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The fluctuation-dissipation theorem (FDT) valid both for canonical systems in equilibrium and for purely
irreversible stochastic processes with detailed balance is shown to imply that the renormalized values of all

coefficients in the field equation ("mass" and "charges") are simply related to static cumulants of the field. As
a consequence, the problem of determining the static behavior of the system (which reduces to quadratures
when the FDT holds) is completely separated from the dynamic problem; the perturbation theory for the time
dependence of the two-point cumulant has, if properly renormalized, the full statics of the system incorporated
exactly; the renormalized perturbation theory (RPT) will, in general, be much more useful than the
unrenormalized one since in contrast to the latter it does not necessarily require the system to be nearly
Gaussian. If the nonlinearity in the field equation involves only a quartic charge matrix, the renormalized

charge matrix is C '/C ' ', where C ' and C ' are the static cumulants of order 2 and 4, respectively,
whereupon the expansion parameter in the RPT becomes C /C ' ', when the static cumulants are known, the
smallness of this expansion parameter (which does not necessarily require C ' =0, i.e., near-Gaussian statics)
can be checked explicitly. The usefulness and necessity of mass and charge renormalization is demonstrated by
a perturbative calculation of the linewidth of the Van der Pol oscillator; although this oscillator is far from
Gaussian near and above threshold, the result (below, near, and above threshold) is quite satisfactory already
in second and excellent in fourth order; the unrenormalized perturbation expansion, on the other hand, yields

nonsense in any finite order except very far below threshold where the oscillator is indeed nearly Gaussian.
For many-body systems the static cumulants defining the renormalized mass and charge(s) can, in general, not
be evaluated exactly; however, in many cases sufficiently accurate approximate values or experimental
information are available to render the RPT practical.

I. INTRODUCTION

The perturbative construction of correlation
functions for classical fields is, in general, a
somewhat more complex task than for quantum
systems in equilibrium, since there normally is
no fluctuation-dissipation theorem (FDT) relating
the two-point correlation function and the response
function describing the linear response of the field
to an external source. As a consequence, one has
to deal with two independent propagators, two in-
dependent self-energies, and several independent
vertices.

However, for canonical systems in equilibrium
and for purely irreversible random processes
with detailed balance, there is a FDT." In such
cases, the perturbation theory acquires the fol-
lowing three remarkable features. (a) It can be
formulated in terms of one propagator and one
self-energy. ' (b} Static problems can be separated
from dynamical ones; the renormalized values of
all coefficients in the field equation (mass and
charges} can be expressed by static cumulants of
the field; since the set of these cumulants unique-
ly determines the stationary probability distribu-
tion of the field, the perturbation scheme has the
full statics of the system exactly incorporated
after mass and charge renormalization. ; only the
time dependence of the propagator remains to be
determined; the static cumulants necessary to

specify the renormalized mass and charges can
be calculated explicitly for few-body problems,
since they are known up to quadratures whenever
a FDT holds, whereas for many-body systems ap-
proximations or experiments many give sufficient
information on them. (c) The usefulness of the
renormalized perturbation scheme is, in general,
much greater than that of the unrenormalized one;
while expansions in terms of the bare charge(s)
cannot give sensible results in any finite order
unless the system is nearly Gaussian, the re-
normalized expansion has an eventually quite
non-Gaussian static behavior built in exactly.

In this paper we illustrate the above statements
for a field equation with only a cubic nonlinearity
(i.e., a quartic charge}. Other nonlinearities can
be treated as well. The argument is carried out
for purely irreversible processes with detailed
balance but can be carried over without change
to canonical systems in thermal equilibrium be-
cause the FDT is the same in both cases.' ' Sec-
tions II and III set out the notation, specify the
process considered, and briefly set up the basic
perturbation scheme. ' Sections III-VI present
mass and charge renormalization. In Sec. VII
we give, as the probably simplest nontrivial ap-
plication, a perturbative treatment of the Van der
Pol oscillator. The renormalized expansion for
the linewidth gives very satisfying results al-
ready in low orders, even near and above thresh-
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old where the oscillator is far from Gaussian;
in. contrast, an expansion in terms of the bare
charge is shown to be nonsensical near and above
threshold in any finite order.

II. PURELY IRREVERSIBLE RANDOM PROCESSES WITH

DETAILED BALANCE

Consider random variables 1tp, (t )E (-~, +~),
labeled by the discrete or continuous index 1, and
let their dynamics be described by the Langevin
equation

g, (t ) = U»$2 (t ) + U»341t'2 (t )$3(t )1I'4 (t ) +f, (t ),
(2.1)

where repeated indices are to be summed over.
Let f, (t) represent Gaussian white noise,

Q, (t, ) to a time-dependent external source. In
the above two equations, I is the Fokker-Planck
differential operator in the equation of motion for
the probability distribution P(t),

P(1', t) =LP(g, t), LP =0, (2.9)

C„(t ) = R„(t—)D„+D,P„( t ) . —

While the static value C(0) of C(t) can, in princi-
ple, be evaluated as a second moment of I', the
time-dependent C(t ) is, in general, not obtainable
in terms of quadratures. Therefore, a perturba-
tive method of constructing c(t ) is of interest.

which is equivalent to the I angevin equation (2.1).
The correlation functions C(t ) and R(t ) are related
by the fluctuation-dissipation theorem ' '

&f, (t,)f,(t, )& =2D„~(t, —t, ), (2.2) III. PERTURBATION THEORY

and let the diffusion matrix D»&0 be independent
of the field P. Assume that the process (2.1) is
purely irreversible, that is, that the drift vector

1 4 ) U12~2 1234~2~3~4 (2.3)

(2.4)

transforms like g, under time reversal,

P1($ ) =&1E1($) with $1 =&1/1, e1 = +1,
when t/r- 1tI for t- t(no summ-ation convention in

formulas involving e, ). Finally, assume detailed
balance to get the potential conditions4

[0,(t), &2(t)1=~.2. &i(t)[ ]&=0. (3 1)

A perturbation theory for classical processes
has been developed by Martin, Siggia, and Bose.'
An adaption of the general scheme to random pro-
cesses for which the FDT (2.10) holds has been
given by Deker and Haake. 2 In this section we
sketch the formalism inasmuch as it is needed
for our present considerations.

The variable g, already defined implicitly for
t =0 in Eq. (2.8) as 4t = —s/a111, is defined for all
times by the requirements

D12 = elf 2D12

8 8
D E, , D„E, .

(2.5)
It then obeys the field equation

g, (t ) =U21$2(t)+3U234, $2(t)$3(t)$4(t ).
Then the stationary probability distribution P(P)
of the field is uniquely determined by its gradient
in g space, '

(3.2)

The field equations (2.1) and (3.2) may be combined
to give

8—— lnP =D12 2 (2.8)
to(12)C (2)

8

We will be concerned with the stationary two-point
correlation function

C,.(t, —t, ) =& 4, (t, )4.(t, )&

=y (12)C (2)+, y(1234)c'(2)4(3)C (4)+
~f, t,

(3.3)

, expI t, —t, ,I'

and the response function

R„(t, —t, ) =e(t, —t, )( g, (t, —t, )g, ( )&0

(2.7) where

$0

(3.4)
=e(t —t ) dq ltd exp[L(t —t )]

which relates the linear response of the field

(2 8)

The matrices y(12) and y(1234) will be referred
to as "bare mass" and "bare charge, " respective-
ly; they may be chosen symmetric in all argu-
ments; only those of their elements do not vanish
for which one index refers to g and all others ~-
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y(12) = y(21) = 6(f, —t, )y,"2, y» —U,

y(1234) = ~((t, —&, )~ (&, —t, )6 (&, —t, )y;„, , (3.5)

pe
G(1234)6A()6()6A()lnS(A)

The second-order cumulant reads explicitly

(3.7)

The field cumulants are then defined, with the
help of the generating functional

(~, (t, )(r

S(h) =([exp'(1)@(l)],}, A(1) =
&

l, (3.6)

yield perturbation expansions for ~ and ~ in terms
of the bare charge y. The first few terms of
these expansions are represented in Fig. 2 in
terms of the graphical symbols for 6, y, I', ~
given in Fig. i.

Note that the vertex I' has„ in general, four in-
dependent nonvanishing components with respect
to the spinor indices, since one, two, three, or
four of its indices may refer to (t( (see Fig. 3).
However, the number of independent components
of C, ~, and I' in our case reduces by vir'tue of
the FDT (2.10). As for G, the FDT immediately
allows us to eliminate the response function 8
in favor of the pure-P cumulant C. By using the
Dyson equation (3.9), the FDT for G may be ex-
pressed in terms of the self-energy as

(C„(t,—t, ) Z„(t, —t, ))
G(12)=IR

(f t) 021 2 1

and obeys the Dyson equation

(3.8)

—E;; (t ) = Z;, (t )D„+D„Z;,( t)-
„(t)D"„ fo t 0

D»Z2, (- t) for t&0, (3.13)

= 6(13)+ [2D(12) +2 y(1245)G(45) + ~(12)j G(23),

(3.9)

with

1 0
5(12)=5, 6(t, —t, ) (

t'0 0)
D(12) =6(&i —t~) i2

whereupon all components of ~ derive from
~;;(t ).' As a consequence, the Dyson equation
(3.9) reduces to a single equation for C(t),

Cis(t }=[&i2+»i2~5C4s(0}+ i4 (0) 42 ~C23( }
t

dt' E;4(t —t')D~2 C,(t'}, t & 0.
0

(3.14)

I (1234)

(3.10)

&(12)= xi y(1345)G(36)G(4V)G(58}1'(6782) (3.11}

and

&(1234) = y(1234) + 2 y(1256)G(58)G(69)&(8934)

+26 + 6G 6
G(58)G(69)&(8934).

&&(12) &&(12)

(3.12}

Equations (3.11}and (3.12) can be iterated to

The Langevin noise source enters this equation
only through the first term in the brackets on the
right-hand side of (3.9). The next term in the
brackets is the Hartree-Fock part of the self-
energy, while

( 0 Z(t, -t ))
i,~mi (t2- tl} Eis(ti a) )

is the collisional part of the self-energy. We
shall call ~ "self-energy. " It is related to the
four-point vertex 1'(1234) by'

x (1234)

G (~2)

z (12)

FIG. 1. Graphs for I, y, 6, Z.
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+ 0 + e + ~ +

(&23& ~ 12&3) .()2aa

+ 0(y'}

FIG. 4. Graphs for C and g.

moment of the stationary probability distribution
I'. We may thus rewrite Eq. (3.14) as

13('}=- i.C4R'(0)C23(')

(4.2)

= y (1P3&)

= b~ (f234)

FIG. 2. Perturbation expansions for I' and Z in terms
of the bare charge.

Of course, the elimination of R is completed ex-
plicitly only after replacing each & appearing in
the perturbation expansion for &» (Figs. 4 and 5)
by invoking the FDT. Equation (3.14) has to be
complemented by the initial condition

C,„,(0') = D,„, - (3.15)

which also follows from the FDT.

Since the bare mass y» is now eliminated in favor
of the exact C„(0), we have carried out mass re-
normalization. Note that no counterterms are
necessary in the perturbation expansion for ~ »
according to Fig. 5, since this expansion involves
the exact propagator C(&) rather than its approxi-
mation in zeroth order in the bare charge p;234.
Note also that, while mass renormalization is
possible for processes with or without a FDT, it
is precisely the FDT which allows one to relate
the renormalized mass to the static second-order
cumulant in our case.

V. CHARGE RENORMALIZATION

The perturbation expansion for &;;(f) displayed
in Fig. 5 goes in terms of the bare charge p;234.
We expect the usefulness of this expansion to
improve when it is reorganized as a power series
in terms of the renormalized charge:

IV. MASS RENORMALIZATION

The initial condition (3.15) allows for the fol-
lowing identification of the bracket in the first
term in the Dyson equation (3.14):

I 'Y,",+ p;„,C„(0)+ Z;; (0}D,'] = —D, C,,'(0) .
(4.1)

If the perturbation expansion for & «(0) is inserted
here, we obtain a perturbative equation for the
static cumulant C»(0).' It is unnecessary, how-

ever, to determine C„(0)from this equation,
since we consider C»(0) known as a second

y" (1234) =5(t, - t, )5(t, t, )5(t, t, )y-"„. ,

y;", = d&, j dt, f ui, r;

(5.1)

FIG. 3. Nonvanishing spinor components of I" and y;
straight (wavy} legs represent g- (P-} indices.

FIG. 5. Perturbation expansion for X~2, obtained from
Fig. 2. by carrying out the summation over the spinor
indices.
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This reorganization follows standard lines and
will be sketched briefly below. The important
point, however, is that the renormalized charge
y" in our case is, due to the FDT, related to
the static pure-g' cumulants of order two and four,
as

rP22s = tsCss(0) C27(0} Css(0) Css(0) Csvss( i =0}

(5.2)

and can thus in principle be evaluated by quad-
ratures from P. The algebra needed to establish
Eq. (5.2) is presented in the Appendix.

In order to generate the perturbation expansion
of ~» in powers of y", we insert the identity

y (1234}= y" (1234}+~y(1234) (5.3)

in the expansion for I' in Fig. 2. The resulting
series is displayed, for the sake of completeness,

FIG. 7. Definition (5.1) of the renormalized charge;
the circle around a vertex (and, later, a vertex part)
means taking the =0 Fourier component and multipli-
cation with 6(t&-t2)6(t -t&)5(t4-t &) if one of the four
free indices refers to $, and zero if two or more /-
indices appear.

in Fig. 6. The correction &y is then determined
order by order in ys by requiring Eq. (5.1) (which
is represented graphically in Fig. 7) to hold in
each order. The resulting series for the bare
charge y and the vertex I' are shown in Fig. 8.
When these series are inserted in the self-energy,
we obtain Fig. 9, or, with the help of the FDT,

& f; (f ) = ', r-"„„C-„(f)C„(f)C„(f}r,"„;
t

0

;"„,C„(0)C,(0)y,"„;D,', C, „(f)C, „(f)C, „(t),", „„;O(y" ) . (5.4)

VI. DISCUSSION OF THE RENORMALIZED EXPANSION

Since we consider C(') (0) known, there remains

c (f ) C (2 ) (f )C (2)(0)-t (6.1)

E(12) = — $ ~ t i
4

2+ 0(y")

FIG. 6. Perturbation expansion for I' from Fig. 2, with
Eq. (523) inserted.

to be determined by solving the Dyson equation
(4.2) with the self-energy (5.4). By inserting (6.1),
we easily see that the renormalized expansion for
Z involves yacc ' (0}'=C "(0)/C ' (0)' as expansion
parameter(s). Inasmuch as the static fourth-order
cumulant C ' is also known, one can, in principle,
check whether this expansion parameter is small
enough for the expansion to be expected useful.

Note that the smallness of C(')(0)/C(')(0)' not
necessarily requires the system to be near-
Gaussian.

The renormalized expansion has the static
cumulants C(')(0) and C(')(0) built in exactly. In
a sense, even the full probability distribution I',
i.e. the whole statics of the system, is built in
exactly, since our field equation involving only
y " and y", the stationary distribution I' is of
the form exp(AP+BP'); the coefficients A and &
are uniquely fixed in terms of C(')(0) and C(')(0).
More generally, for processes with field equa-
tions involving y(") (22=2, 3, 4, . . . , N}, all of these
"charges" can be renormalized and the y ""be
expressed in terms of the static cumulants C(")(0)
(n =2, 3, . . . , N) if the FDT (2.10}holds; the set
of these cumulants again defines the stationary
probability distribution uniquely, so that the per-
turbation scheme for c(&)=C(' (f)c" (0) ' has the
exact static behavior of the system incorporated.

Of course, for many-body- systems the quad-
ratures giving P, C ' (0), C ' (0), etc. , cannot
generally be carried out exactly. But an approxi-
mate evaluation of y may still be possible or
sufficient experimental information available;
at least, the present considerations serve to
separate static from dynamic problems for pro-
cesses with the FDT (2.10).
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u=n q/

~ ~ ' +1 I~2 +1 4~1 4 + )'
I g/

2
~ + ~ ~ ~ I ~ ~

FIG. 8. Expansions of the
bare charge and the vertex
in powers of the renorznal-
ized charge.

~ ((23/ —&(2/3( ~ (123/~(3/2) J ~ 0 (t/'( )

The renormalization program presented here
makes use of no feature of the process in question
other than that the FDT (2.10) should hold. Since
this theorem is valid for canonical systems in
thermal equilibrium (with a different meaning of
the matrix D»),2'2 all of our considerations are
valid for such systems as well.

VII. THE VAN DER POL OSCILLATOR

The two-dimensional Van der Pol oscillator
is known as a model for a single-mode laser
operated near threshold and has been studied in
some detail. ' Its behavior is described by the
Langevin equation

t =at IoI' t +f, (7.1)

where t( is the complex oscillator amplitude, f a
Gaussian-white-noise source,

(f(t )f (t ')) =(f + (t )f + (t) ) = 0,
(f(t)f +(t')) =4&(t —t'), (7.2)

and a(-:(-~,+~) the so-called "pump parameter;"
for a ——~ (no pumping), the nonlinearity in Eq.

j

t
C(')(0)c (t ) = —2c(t ) —x'(1 —-'x) dt' c(t —t') i(t'2)

0

(7.1) is negligible, whereas for a&0 (above thresh-
old), the nonlinearity is essential for preventing
the oscillator amplitude from blowing up. The
stationary probability distribution reads

I'(b, t(+) =%exp[ ——,'(bt(+ —a)2] . (7.3)

This is approximately Gaussian far below thresh-
old (a- —~), but definitely not Gaussian near and
above threshold. We therefore expect any per-
turbation theory in powers of the bare charge to
fail except for a--~." It is only the mass- and
charge-renormalized perturbation scheme which
we can hope to be useful near and above threshold.

In order to test the usefulness of the renormal-
ized perturbation scheme, we note

fo
r,"2,2+ =ran*2*2*2 = —2, (7.4)1 op'

(0 1
c„(t}=c()(0)I~ I (t),

and find, from Eqs. (4.2) and (5.4), to third order
in y~,

dt" c(t —t ")' „c(t"—t')' c(t —t')c(t'), (7.5)

dIc I; (7.7)

The Markovian approximation consists in re-

with the expansion parameter

x(g) C(4) (0)/C(2) (Q)2

Equation (7.5) should be solved numerically. We
have, instead, contented ourselves with a
Markovian approximation for the linewidth ~,

placing f~'dt '522 (t —t')c (t') by f2" dt' &~2(t')c (t);
this immediately leads to (including the fourth-
order contribution}

C"' (0)X =2 —-'x'+, x' —',",x'+0 (x') . (7.8)

By invoking Bisken's results' for C ' (0) and
C(')(0), we find that Eq. (7.8) produces the right
asymptotic dependence of ~ on u both far below
and (I) far above threshold,
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2,0

c(&

1,6.

I I I

0,8"

+ 0 ((yg)"j

FIG. 9. Charge-renormalized expansion of Z(12).

FIG. 11. Linewidth of the Van der Pol oscillator cal-
culated in first (curve 1) through fourth (curve 4) order
in mass- and charge-renormalized perturbation theory;
the dashed curve gives the exact result (Hefs. 9 and 11).

8
1234 ( 2& 3i 4} 1235( 2~ 3i 4 54

if t4&Q, t2, t3, (A1)

1
y(g +00) cc-a'

For a more detailed comparison, we have plotted
the expansion parameter x(a) in Fig. 10 and the
linewidth &(a) obtained in first (&=0), second,
third, and fourth order in x in Fig. 11. While
these plots demonstrate a surprising success of
the renormalized perturbation scheme, Fig. 12
illustrates the failure of a perturbation calculation
with renormalized mass but unrenormalized
charge; we have not plotted any result of the fully
unrenormalized perturbation calculation because
the latter gives nonsense except for the uninter-
esting case a-- .

We conclude that the renormalized perturbation
scheme, although possibly being only semicon-
vergent, leads to a quantitatively good description
of the dynamics even in situations where the sys-
tem is defiriitely non-Gaussian.

G. .. (0, 0, 0) = dt2 dt3 dt4 G, ;;;(t„t„t, )

52 8874 (A2}

where for the purposes of this appendix only we
introduce the following convention for the indices
of G and ~: an underlined index refers to g, an
index with a hat refers to g, and indices without
either specification may refer to either P or g.
The proof of (A1) is the same as that of the FDT
(2.10) for G(12)."'

Next, we prove the following identity for the
static pure-g cumulant

APPENDIX

In order to prove EII. (5.2}, we provide our-
selves with the FDT for the fourth-order cumu-
lant,

-10

X
i&

10
I I I I I

/

1O

FIG. 10. Expansion parameter x(a).

FIG. 12. Linewidth of the Van der Pol oscillator cal-
culated in first (curve 1) through third (curve 3) order
in mass- but not charge-renormalized perturbation
theory; the dashed curve gives the exact result (Befs.
9 and 11).
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After splitting the three-dimensional integration range on the right-hand side of (A2} into six parts
such that &; - t, ~ t, in each part, we can use the FDT (Al) and carry out the integration over the
smallest time; then the right-hand side (A2) reads

2 3 1 584 2& 3~ 3 52 63 2 dt, G, ;,; (t„t„f, )D,+, )
p p

p t4
(A3)

Since the fourth-order cumulant (in contrast to the second order one} makes no jump at &, =&&, we may
again invoke the FDT (A1) to rewrite (A3) as

dt2
'2 d

[ i8&4 (» 3~ 3 5+2Ggs54(t t»mit~) 8~+Ggsy7 (tsar f» 2 74

dt [G g (t, t, t )D G s (t, -t, t )D +G ~-(t, t, t )D j
(A4)

By repeating the argument once more, we recover the left-hand side of (A2).
We now relate the right-hand side in (A2) to the vertex 1" by

G(1234}= G(11')G(22')G(33')G(44')&(1'2'3'4')

or, more specifically,

G(1 234) =R(11')I'(1'2'3'4')R(2'2)R(3'3)R(4'4) .
0

By expressing the R's in (A6) in terms of C's with the help of the FDT (2.10), and inserting the result
in (A2), we obtain

(As)

(A6)

Gi2s4»o o)

p

dt dt dt cift
' dt '

t2

QQ 93

C, ,(f,
' —t,)c, ,(t,' —t,)C, ,(t4 —f,)

= „c( o}D;,'r "... c...-(o)c...(o)c...(o) . (A7)

This establishes Eq. (5.2}.
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