b)
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The solutions to this equation have certain sim-
ilarities to those of a modified Vlasov equation';
furthermore our approach has common features
with other recent treatments of the hierarchy. "
The evolution operator 8, has some of the proper-
ties of the dynamical operator 6, ; the evolution
of f (12; t } into its asymptotic form occurs during
an effective interaction time t,„,(r, p). This time
is generally short, -l/s, where / is the range
of interaction [now a bit larger than the range of
u)(&) because of the integral term in (2.12b)] and
s is the mean thermal speed of the molecules. "

But for a vanishingly small set of phase points
t;„,is much less than either the hydrodynamic
time (&'G) ' or the sound propagation time (1('c) '.
We therefore simplify (2.11); the first term on
the right-hand side is zero and the upper limit
in the second is arbitrary. We denote this limit
as t*. Introducing (2.3) we find the result

v2(12) = d7 f(- v)e '"' 2S,e'"' 28(12)
0

(2.13)

where

2

e(12) = Q [ &„e'"'' (&~'v, (i) +&,(12; 3)e'"' '» ~'v, (i3)

+&,(12 3}e'"' '»" »~ 'v, (3)+M(12 3)e'"' '»" »' 'v, (123)j . (2.14)

d 2E212 =E, 1 (2.15)

remains valid; there is an anomalous contribu-
tion of order V '~' which is negligible. Second,
no equilibrium property is affected. Third, the
transport properties are not affected as the re-
sultant integrals all contain factors of u(&„).
Finally, the derivation of (2.13) remains valid.
The term S,eo, (12; 0) would evolve to e '"' R28, ~
x e'"' R2v, (12) which is zero since S,*v,(12) =0.
This follows from (2.13); for the region of phase
space being considered the limits on that integral
are t, and t, +t,„,. Thus S,*e'"' 2v, (12}means
that contributions to the integral are to be deter-
mined for times greater than t, +t*. The integral
is then zero since these are times after which
interaction has ceased, i.e., when S,B(12) is
again zero.

As we introduced a nonlocal operator in
(2.12) to determine an asymptotic solution to this
problem, one might question the value of using
an iterative scheme. However (2.12) is much
simpler than the exact equation. It is independent
of g, (123), and it is susceptible to Fourier analy-

The singular nature of the equation manifests
itself as follows. For ~r»- (P„r»)P~&l while
&» & /, particles initially greatly separated would
collide if the presence of intervening particles
were ignored. An inconsistency arises since
v, (12) need not approach zero as t'»-~, the
integral in (2.13) may be nonzero between to and
t, +t ~„,since S,e(12) might be nonzero during
that time span (t, is the time at which interac-
tion begins and d„,is the duration of the interac-
tion). This problem is not as serious as it ap-
pears. First, the normalization

sis. At the same time the effect of the medium
is introduced in two ways, through the appearance
of the potential of mean force in L, and through

Pa

nonlocal contributions to L. These latter effects
introduce the correspondence with a modified
Vlasov equation, ' a point which we will pursue
in a future paper devoted to approximate solu-
tion of (2.12) for hydrodynamically interesting
situations.

J,(1;2)[V, (2) +V2(12)] =0,

V, ()2)=f d7)l, :.,(12),
0

where

(3.1b)

:-,(12) = V,u) s„[V,(I) + V, (2)]
2

~ Z, (i2; 3)()', ($) + Q )', (( 3))

+M(12; 3)V~(123) . (3.2)

The general statistical-mechanical theory' for
construction of the phase-space analogs of the IOF
can be used to show that for a shear wave

V, (1)=e p„V2(12)=0, V, (123)=0, (3.3)

III. ANALYSIS OF k-INDEPENDENT TERMS

We now consider specific aspects of the non-
equilibrium problems posed by a shear wave, a
sound wave, and a thermal wave. We shall show
that the &-independent terms in (2.4), V„,which
have previously been determined from general
considerations, are solutions to (2.10) and (2.13).

To demonstrate that this approach is consistent
with previous work, consider the &0 terms in
(2.10) and (2.13); using (2.4) these are
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where & is a unit vector perpendicular to k. Then
",(12)=0 and (3.1) is immediately satisfied. For
the thermal wave we find that

( )
p,' 3 o'T

V (12)
& Ing, (12)

2m 2P P
' '

&P

V' (123) = ——,Z =lng, (123)—P Ing, (&2 ),
ag

P

1
=-.(») =—p» 7, V, (12)

2

+p dr p. V]u i3 g i3 V2 j3

= I V, (12) .
Then the right-hand side of (3.1b) is

V, —S,*V,(12)

(3.6)

(3.'I)

while for the sound wave we have

(3.4)
in both cases; since V, (12) is a short-range func-
tion of &», S,*V,(12)=0 and (3.1b) is satisfied.

IV. APPLICATION TO SHEAR VISCOUS FLOW

&i2 3 KC„C~Cv~ k'p
2m 2P PnV mN(C~ —C )

)', (12) = —(
'

) , )', (123) = —( )

(3.5)

In these expressions we have specifically exhibited
the mass and temperature dependence; & is the
coefficient of thermal expansion, & is the iso-
thermal compressibility, C~ and C„arethe con-
stant-pressure and constant-volume heat capac-
ities, and S is the entropy. Since the integral
operator &, (I; 2) from (2.8) is an odd function ofr„,the forms for V„immediately satisfy (3.1a).
By direct substitution we find, for both thermal
and sound waves,

&n=E +E, , (4.1)

where E, is a symmetric tensor of zero trace
and E, is an antisymmetric tensor. Similarly,
& nn is composed of three orthogonal tensor in-
variants

Here we limit the analysis to consider shear
waves for which G =)I/mp, q being the shear vis-
cosity. In (3.3) we specified the &' terms in the
nonequilibrium RDF, V„.Analysis of the linear
and quadratic terms in & requires the diadic &n

and the triadic & n n, where n is the unit vector
parallel to k. By introducing these second- and
third-rank tensors, we make certain the hydro-
dynamieally significant terms are properly con-
sidered when we treat (2.12) and (2.15). We may
express ~ n in terms of its orthogonal tensor in-
variants

e un = —g g (4 [1„1&18]—181„1&—18181„)e„+g g g (3 [1„181&]+1&1„18—Isl&1„)I'~8&
a 8 n 8 y

+ Q Q Q 1„1g1yA„8y,. (4.2)

the 1 are a set of space-fixed orthogonal unit
vectors and

I'„8 ——-'(e„n8-n„e)))n—,(e„6~ —g85 ),
A„z ---', (e„nan ~n„men„+nn8c )

—h (& ~8„+&B~ny+&y5n8) . (4 3)

The first term in (4.2) transforms as the vector
7, the second has an antisymmetric component,
and the third is totally symmetric. Since e n =0
there are only two terms in the diadic and three
in the triadic instead of the maximum allowable,
three and seven, respectively. In the subsequent
analysis we only need that part of the triadic which
transforms vectorially. In addition we also em-
ploy the vector portions of E,n and E,n which are

E n= —p +[3(1~18+18T„)1s
n 8

—2(1s181„)]e„~~ ~, (4.4)

W, =E,: S(12)+E,:A(1 ),2 (4.5)

where Pand S are traceless symmetric tensors
and A is an antisymmetric tensor. Similarly, we
write that part of the k' terms which transforms
vectorially,

X, =e pC(-,'P')+ ~ ~ ~, X, =e T(12)+ ~ ~ . (4.6)

E,n=-g g(1„18—181 )1qe„+ ~ ~ .
n g

We can now construct the most general forms for
0' terms of the low-order RDF,

W, =E,:PB(gP'), P =pp —3 P'I,
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Dynamical superposition is also introduced to en-
sure closure of the Eqs. (2.12) and (2.15) by re-
quiring W, -=O and X, =-O.

We employ these forms to obtain both constraints
on S(12) and A. (12) and an expression for the trans-
port coefficient G. Using (2.4) and substituting
into (2.10), we find two equations linear in k. That
conjugate to E, is

O = J,(i; 2)A (12) . (4.8)

+ —,'A(12) r„]. (4.9)

Of the three terms quadratic in k only the equation
conjugate to & is of immediate interest; it is

p, [G+ —,'P', 8(—'P', )] = J,(1; 2) [T(12)+,S(12) ~ r„

P, =J,(1; 2) S(12),

and that conjugate to E, is

(4.7)
In order to compute C we take the scalar product
of this equation with p,y (1) and integrate over p, .
Using the definition of J,(l; 2) in (2.8), we obtain

G+

dpi'(p)

p4B( ,'p ) = p—dp,d), P, (12)u, (r„)[3 r» T(12)+ ~r» S(12) r„+—,', r„A(12) r»],15'
(4.10)

where

P, (12)=q(1)y(2)g(r„), u, = (1/r)(du/dr) . (4.11)

Since the two-particle RDF is symmetric in the
exchange of particles, X(12) and therefore T(12)
must also be symmetric; the term r„T(12)is
thus antisymmetric and integrates to zero. As A
is an antisymmetric tensor r» A. r» =0. Intro-
ducing a Sonine polynomial" expansion for B

(4. i2)

the final result is

—= G= —b, + — dp, dE, , ,P(12)

xu, (r») r„S(12)r„.(4.13)

The significant feature of this result is that terms
linear in the k expansion of the nonequilibrium
perturbation to the RDF's (i.e., the W„)are suf-
ficient to calculate q.

Formal solutions for S(12) and A(12) can be ob-
tained after introducing the dynamical superposi-
tion approximation. It is convenient to express
S(12) as

105m o
= 2 pD~„+p Q b

&Ding

. (4.i8)

The equations conjugate to E, can be formed from
(4.15) by replacing s &(12) by A(12) and z&(12) by
zero. These equations then have the solution A(12)
=0, which also satisfies the constraint (4.8). The
set of equations (4.7), (4.13), and (4.15), is suf-
ficient to solve the Navier-Stokes problem we have
posed. While complete numerical solution of these
equations appears beyond the scope of present
technology, they comprise the solution of the
BBGKY hierarchy when shear viscous flow is the
only nonequilibrium displacement. The only limi-
tation to the derivation has been dynamical super-
position. We shall now demonstrate that the set of
equations reduce to Chapman-Enskog theory at low
density and represent a generalization of Enskog
theory at high density. The simplifications which
are introduced to establish the correspondence at
high density will perhaps suggest ways to employ
this formalism to improve upon Enskog's theory.

In order to express our results in a more famil-
iar form, we multiply (4.7) by P, S,"),(—,'P', ) y(1) and
integrate over p, to obtain

S(12)= Q b,. s,.(12)+ —,'s, (12) . (4.14)
After a little rearrangement, we find the alterna-
tive forms

Substituting (2.4), (3.3)„(4.5), and (4.12) in (2.13),
we obtain the k' equation conjugate to E,

D, = —— d p, d$, P,.(12)[V,u ~ 8„z„(12)]:s
&
(12),

(4.19a)

s, (12) =

where

d~ 8, [6t»z, (12)+ Qs&(12)J, (4.15)
dp, df, ,z, (12):fV,u S„P,(12)s&(12)],

z,.(12) =P,S",),( ,'P', )+ P, S~),(-,'P', ), -j&0,

z, (12) = 2 (r,2p, 2 + p,2 r,2) —s (r, 2
' p g )f

Q f(12) =-J,(12; 3) [f(13) + f(23)].

(4.16)

(4.1&)

j = v, 0, 1 . . ~ . (4.19b)

The integral in (4.13) involves the analogous quan-
tities D„„andD„„.The presence of the factor
V, u(12) ensures that the long-range correlations
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in the s, (12) discussed in Sec. II do not affect the
results, In the limit of low density one finds that
D» =D» and that Dk„=—D„„relationships which
need not hold at higher densities. Then in terms
oi A = D ', we find that the viscosity is

q=-10A„+—g (A„.D,„-D„.A, ,).

+ —Q Q (D„,A,~D„„-D„„). (4.20)
j k

At low density, only the first term contributes.
Furthermore the iterative term in (4.15), Q s&(12),
may be neglected and 3,- 6, = exp( —f I.,) so that

Dpp

(4.22)

The next simplification is to truncate (4.15) by
dropping the iterative term Q s, (12) yielding

s, (12) = dw 3,0»z, (12), j=0, e. (4.23)

In Appendix A we show that by limiting considera-
tion to hard spheres .of diameter o and approximat-
ing the operator 8,+ L9 by hard-sphere dynamics,
we obtain the Enskog result'4:

q/q, = [I/g(o)] (1+ 0.8a + 0.7712 a'),
a =-', wv'pg(v, ) . (4.24)

There is a slight difference in the a' term because
Enskog's result includes a full Sonine polynomial
calculation of App To perform this calculation in
the present formalism requires using (4.20) and
evaluating the D&„which are nonzero,

Employing (4.19a) would appear to be the most
natural way to treat the hard-sphere problem with
greater accuracy. However because of the diffi-
culties in treating the discontinuities which occur
in the hard-sphere limit (see Appendix A), (Al) or
(A4) are more convenient. A calculation based
upon (A4), which incorporates the approximation
(4.23), will allow us to assess the importance of
the nonlocal nature of I . Preliminary work shows
that this equation is similar to a modified Vlasov
equation, but with some differences, a point that

lim D„=— dp, dp, dbms (1)y(2)
p~p

xiP„is,(12):[z f(12) —z,.(12)], (4.21)

where b is the impact parameter and z~&(12) = 8,+z~;
this is precisely the Chapman-Enskog dilute-gas
result.

The correspondence with Enskog dense-fluid
theory is made by taking the zeroth approximation
to (4.20)

will be pursued in future work. Should we wish
to proceed beyond the use of (4.23), we could base
a computation on (Al) and obtain a measure of the
importance and speed of convergence of the itera-
tive contributions to our solution. As our approxi-
mate approach can be related to Enskog dense-
fluid results, we have a plausible starting point.
So far our use of the formalism has been limited
to hard-sphere systems; applications to systems
with nonsingular potentials are being studied.

V. SUMMARY

Our major result is demonstrating that the
BBGKY hierarchy can be used to develop a theory
for shear viscosity in dense fluids. For several
reasons our approach is a significant advance over
previous attempts to apply the hierarchy along with
dynamical superposition to transport phenomena.
First of all, the hydrodynamic problem is com-
pletely specified by knowledge of the linear terms
in a wave-vector expansion; hence Burnett and
super-Burnett (quadratic and cubic) contributions
to the low-distribution functions are unneees=
sary. ' ' Secondly, our analysis reduces directly
to the Chapman-Enskog results at low density.
Thirdly, Enskog dense-fluid theory is obtained
from a simplified version of the present formalism.
Finally, we have applied the BBGKY hierarchy to
a transport process other than self-diffusion.

Our analysis is based upon a number of specific
considerations. We imposed prescribed asymptotic
forms for the perturbation functions (2.2) and (2.3).
In order to construct a well-defined iterative pro-
cedure for solving the second hierarchy equation,
it was necessary to base our analysis on an in-
tegrodifferential equation rather than a dynamical
operator. In this way we could properly treat the
singular nature of the hierarchy equation itself.
After imposing dynamical superposition we con-
sidered only the Navier-Stokes domain and finally
obtained a closed set of equations from which we
could determine the viscosity of a dense fluid. One
residual problem remained; in a very limited re-
gion of phase space there are long-range correla-
tions in the nonequilibrium part of the two-particle
probability densities. These aff ect neither the
viscosity nor any equilibrium property. They ap-
pear to be inherent to any method based upon de-
composition of the dynamics into that of clusters
of particles since they arise from the free-particle
streaming which occurs after such clusters sepa-
rate.

The current theory differs from our earlier
treatment of self-diffusion in the formulation of
the iterative scheme and the emphasis on the non-
local operator L instead of the I iouville operator
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L, . We summarize the revised equations for self-
diffusion in Appendix B.

Our approach is essentially equivalent to formu-
lating the solution to a doublet kinetic equation; it
thus retains a structural similarity with kinetic
theories of the singlet distribution function which
focus upon ways of constructing a collision opera-
tor applicable to a dense-fluid system. "" A
common feature between these theories and ours is
that in the hydrodynamic limit the doublet perturba-
'.ion functions are functionals of the singlet pertur-
bation functions; i.e., W, is determined by Sy
through (4.15). In all the theories the separation
of time scales into a hydrodynamic period and an
interaction period plays a central role. It is the
methods of affecting closure and of treating effects
due to the medium which differ. Severne's theory
requires no closure but leads to a result involving
a complicated and quite intractable collision op-
erator. " The Rice-Allnatt approach" uses Enskog
closure and develops the theory in terms of a fric-
tion coefficient which is, in general, very difficult
to evaluate. Schrodt and Davis" have coupled ideas
from these treatments and obtain a tractable kine-
tic equation which yields reasonable numerical re-
sults. Our method used dynamical superposition
which is less restrictive than Enskog closure.
However, the imposition of the asymptotic forms
(2.2) and (2.3) is a great limitation; the kinetic
equations may contain a more extensive class of
solutions than those we have assumed. Our final
equations are complicated, but they may perhaps
be approximated in ways which more accurately
include medium effects than either Enskog theory
or the recent work of Schrodt and Davis. The close
relationship with a modified Vlasov equation is en-
couraging.

It is also worthwhile to compare our treatment
with Gross's new approach to the nonequilibrium
problem. " Both theories are inherently nonlocal.
Gross imposes a restrictive functional form on the
nonequilibrium portion of the full N-particle dis-
tribution, in contrast with our more conventional
idea of specifying the form of the lower-order dis-
tribution functions. The Gross treatment formu-
lated with a truncation at the two-body level leads
to the exact initial conditions on the time-dependent
triplet distribution function being satisfied. " Qur
treatment accomplishes this in a different way;
in Sec. III we constructed the k-independent terms
to satisfy the requirements of a general statistical-
mechanical theory of the initial-value problem. '
This leads to the correct value for the sound ve-
locity as does Gross's method. ~ The difference
between the two approaches is still considerable.
Our method is specific to hydrodynamics, incor-
porates whatever exact information about the per-

turbation functions is available, and imposes clo-
sure by neglecting triplet correlations of order k
in the wave-vector expansion. Gross restricts the
form of the full distribution function and obtains
the exact short-time dependence as a consequence.

The application of our method to the problems
of thermal conductivity A. and bulk viscosity g„
creates two difficulties which do not arise in the
treatment of shear viscosity or self-diffusion.
From Sec. III we note that for the tee transport
problems already considered V, = V, =0; unfor-
tunately this is not true for the remaining trans-
port coefficients. Arguments similar to those giv-
en in Sec. IV lead to equations for the perturbation
functions analogous to (4.14) where the term cor-
responding to s„is determined by an extremely
complicated function corresponding to z „which
depends upon V, and V,. To proceed we cannot
employ dynamical superposition in its simplest
form since that requires (incorrectly) that V, =O.
Instead we would drop nonequilibrium triplet cor-
relations only at the linear terms in the wave-vec-
tor expansion. A more serious problem may arise
in the treatment of the equations analogous to
(4.10). A central feature of our approach is that
only Navier-Stokes terms, O(k), need be kept to
compute D and q. Preliminary analysis indicates
there may be difficulties in obtaining a similar
result for A. or q, since it is not immediately ob-
vious how terms corresponding to r» T(12) can
be eliminated. The complexity of this problem may
best be gauged by recognizing that in our treat-
ment the Burnett, O(k'), terms do not contribute
to D or g because of the requirements of continui-
ty and conservation of momentum, respectively.
To obtain the same feature in the case of A. and

g„we must ensure conservation of energy which
is not easily formulated for the problem at hand.
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APPENDIX A

The integrals D„allcontain a fact. or g(r)u'(r)
which for hard-sphere potentials may be written
as —5(r -a, )g(a+). This suggests that evaluation
of (4.19a) at contact would be the convenient pro-
cedure in the hard-sphere problem. While this
can be done, there are numerous pitfalls in passing
to the hard-sphere limit since at contact, P, (12),
V,u(12), and s&(12) are all discontinuous. " To
circumvent this difficulty we note that only the im-
mediate region about r = o contributes to the inte-
gral, and we may substitute g(r)u'(r) byg(a, )e "i"~

xu'(r). Hence, for hard spheres only, (4.19b) is
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V,u ~ 8» = (e + I.,) —(e + L,) —V, U 8», (A3)

D„=2.g (o, )(z «(12):[V,u (12) ~ 8„P,'(12)s,.(12)]),
(A1)

where P,'= cp(1)y(2)e "and the angular brackets
signify integration over p, and g, .

To analyze this expression, we transform to a
resolvent operator formalism in which case the
solution to (4.23) is

s& —-lim G, gz& = lim [cG, —1+G2(L, —B)]z, ,

(A2)

where G~= (e+L) ', L, =p, V, +p, V„and Bf(12)
= J,(1;3)f(23) +j,(2; 3)f(13). Then using the identi-
ty

Substituting these results into (4.22) yields the
Enskog formula (4.24).

APPENDIX B

In our previous treatment of self-diffusion we
did not account for the coupling between the free-
particle streaming and a specific part of the non-
local interaction. In terms of the analysis we
have given here, the quantity X(12) is

X(12)= Q b,.x,.(12), (BI)

with the b, defined. by Eq. (22) of Ref. 4. The
equations determining the x~(12) may be generated
from (4.15) by making the following replacements

D» = —,'g(o+)(d, +d, +d,),

d, = dp, dp, db q(1)y(2) ~P» ~ (z, :Gmgz, .)„,,
(A4)

d~=o tdp, dp2dQ y(1)y(2)(z»:[r ~ 8,2z,.])„

with V=zo -I, we obtain after some manipulation,
Ls,.(12)- L,x,. (12) —J', (2; 3)x,.(13),

s,.(12) -x,. (12),

z, (») - y;(I) = p,SPj.(-'P', ),

Qs,.(12)-J,(12; 3)x, (13) .

(B2)

dp~dp2 dr+ 1 Q 2
p

x((s, :[p„V„+V, V ~ (p„-8„)]zJ
+8~.'Qs )}, (A5)

where l is the range of the interaction. To make
the connection with Enskog's dense-fluid theory,
we ignore both nonlocal effects and the soft part
of the potential of mean force whereupon l =o and
hard-sphere dynamics prevails. Thus d, = 0 and
the computation of d, and d, is quite simple. The
results are

The matrix elements Q„which must be calculated
are then given by

Q„=-pf dp, d(, y~(1) [vu s„P,(12)x,. (12)],

(B3)

instead of Eq. (24) of Ref. 4. For hard spheres the
analogs to (A1) and (A4) are formed by making the
replacements (B2). In the event nonloca1 effects
and the soft part of the potential of mean force are
ignored, we may easily compute the Q~,.; the re-
sult for Qpp is

D„=—32&~a'g(o),

D„,= D„,= '
—,'~o'g (o),—

D„„=—~72@ vo'g(o) .
(A6)

q„,= S&vpo'g(o, ) . (B4)

Since, from Eq. (25) of Ref. 4, D=3/Q«, this is
again equivalent to Enskog's dense-fluid theory.
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