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The cooperative-problem lattice model for gases, liquids, and solids on a face-centered-cubic lattice is

approximately solved. A hard-core interaction is assumed between particles on nearest-, next-nearest-,
and on next-but-one nearest-neighbor lattice sites. Particles on lattice sites which are at a greater
distance from one another are connected by an arbitrary soft pair interaction whose zero Fourier
component may be positive or negative. By considering not only homogeneous particle distributions
but also some simple periodical particle distributions on the lattice we can, in the case of a mean
attractive soft particle interaction, prove the possibility of the existence of four thermodynamical
stable phases: a gas phase, a liquid phase, a solid modification with a face-centered-cubic periodical
structure, and a solid modification with a simple cubic periodical structure. Transitions between these
phases can take place.

I. INTRODUCTION

A general statistical thermodynamical theory
which predicts all possible phases of a classical
many-particle model of a real substance and de-
scribes the thermodynamical behavior of all these
phases completely if a definite particle interac-
tion is given, is still not available. The reason
is the great mathematical difficulty of evaluating
the grand canonical partition function. Neverthe-
less, the possibility of the existence of several
different equilibrium particle density distributions,
corresponding to different thermodynamically
stable phases, could be proved within the frame
of simple lattice models. Although these models
are in many cases not completely true-to-nature
pictures, they allow us to understand, in principle,
how the interaction between the microscopical
parts of a real substance influences its macroscop-
ically thermodynamical behavior. On the basis of
these models and with comparatively little mathe-
matical work, one can calculate phase diagrams
which are at least qualitatively in good agreement
with experimental results. "

Examples which have been treated up to the pres-
ent are (a) the Ising lattice-gas models for a gas-
liquid system, ' ' (b) the pure hard-core compound
lattice mpdels pf a twp-phase fluid-splid system9
and (c) the extended hard-core compound lattice
models with an added soft particle interaction de-
scribing fluid-solid systems which can occur in
a maximum of three phases. ""'"""

Recently, some comparatively simple lattice
models with competing short-range repulsive and
long-range attractive particle interactions have
been studied. These appear to exhibit the thermo-
dynamical behavior of a system with more than
three phases. 4' 4'

The present paper investigates an extended hard-
core compound lattice model which, like the other
models, ' "is still not a completely true picture
of realistic multiphase systems in nature, but ex-
hibits characteristic features of the thermody-
namical behavior of certain systems. Examples
in nature are the three-phase systems of inert
gases and the four-phase system of sulfur. A sec-
tion of the compound lattice of this model is shown
in Fig. 1.

The compound lattice is a face-centered-cubic
(fcc) lattice, built up by V lattice sites, which is
composed of black and hatched fcc sublattices and
a white complementary sublattice. The black and
the hatched sublattices, which may be designated
1 and 3, respectively, consist of g, V and g,V lat-
tice sites with g, =g, =8. The white sublattice,
designated 2, consists of g,V lattice sites with

4L

FIG. 1. Face-centered-cubic compound lattice com-
posed of three sublattices.
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&2=8 ~

With the aid of a compound lattice like that in

Fig. 1, a greater number of phases of different
geometrical and physical structures can be simu-
lated in principle. If one considers a statistical
ensemble of lattices, one can imagine homogeneous
particle density distributions p, =N„/g„V on the
three sublattices of our compound lattice model
(v =1, 2, 3; N, is the number of particles on the
sublattice v). With the aid of these sublattice den-
sities p„ the following statistical homogeneous
or periodical particle density distributions over
the whole fcc lattice can be generated in principle:

P] P2 P3$ P] P'3 P2$

p~
= p2= ps~

p2 pg p3p pj p3 p2~

P2 —= Pg ~ Psp P2 ~ Pg
=

P3p

p )p )p.
It will be shown from the state equations to be

derived later that density distributions represented
by I can, within the frame of our approximation,
be interpreted partially as equilibrium distribu-
tions of the lattice model which belong to certain
stable phases. The structure p, & p, & p, may then
be considered as a solid phase with fcc structure,
and will be called the solid Phase. The structure
P, =-P, & p, may then be considered as a strongly
distorted crystal (or an ordered crystalline liquid)
of simple cubic symmetry. It will be called the
modification. p, =—p, —= p, can represent fluid phases
of various densities. In our model, only two fluid
phases will occur: one fluid phase which is stable
at higher densities, which will be called liquid,
and one fluid phase that is stable at lower densi-
ties, which will be called gas. These are the four
phases of our model.

The density distributions II will not result as a
reasonable solution from the approximated state
equations (6), (13), and (21)-(25) which belong to
stable phases of the model. They are therefore of
no physical interest.

Some assumptions about the particle interaction
must be made to complete the construction of the
model. The interaction may be a two-body inter-
action -v;& consisting of the following.

(i) An extendedhard core witIE v„.=-~ for i = j and
for pairs (i, j) of nearest-, next-nearest-, and
next-but-one nearest-neighbor lattice sites.

(ii) A soft interaction tail characterized by ttM

following ProPerties: For all other pairs of lattice
sites [which are not counted in (i)], v;; may be an
arbitrary regular function of the lattice site dis-
tance ~i —j~ which is summable in the sense that
the restricted sums

v(r) = P v... v(rs) = P v, , ,
j

r, s =1, 2, 3 (1)

exist. The sums are restricted in that i =j and
the pairs considered in (i) are forbidden. In v(r),
the fixed index i designates an arbitrary lattice
site of the sublattice &, and the running index j
designates all the other sites of the same sublat-
tice & which are not forbidden by the restriction.
v(r) represents the negative potential energy of
sublattice & per lattice site. The fixed index i in
v(rs} designates an arbitrary lattice site of sub-
lattice ~, while the running index g covers all
lattice sites of the other sublattice s which are not
forbidden by the restriction. v (rs) represents the
negative potential energy per lattice site of sub-
lattice r with sublattice s.

The following symmetry relations are valid be-
tween the v(r) and v(rs):

v(1) =v(3), v(13) =v(31),

v (12) =v (32), v (12) = (g, /g, ) v (21),

v(21) =v(23).

(2)

With the aid of the v(r) and v(rs), the total negative
interaction energy per lattice site on the whole
lattice -v is given by

v =v(r)+ g v(rs), r=l, 2, 3.
S=&,8& r

v(1) —v(31) v(3) —v(13)
V V

v (r) and v(rs) are completely determined by v,
v(12), and v(13) according to

(4)

v(1}=g v[1+3v(12}+4v(13)],

v(2) =g v[3+v (12)],

v(13) =g,v[1+3v(12) —4v(13)],

v (12)=g,v [1 —v (12)].

Apart from the strengths of the interaction v,
the geometrical structure of the interaction plays
an important role in the attempt to clarify the
connection between particle interaction structure
and phase transition behavior of the model by the
theory. In the frame of our theory, it is useful to
characterize the interaction structure by the fol-
lowing two interaction structure parameters v(12)
and V(13).

v (1)+v (13)—2v (21) v (2) —v (12)
v v
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The grand canonical partition function " of the
model defined above can now be evaluated in mean-
field approximation. "" The result is a compara-
tively simple relation between the pressure P, the

temperature 7.', the sublattice densities p„, and
the chemical potential p, of the model on the one
hand, and the interaction terms v (r) and v (rs) on

the other hand:

p =-, [gp(1)(p&)'+g3v(3)(p3)'+g v(2)(p2)'+g v(12) p& p2+gav(21)P2P~+ tv(13)P~P~

+g,v (31)p, p, +g,v (23)p, p, +g,v (32)p, p, + 2 (g, p, +g, p, +g, p, )p,]+ (1/VP) in[%'„, (p„p„p,)]. (6)

Wh, (p„p„p,) in (6) is the so-called combinatorial
factor of ", that is, the number of all configura-
tions on the lattice with fixed sublattice densities
p„p„p, which are compatible with the hard-core
interaction. P is the conventional abbreviation
P =1/kT with k the Boltzmann constant. The for-
mula (6) is only of practical use if W~,(p„p„p,)
can be evaluated. This will be done approximately
in Sec. II.

The derivation of state equations on the basis
of (6), their solution and the construction of cor-
responding state and phase diagrams will follow
in the other sections.

II. EUALUATION OF THE COMBINATORIAL FACTOR

+g -(P 1 P 2 P 3 )

The calculation of combinatorial factors is a
central problem in statistical mechanics. The
difficulty in our case is correct consideration of
the hard-care correlation. The hard-core corre-
lation of our model is transferred by a limited set
of subfigures. These subfigures are all different-
ly occupied (by a maximum of one particle because
of the hard core inte-raction) or empty lattice site
subsets. The largest subsets, the so-called basic
subsets, are the sets 8a-8d in Fig. 2.

Figure 2 shows further subsets which together
with Sa-Sd form a so-called overlapping sequence.
This means that each member is generated by an
overlapping of two members which precede it in
the sequence. The subsets in Fig. 2 are desig-
nated by a double index lk, where 1 is the number
of lattice sites and h the type of the subset. In our
model, a transfer of the hard-core correlation
may be approximately considered only by the sub-
figures formed of (single-particle) occupied or
empty subsets of the types shown in Fig. 2.

The state of occupation of a subset lh with one
particle may be designated by an index & which
assumes the values 0, 1, 2, 3. ~ =0 designates the
empty state. k =1 denotes the occupation of a black
site of sublattice 1. & =2 denotes the occupation of
a white lattice site of sublattice 2. k =3 denotes
the occupation of a hatched lattice site of sub-
lattice 3. In this way, a subfigure is not uniquely
but sufficiently characterized by the indices lh

and k. (A complete designation indicating which
single lattice site is occupied remains open. )
Consider once again a statistical lattice ensemble
on which the particles are distributed with sub-
lattice densities p„p„p,: there is then also a
distribution of the subfigures with indices (fk, &)

mentioned above with corresponding mean occu-
pation numbers or probabilities. These distribu-
tion probabilities may be designated (P""')(&)
[(P""')(k) is the number of subfigures lh, k divided
by the number of subsets Lh].

For reasons of consistency, the (P""')(k) are
only functions of p~. These functions are sum-
marized in Table I. Probabilities (P""')(k) of
subfigures lIt, , &, which differ only in that different
sites of the same sublattice are occupied, are
equal. This means that (P" ')(&) occurs with a
multiplicity p(lh, k). For example, because the
subsets Sa-Sd each have six white lattice sites,
there are j(6h, 2) =6 different subfigures for each

Ba Bc Bd

6a 6b

3b 3c

2b 2c

6 0
1b 1c

I'IG. 2. An overlapping; sequence of lattice site subsets
Eh which participate in the transfer of the hard-core cor-
relation.
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TABLE I. Subfigure probabilities (p""')(k) and coefficients of multiplicity j(lh, k).

(~(t h) ) (1) j(LA, 1) (p(lh&) (a) j(lh, 2) (p(l h) ) (3) j(lk, 3) (p '"»(0) j(lh, 0)

8c

8d

P3 1 —pg —p3 —6p2

6b

4b

2c

1b

1c

Pg

pg

pg

p2

P2

p3

p3

p3

P3

1-p&
—p3-4p2

1-6p2

1—P3 —3P2

1 —Pg —2P2

1-P3—2p2

1 —3p2

1-P3-p2

1 —2p2

1—p

1-p3
1 —p2

subset where one white site 2 is occupied. All
these subfigures are distributed with the same
probability (p""')(2)= p, . The coefficients of
multiplicity j(lh, k) are also listed in Table I. It
is now clear why the designation of a subfigure
with the indices lh, and & is sufficient.

The calculation of ~h, (p„p„p,) in our approxi-
mation is therefore equivalent to the counting of
all configurations with fixed sublattice densities
p, and fixed probabilities (P""')(k), whereby the
relations of Table I between the (P""')(k) and p„
must be used. Similar problems" "'~4'" were
treated with a method which is based on a reduc-
tion of the problem of counting configurations on
the original lattice (the so-called basic lattice)
to the counting of configurations on so-called
pseudolattices where the correlation is limited to
small ranges. Examples of pseudolattices are
giveninRefs. 35-37, 44, and 45 (see, e.g. , Figs. 4
and 5 in Ref. 45}. The pseudolattices are produced
from the basic lattice by a successive decomposition
into subsets belonging to an overlapping sequence
(in the case of our model, the subsets of Fig. 2).
Utilizing the designations given in a former pa-
per, "the basic lattice may be designated p(0) and
the pseudolattices P (0, I„-,I„). P (0, I„-,I„) means
that the basic lattice P(0) is decomposed into sub-
sets of types l,@ in a first step, delivering a pseu-

dolattice p(0, I,). A further decomposition of the
subsets L, Il of the pseudolattice p(0, l, ) into subsets
of types I,h (I, &I,) delivers a pseudolattice
P(0, I„I,). The procedure can be continued until
a decomposition of the basic lattice P(0) into sub-
sets of types I„k is reached. " There are many
possibilities of successive decomposition. Each
such successive decomposition designates a path
of decomposition. The paths of decomposition of
our model are listed in Table II.

On the basic lattice P(0) and on each pseudolattice
P (0, I„-,l„), there are well-defined numbers of
subsets of all possible types I h (l ~l„). Instead
of these numbers, densities (i.e. , numbers of
subsets per lattice site if V lattice sites of the
basic lattice are given) can be defined.
x(0, I„-,l„; f„h) is the number of subsets of types
l„ll per lattice site on the pseudolattice p(0, I„-,l„}
In Table III, the x(0, /„-, l„; L„h) are stated as
functions of the coordination number z of the basic
lattice (z =12) and the lattice site densities g„ for
all pseudolattices considered in. Table II. In
Tables II and III some pseudolattices are desig-
nated as P(0, l„.. . , 6-4, . . . , l„}. This means that
a simultaneous decomposition in subsets of types
6k and 4k is performed in one step only.

On a pseudolattice P(0, l„-,t„) one can —as for
the basic lattice P (0}—also consider distribution
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TABLE II. A scheme of the various possibilities of a decomposition of the basic lattice into
a series of pseudolattices. Path I=complete decomposition. Paths II, III, IV=decompositions
where one, two and three pseudolattices have been dropped in the series of decomposition.
Path V =direct decomposition.

P (0) P (0,8) P (0,8,6-4) P (0,8,6-4,3) P (0,8,6-4,3,2) P (0,8,6-4,3,2,1)

rv

P (0} P (0,8) P (0,8,6—4) P {0,8,6-4,3) P (0,8,6—4,3,1}
P (0) P (0,8} P (0,8,6-4) P (0,8,6-4,2) P (0,8,6—4,2,1)
P (0} P (0,8) P (0,8,3) P (0,8,3,2} P {0,8,3,2,1}
P(0} P(0 6—4} P(0 6—4 3} P(0 6—4 3 2} P(0 6—4 3 2 1)

p(0}-p(0, 8}—p(0, 8, 6-4) -p(0, 8, 6-4, 1}
P (0) P (0,8) P (0,8,3) P (0,8,3,1)
p (0} p (0,8) p (0,8,2) p (0,8,2,1}
P (0) P (0,6—4) P (0,6—4,3} P (0,6-4,3,1)
p (0} P (0,6-4) P (0,6—4,2} P (0,6—4,2,1}
P (0) P (0,3) P (0,3,2) P (0,3,2,1}

P (0) P (0,8} P (0,8,1}
P (0) P (0,6—4) P (0,6-4,1}
p(o}—p(o, 3) -p (o,3,1)
P (0}-P (o,2) -P (o,2, 1}

p(0}-p(o, 1)

TABLE III. Subset densities x(O, li, —,l„;/„h) on the pseudolattices P(o, li, —,l„). The first subcolumns belonging to the
columns P(0, 8,6-4) and P(0,6-4) represent the densities of the subsets 6a and 6b, while the second subcolumns repre-
sent the densities of the subsets 4a and 4b.

P{0,l, ,—,/„) P(0,8) P (0,8,6-4) P{0,8,6-4,3) P (0,8,6-4,3,2) P{0,8,6-4,3,2, 1) P (0,8,6-4,3,1)

x(o,li, —,l„;l„a)
x(o,li, —,l„;l„b)
x(o,l, ,—,l„;l„c)
x (O,l i9 j/„; l„d)

2zgi
2zgi
2zgi
2zgi

6zgi 8zgi
2zgi 8zgi

0
0

4z2

4z gi
2 (z+ 4)zgi

0

8z2gi
8z2gi
16Z2gi

0

8z2gi
8z2g2

0

4z2gi
4z2gi
4z2g2

0

p{0 li Ln) P(0,8,6-4,2) P(0,8,6-4,2, 1) P(0,8,6-4,1) p(o, 8,3) p{0,8,3,2) p(0, 8,3,2,1)

x(0~/i»/n '/n a)
x(O, L, ,—,L„;/„b)
x(o,li, —,l„;/„c)

p(o, l i,—,l„)

x (O~/i»/n; Ln a)
x(o,l i,—,l„;/„b)
x(O, l i,—,l„;l„c)

4z gi
4z2gi
8z gi

P(0,8,3,1)

3z gi
3z gi
3Z g2

4z2gi
4z2g,
4z g2

P (0,8,2)

3z gi
3z gi
6z gi

(z+ 2)zgi
(z+ 2)zgi
(z+ 2)zg2

p(0, 8,2,1)

3z gi
3z2gi
3z gg

3z gi
3z gi
2z gi

p(o, 8,1)

8zgi
8zgi
8zg2

6z gi
6z gi
12z gi

zgi 3 gi

0

6z2gi
6z gi
6z2g2

p(O, 6-4,3)

4zgi
4zgi
8
3 Zgi

p(o, l, ,—,l„) p(0, 6-4,3,2) p(0, 6—4, 3,2, 1) p(0, 6-4,3,1) p(0, 6-4,2) p(0, 6-4,2,1) p(O, 6-4,1)

x(o,li, —,l„;l„a)
x(o,li, —,l„;l„b)
x(0~/i»/n ~ /n

P(o,l„-,l„)

8zgi
8zgi

z(z+ 4)gi

p(o, 3)

Szgi
8zgi
8zg2

P(0,3,2)

4zgi
4zgi
4zg2

P(O, 3,2,1)

4zgi
4zgi
8zgi

P(o, 3,1) p(o, 2)

4zgi
4zgi
4zg2

p(0,2,1)

T'zgi

6 Zg2

p{0,1)

x {0,/i, —,/„; L„a)

x(o,li, —,l„;l„c)

2zgi
2zgi
3
4

4zgi
4zgi
8z

4zgi
4zgi
4zg2

2zgi
2zgi
2Zg2

zgi
Zgi
2zgi

zgi
zgi
Zg2

gi
g2
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probabilities &P
"~"'&(k) of all possible subfigures

with / ~l„. One can then ask for the number
Q(0, I„-,I„;&P«~"'&(k)) of configurations on the
pseudolattice P(0, I„,I„-) or the basic lattice P(0)
with fixed probabilities &P« "'&(k) (I ~l„). The
configuration numbers Q(0, I„,I„;—&P«"~'&(k))
increase if one proceeds along a path of decom-
position in Table II, because the restrictions im-
posed on the configurations are eliminated one by

one as the range of correlation is successively
reduced and disconnection of the lattice grows.

The counting of the Q(0, I„-,I„;&P
«~"' &(k)) how-

ever remains a difficult problem if l„tl . It
therefore appears reasonable to try an approxi-
mation of Wh, (p„p„p,) by a simple function of the
Q(0, I„-,I„;&P "~"'&(k))with I =I„. These con-
figuration numbers can be easily calculated by
the formula

Q(0, I„-,I.; &P"""'&(k)}=I.[
lnh

[~(0,I„,I„-; I„k)V]!
[[&P&' »&(k)x(0 I I ~ I k)V]l}&&' " ~& (7)

In the case of the pseudolattices P(0, l„—,6-4) the product index l„h in (7) assumes the values 6a, 6b, 4a, 4b.
In all other cases, it is simply /„a, l„b, . . . .

A comparatively simple functional dependence of IVh,(p„p„p,) from the Q's of (7) can be found with the
aid of the following set of combinatorial Ansatze:

-rof I 0!
q(0 I I I ( "")(k))=

=rof I oi
Q(0 l — I I &

«'g)&(k)) ( &y y ml t4t s my nt n)&

r (O, l„-,IJO, I„,I., I„;-I„)= [r(O, I„-,I.~ O, I„-,I., I„; I„')]"&" —'- "&,

IVh, (p„p., P.) =Q(0; &P""'&(k)).

(8)

(10)

The &r(0, I„-,I, I„) in (10) are arbitrary positive functions of the sublattice densities p„. There are 15
relations (10). The corresponding index sets

and

are listed in Table IV.
The system of equations (8)-(11)allows now an elimination of the Q(0, I„-,I„; &P "~"'&(k)) with

I el„which are not easily calculable functions of the probabilities &P«~"'&(k). The result is a simple
rational function

IVh, (p„p„p,) =I~f[@(0,I„-,I. ; &P"""'&(k)}]], (12)

whereby all Q's of the system (8)—(11}, calculable according to (7), occur in (12). If one uses the density
functions &

p""')(k} listed in Table I and also Stirling's formula for great values of V in (7), (12) can be
easily evaluated, delivering

(1/V) In[IV&„(p„p„p,)] = —g, 6p, lnp, —g,6p, lnp, —g,6p, lnp, +g,y(1 —p, ) ln(1 —p, )

+g,y(1 —p, ) ln(1 —p, ) +g,y(1 —p, ) ln(1 —p, ) +g, c (1 —p, —p, ) ln(1 —p, —p, )

+g,c (1 —p, —p, ) ln(1 —p, —p, ) +g,2(g, /g, )e (1 —2p, ) ln(1 —2p, )

+g, y(1 —p, —2p, ) ln(1 —p, —2p, )+g,y(1 —p, —2p, ) ln(1 —p, —2p, )

+g, f(g, /g, )&p(1 —Sp, ) ln(1 —Sp, )+g, g(1 —p, —Spa) ln(1 —p, —Sp, )

+ g,g(l —p, —Sp, ) ln(1 —p, —Sp, ) +g, !t(1 —p, —p, —4p, ) In(1 —p, —p, —4p, )

+ g, 2(g, /g. )X[I —(g./g;) p.] in[1 —(g./g, ) p. ]

—g, 8m [1 —p, —p, —(g, /g, }p, l »[I —p, —p, —(g, /g, )p, ],
whereby z, 6, &, rp, P, !& are the following functions of the n's from (10):
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6 = o!(0,2)n(0, 3)n(0, 6-4)+g(8 + o'(0, 8)[-—", + &(0, 6-4){-2+&(0, 3)[-3—&(0, 2) +2o'(0, 3, 2)]

+ o.(0,6-4, 3)[4+4n(0,6-4,3,2) + —", n(0, 6-4,2)]
—8o'(0, 6-4,2)&(0,6-4, 3,2)]

+ o.(0,8,6-4)(-8n(0, 8,2)n (0,8,3)

+@f1~ So.'(0,8, 3)[1+o'(0, 8,2) —&(0,8,3,2)]])]),
y = —n(0, 2)n(0, 3)n(0, 6-4) + z n(0, 8)(o' (0,6—4)(a(0,3)[n(0,2) —2 o (0,3,2)]

+ n(0,6-4,3)[-4o.(0,6-4, 3,2) ——", o.(0,6—4,2)]

+ 8n(0, 6-4,2)n (0,6-4,3,2))

+ a(0,8,6-4)(8n(0, 8,3)&(0,8,2) —Sz n(0, 8,3)[&(0,8,2) —o'(0,8,3,2)]}),

e =z &(0,8)(&(0,6-4)[3o'(0,3) —4&(0,6-4,3)] —Sz&(0,8,3)a(0,8,6-4)],
y = z o'(0,8)[2o.'(0,6-4) —z &(0,8,6-4)],

(o,8),

X =
& g = —'2' z o.'(0,8),

(14)

(15)

(16)

(17)

(18)

(19)

&+y+~+y+g+y =8m. (20)

The formula (13) for W„,(p„p„p,) can even be
correct if the o' functions from (10) are corre-
spondingly chosen.

Because the o.'functions influence li~, (p„p„p,)
only over the functions y, ~, e, y, (, g from (14)—
(19), there are many possibilities for a suitable
choice of the + functions.

A simple ansatz can be obtained by the assump-
tion that z, &, e, y, g, p are very slowly varying
functions of the sublattice densities p„which can
be replaced by constant parameters chosen in the
way that most reasonable results will be obtained.

and z is the coordination number of the fcc lattice.
The functions y, 5, e, y, g, y are not independent,
but are restricted apart from (19) by the relation

The condition n(l„—,t„)&0 must be fulfilled there-
by, of course. Combinatorial Ansatze of this kind
(so-called MQC approximations) were compara-
tively successful in the cases of some other hard-
core lattice models. 4' ' They may therefore also
be used for our model.

III. STATE EQUATIONS AND THEIR SOLUTION

A complete system of mean-field state equa-
tions is obtained if (1/V) in[iih. (p„p„p,)] of (13)
is inserted in (6) and the sublattice densities p,
are determined in the way that the resulting pres-
sure function becomes maximum. This means that
Bp/sp, = sp/8 p, = sp/s p, = 0 must be fulfilled. A
differentiation of (6) combined with (13) delivers
the following state equations:

(1 - P, )"(P,) (1 P, P, ) (1 -P,-2P, ) '(1 -P, -Sp, )-'(1 -PP 4P--)"-
[1 p

'p (g/g )p'y,
' ' ' ' =exp(p[u( )p +u(12)p +v(13)p +P]],

(21)
(P9 ( 3 P2) ( Ps P2) ( P3 P2) ( Pl PR P2) (P[~ (3)p ~(32)p ~g) (31 )p + p]].

[ 1 ,p.p-(Z, -a/, ) -.p"]

(22)
((1 —p2)~(p, ) 1(1 —p, —p, )'(1 —p, —p, )'(1 —2p, )"(1—p, —2p, )'~(1 —p, —2p, )'~(1 —3p, )'~(1 —p, —3p, )'~

& (1 —P3 —SP2)' (1 —Py —Ps —4P, )'" [1 —(8' /8' )P ]'"y' ')/[1 —Pg —Pg —(8'2/8'$)P2]"

= exp(P[v (2)p2 +v (21)p~ +v (23)p~ + p]],

(23)

~ =gx~z+g2I 2+g3] 3 ~

(24)

(25)
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The coupled system of transcendental equations (21)—(23) can be solved by a graphical method after a
separation which leads to the following system of equations:

(26)

(27)

(26)

(29)

X**=(l—p, ) (p, ) (1 —p, —p, )'(1 —P, —2p, ) (1 —P, —3P, ) exp[-pvv(13)p, ],
A. **=(1 —p~)&(p, ) (1 —p, —p2)'(1 —p, —2p2)~(1 —p~ —3P2)s exp[-Pvv(13)p3],
y" = (I —p, )'(p, )'RI —2P,)"(I —3P,)"(1—(a, /@)p )'"]'x'2 expI-P» (12)p

l =l **II —(p, + p, ) -4P.] "exp(PvIv(13) -v(12)](p, + p, )/2],

~=~*RI-p, - p.)'(I p, -P..-)'(I -P, -2P.)"(I- p, - 2P)" (I p, -—3P.P'
x (1 p,——3P,)"(I —p, —p, —4P,)'"]"", (3o)

& = (I pl@—)"exp(tibial -v(12)]p+ p'l), (31)
whereby the relations between the sublattice interactions and the interaction structure parameters derived
in (2)-(5) are used.

On account of (29) and (30), the following relation between &* and A.
** is valid:

~**= ~*El P, —-P, )'(I P, P,-)'(I -P, -—2P,)"(I P, —2-P,)"(I P, —3-P.)"
&& (I —p, —3P.)"(I —p, —p, —4P. ) '"]""

exp(-Aviv�(13)

-v(12)](p, + p, )/2} (32)

TABLE IV. Scheme of the index numbers l&, —,l~ and
l„,l„' for all possible index sets l„-,l ~l„-,l,l„;l„and
li, —,lm~l&, —,l~, l„;i„' which must be considered in connec-
tion with formulas (8)-(11}.

lg, —,lm
ln ln

0
8,6-4

0,8,6-4
2,1

0,6—4
21

0,8
6-4, 3

0,8,6-4,3
2s 1

0,6-4,3
2 y 1

0,8
3*2

0,8,3
21

0
3g2

0,8

2, 1
0

6-4,3
0,3
2..1

0,8,6-4
32

0,6-4
32

0
21

The graphical solution of (26)-(32) may be per-
formed in four steps.

The first steP is illustrated in Figs. 3 and 4. In
Fig. 3(a), the functions &**(p,) and &**(p,), given
by (26) and (27), respectively, are drawn for
medium values of Pvv(13) as a group of solid-line
curves with group parameter p, . It is now as-
sumed that each of these curves either represents
a solution p, =—p, or that two unequal sublattice
density functions p, (A,**)and p, (X**)correspond
uniquely to the two branches of each curve in the
interval 0 &A.**&&**(P»),whereby P» is the branch
point.

In the last case, the median line (p, + p, )/2 for
each curve is also drawn as a solid-line curve in
Fig. 3(b). If Pvv(13) increases in the positive di-
rection, the solid-line curves in Figs. 3(a) and
3(b) are pressed against the (p, + p, )/2 axis,
whereby the branch-point densities p(P») tend
towards zero. If Pvv(13) increases in the negative
direction, the same curves will be stretched away
from the (p, + p, )/2 axis, whereby p(P») tends
towards the unit density.

The function &*(p,) defined by (28) exhibits a
similar course to that of the solid-line curves of

(q +q )/2

0, 5

0
0, 5

1/18

2/18
Po g—

/g,

(q, q )/2 1!18

0 25-

Po

2/18

Sing P3
2

L

FIG. 3. Construction figure for the graphical deter-
mination of the solutions p~(A,**) (& =1, 2, 3) of the sys-
tem (26)—(28) and (32). (a) Construction of the solutions
with p& —= p3& p2 and p&

———
p3 ———p2. (b) Construction of the

solution with p~ @p2 &p3. The numbers at the curves
designate values of the group parameter p2. The scale
of the ordinate of (b) is doubled compared with that of

Fig. 3(a) in the interval 0&p, &g,/g, . The de-
pendence on the parameter Pvv(12) is also similar
to the influence of Pvv(13) on the group of curves
in Fig. 3(a).
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0.5

(g, g )/2

0
0.5

(q +q )/2

f/g
2

points can be obtained if one intersects these
curves with those curves generated by an inter-
section of the faces p,(&**),p, (&**),&**= X~* with
the faces (32). Projections of these intersection
curves with group parameter ps in the &**,(p, + p, )/
2 plane are drawn for the case pq

= p~ in Fig. 3(a)
and when p,w p, in Fig. 3(b) as broken-line curves

The intersection points of the broken-line curves
with the solid-line curves in Fig. 3(a) and Fig. 3(b)
are plotted correspondingly in Fig. 4(a) and Fig.
4(b) for a positive medium value of Pvv(12) as a
group of curves with group parameter Pvv(13).

In a second step, the A, **,(p, + p, )/2 curves of
Fig. 4(a) and Fig. 4(b) can be mapped by the trans-
formation (29) into the A. , (p, + p, )/2 plane. The
result is the corresponding curves in Fig. 5(a) and

Fig. 5(b). In Fig. 4 and Fig. 5, a well-defined
value p, which can be considered as a curve pa-
rameter exists for every point on the curves.

In addition, it must be stated that, apart from
the intersection points with p, =p, & p, in Fig. 3(a),

0.5

FIG. 4. Two groups of (p&+ p3)/2 vs A** curves with
group parameter Pvv(13) and curve parameter p2 rep-
resenting solutions of (26)-(28) and (32) constructed with
the aid of the method which is illustrated in Fig. 3. (a)
Curves with p~ —= ps &p2. (b) Curves with p& &p2 &p3. The
numbers at the solid-line curves designate values of the
group parameter PvP(13). The numbers at the broken-
line curves designate values of the curve parameter p2
in units g&/g2 which are assumed at the intersection
points of these curves with the solid-line curves. In {a)
at the origin there is p2 = g&/g2 while at the filled circles
~, p2 ——0 is valid. In (b), at the point (p&+ p3)/2=0. 5, p2
=0 is found, while at the filled circles ~, p2=g&/g2 is
valid. At the cross points )t(, values of p& with pt & gt/g&
which become smaller if Pea(13) decreases are assumed.

(q q, »&

0
0, 5

(q +g )/2

Consider now the three-dimensional ~**,p„p,
space: for fixed values Pvv(13), Pvv(12), the func-
tion (32) can be represented by a group of faces
with group parameter p„because & is a unique
function of p, on account of (28). On the other
hand, the solid-line curves of Fig. 3 can be rep-
resented by a group of space curves with group
parameter p, in the ~**,p„p, space. These space
curves intersect the faces (32) at well-defined
intersection points uniquely delivering a corre-
sponding pair of p„p, values with p, =p, p, for
the solid-line curves of Fig. 3(a) and with p, & p,
for the solid-line curves of Fig. 3(b) for each
value of the group parameter p, . As the space
curves corresponding to Fig. 3 lie in the faces
p, (&**),p, (&**),&**=&**,the same intersection

g/

FIG. 5. Two groups of (p~+ p3)/2 vs A, curves with group
parameters Pvv(12) and Pvv(13) and curve parameter p2

which are maps of the corresponding curves in Fig. 4
generated by the transformation (29). Correspondingly
drawn lines and points in Fig. 5 and Fig. 4 have thereby
the same meaning and belong to the same values of
Pvv(13) and p2 respectively. The curves in Fig. 5(a) are
independent of v(13) and vary only with group parameter
v(12) while in Fig. 5(b) v(12) is kept fixed and v{13) is
varied as group parameter.
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there are further intersection points with p, =p3
= p, . [In every case, there are two intersection
points in Fig. 3(a).]. Corresponding curves with

p, =—p, = p, in Fig. 4(a) and Fig. 5(a) are however
not drawn, because an analytical function

~ =-(1 —p)'(p)'(1 —2p)'(I —3p)'(1 —4p)"'

x [1 —(g2/gi)p]" exp[-P vv (12)p]

can be derived directly from (26)—(30).
Ln a the"d step, the sublattice densities p, for

each single point of the curves in Fig. 5 can be
superposed according to (25). In the case of the
curves of Fig. 5(b), this delivers the two filled-
circle curves with p, gp, gp, in Fig. 6. The longer
curve is valid for greater positive values of
Pvv(13), while the shorter curve ending at the
cross is valid for greater negative values Of

Pvv (13)
For a, curve of Fig. 5(a) with a medium negative

value of Pvv(12), the superposition delivers the
unfilled-circle curve with p, =—p, gp, in Fig. 6.

The function (33) corresponding to the solution
pjL

—= p2=—p, is drawn in Fig. 6 as a solid-line curve
valid for greater positive values of PvP(12). At
some greater values of Pvv(12), the unfilled-circle
curve is compressed and lies within the loop of
the filled-circle curve valid for Pvv(13) &1. In
addition to these curves in Fig. 6, the function (31)
is plotted for two values of v[1 —v(12)] and a posi-
tive medium value of the parameter p, . The dashed
curve is valid when 'v[1 —v(12)]&0, while the al-
ternately dashed and dotted curve is valid when
v [1 —v (12)] & 0.

Given fixed values of Pv, v(12), and v(13), the
curves which represent (31) intersect the filled-
circle, the unfilled-circle, and the solid-line
p(&) curves in Fig. 6 at well-defined intersection

FIG. 6. Complete construction figure for the graphical
deterxQlnation of the p( p) lsothelms,

( FCC

I'IG. 7. p(p) isotherms of the lattice model for a pre-
dominantly attractive soft particle interaction (v & 0) and
small positive values of v(13) and

~
v(12)

~
at medium gas-

liquid subcritical temperatures.

points for suitable values of the parameter p, .
I» fourth and last step, one can plot all the p

coordinates of the intersection points as functions
of the chemical potential p, . Such curves are
drawn in Fig. V. They are valid for medium tem-
peratures, v &0 and 0&v(13),v(12) &1 [ ~v(12)~ not
too great] if suitable values for y, 5, s, y, g, y are
chosen. Lines of the same type in Fig. 6 and Fig.
'7 represent thereby the same density structures.
The solid-line curve in Fig. 7 belongs to the struc-
ture p, == p, =—p, and represents the fluid-state iso-
therm. The filled-circle curves belong to the
structures p, & p, & p, and p, & p, & p, (p, & p, & p, )
and their higher-density branches represent the
close-packed periodical density distribution with

p, & p, & p, of the solid phase. (The combinatorial
parameters y, 6, s, cp, f, )t will be chosen in the way
that p, &p, &p, and not p, &p, &p, will occur. ) Their
lower-density branches represent the unstable
structure p, & p, & p, . The curve where the vertex
lies more to the left is valid for greater positive
values of F)(13) than the other curve ending with a
cross.

The unfilled-circle curve corresponds to the
structures p, —= p, & p, and p, & p, = p, . %h]Lle the
higher-density branch of the isotherm represents
the density distribution of the modification
(p, = p, & p, ), the lower-density branch represents
the unstable structure p, & p, =—p, . The sublattice
density isotherms p„(p, ) (v =1, 2, 3) can, of course,
be drawn in the same way.

The graphical solutions of the state equations
have shown that solutions like the structures p1

p, -=p, and p, =-p, &p, are not at all possible.
Concerning the influence of the interaction struc-

ture parameters v(12), v(13) and the total negative
interaction energy per lattice site v on the course
of the p(g) isotherms, the following statements
can be given.
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X&0 (34)

(1) If v becomes negative, the loops in the con-
tinuous curve of Fig. 7 are annihilated. This is
also the case if the temperature increases above
the gas-liquid critical point. Our model then ex-
hibits only one fluid phase (gas), the liquid phase
being prohibited.

(2) If vv(12) assumes increasing positive values,
the filled- and unfilled-circle isotherms in Fig. 7
shift more and more to the left side. On the other
hand, a shift of both curves to the right side in
Fig. 7 is enforced if vv(12} becomes more and
more negative.

(3) In a similar way, the situation of the p(p)
isotherms is influenced by vv(13). Positive in-
creasing of vv (13) shifts the filled-circle curve
to the left side of the unfilled-circle curve, while
an increasing of vv(13) in the direction of negative
values enforces a shift to the right side.

In connection with the construction of the p(p)
isotherms, it was stated that such reasonable iso-
therms as those of Fig. 7 are only valid if suitable
values of the parameters y, 6, e, &/&, g, X are chosen.

What restrictions must be imposed on these
parameters so that p(p) isotherms like those of
Fig. 7 can be calculated' The y, 5, e, &p, P, X ex-
tensively influence the courses of the p(&«) iso-
therms at low and high densities, because they
determine the courses of the p(&&) curves in Fig. 6
at &&-0. The dependence of the p(&&) curves on
these parameters at ~- 0 may therefore be dis-
cussed systematically.

First, it is clear on account of (18) and (19)
that

because n(0, 8) is positive, as are all the o."s.
Second, there must be

Q&0 (35)

f, =5+(@/a.)f, +f, 'o,
f= y + E + &/-& + $ = 82 —5 —X,

f, =a+2&&&+3$+2X&0.

(36)

If (36) and (37}are valid, a regular high-density
solution of the structure p, p, p„represented
by the higher-density branches of the filled-circle
curves in Fig. 7, can always be constructed with

because the functions (28}and therefore the cor-
responding function &&(p, ) would otherwise exhibit
an unreasonable course at ~-0, p, —0. The same
can be stated concerning (33) when A. -O, p-O.
Condition (35}ensures a reasonable low-density
course of the fluid-state isotherm and is a neces-
sary condition for a correct course of the p, (»)
isotherms of the structures p, & p, & p, and p, =—

p3
& p, at high densities.

T/&i&d, a real solution of (26)—(30) with p, -1,
p, - o p, —o ~*-0 ~**-0 ~- 0 which exhibits
the density distribution of the real close-packed
structure p, & p, & p, must exist. (The structure
p, & p, & p, is also of fcc symmetry, but does not
represent the real density structure of close-
packed hard spheres in contrast to p, & p, & p, .)
The realistic behavior of the real fcc close-packed
periodical density distribution in the high-density
region characterized above can certainly be ex-
pected if, in addition to (34) and (35), the following
conditions are fulfilled:

1 —p, -(exp(Pv[v(13)+v(12)]/2/A}'/&4' ~&,

p - (exp[ pv[v (13)+v (12)]/2]) Ex+ &4&/42&f2&/&84 && &
X If4 &z& -/t2&f2&/&8-'

p, -[exp[—pvv(13)](exp(pv[v(12)+v(13)]/2)} 4 "' '&]'/'A. /4/«'

(I - p/& )"exp(P(vll -v(12)]p+»f}-&,

(38)

(39)

(40)

(41)

(42)

whereby (20) is used.
If the condition (36) is violated, (26), (29), and

(30) can become complex functions which should
be excluded. Condition (37) ensures the structure
p, &p, & p, . The lower-density branches of the
filled-circle curves in Fig. 7 are then also rep-
resented correctly.

Eourih, a real solution of (26)-(30) with p, —= p,--,', p, -O, ~*-0,X**-O,~-0 which exhibits a
reasonable high-density behavior of the structure
p, =—p, & p, (modification) must exist. The corre-
sponding condition which must be demanded is

f, = 5 —2(a, /z. )x & o. (43)

Otherwise, the functions (29) and (30) can become
complex. If (43) is fulfilled, a regular high-den-
sity solution of the structure p, =—p, &p, repre-
senting the higher-density branch of the unfilled-
circle curve in Fig. 7, can always be constructed
with

—(p, +p.)-f " "exp[P (12)/2] ]"" (44)

p. -(2"exp[(2~, /a, —I)P v[v (»)+v (»)]/2] X"&'2}~',

(45)
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where A. = (2g, /g, —1)(8s —X) + 2 (g, /g, )(f, —2X),

gg —p 1 —(pg + p3)& (46)

structure p, & p, —= p, which represents the lower-
density branch of the unfilled-circle curve in Fig.
7 then also exists, whereby

and (42). A regular high-density solution of the

pi+p3 2x3xl ~i/

g g & g ' g g2
~ ~ 2 vv 12g~

(47)

(48)

g, p-1-—(g./g, )p. , (49)

and (42) are valid.
Fifth, for arbitrary values of 13v, v(12), and

v(13), we expect that, at high densities, the den-
sities of the higher-density branches of the filled-
circle curves in Fig. 7 (fcc close-packed struc-
ture p, & p, & p, ) are greater than the density of
the higher-density branch of the unfilled-circle
curve in Fig. 7 (sc structure p, —= p, & p, ), because
it seems physically reasonable that the substance
is more compressed in the fcc close-packed struc-
ture than in the sc structure or the liquid struc-
ture. This demands that the slopes of the filled-
circle p(A. ) curves in Fig. 6 must be more nega-
tive than the slope of the unfilled-circle p(&) curve
at ~ —0. The condition

(50)

ensures, on account of (38), (41), (44), and (46),
that the filled- and unfilled-circle p()t) isotherms
in Fig. 7 exhibit the behavior demanded above at
higher densities.

IV. DETERMINATION OF THE STABLE PHASES

AND THEIR DOMAINS OF STABILITY

In the preceding section, we determined all the
solutions of. the state equations (21)-(25) in the
whole p, domain. It now remains to be shown which
branches of the solutions represent stable phases
and in which ranges of the p. domain the single
phases are defined.

The questions posed above can be answered by
a plotting of the P(p) isotherms corresponding to
the p(lx) isotherms of Fig. 7. The P(p) isotherms
c,";n be calculated with the aid of (6) and (13), or
simply by (24) if at least one point of an isotherm
is known.

In Fig. 8, p(P) isotherms directly derived from
the p(p) isotherms of Fig. 7 are plotted. Corre-
spondingly drawn curves in Fig. 7 and Fig. 8 have
the same meaning; that is, they represent the
same density structures. The P (p) isotherms in

Fig. 8 are valid for the same values of v, v(13),
v(12), and 6, y, s, y, (, y as the p(p) isotherms in

Fig. 7.
As in Fig. 7, one recognizes in Fig. 8 that there

are a greater number of branches of the p(p) or
P()t) functions in certain ranges of the p, domain.
There is, however, only one branch in a given
bounded range of the p, domain which is of physical
interest and which can be selected uniquely. This
is the branch characterized by a maximum pres-
sure. In the corresponding p. range it represents
a thermodynamically stable phase. Two possibili-
ties are considered in Fig. 8.

In the first case [0&v(13),v(12) &1, ~v(12)~ not too
great, v(13) not too small], we find three stable
phases: a gas phase represented in the interval
-~& p,- p (I'h, ,) by the solid-line low-density branch
of the structure p, =—p, —= p„a liquid phase repre-
sented in the interval p(Plz, , ) &

p, &tt(Ph~ f„,) by the
solid-line high-density branch of the structure
p, =- p, = p„and a solid phase represented in the
interval p(Phi „„)-p&~by the filled-circle higher-
density branch which belongs to the structure
p, & p, & p, . We would expect isotherms like that

P
FIG. 8. p(p, ) isotherms of the lattice model for a pre-

dominantly attractive soft particle interaction (v & 0) and
small positive values of v(13) and

~
v(12)

~
at medium gas-

liquid subcritical temperatures. ,
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of the first case for inert gases.
In the second case [v(13)&0, v(12)&2, ~v(12)~ not

too great], again in the intervals -~~ ),~ p, (Ph~ ~)

and g(Ph, ~}~ p, & p(Ph~ „), a gas and a liquid phase,
represented by the solid-line isotherms, are found
to be stable. But now a new phase, the modifica-
tion, occurs. This is stable in the range g(Ph~ „,)-g- p(Ph„~„) and is represented by the unfilled-
circle higher-density branch which belongs to the
structure p, —= p, & p, . At high pressures in the in-
terval g(Ph„„,) ~ p, ~~, again the structure p, & p2
& p, represented by the higher-density branch of
the filled-circle curve, delivers a stable phase.
The isotherm of the second case describes the
pressure behavior of a four-phase system, as, for
example, sulfur.

The edges of the ranges of stability determine
phase-transition points Ph, „Pk, „„Ph,„,Ph„ fcc

where the stable branches cross over. The den-
sities jump unsteadily at these points and form
curves of coexistence if plotted as functions of the
temperature. The transition densities are linked
in Fig. 7 by thin dotted lines.

Ph, , indicates a gas-liquid transition, Ph& f„a
liquid-solid transition, Ph, „a liquid-modifica-
tion transition and Ph„ f„amodification-solid
transition. A/l transitions are of first order for
all temPexatuxes.

Concerning the dependence of the P(p) isotherms
on the interaction structure pa, rameters v(12) and
v (13) and on the total negative interaction energy
per lattice site v, analogous statements can be
given as for the p(p) isotherms in the paragraphs
(1)—(3) of Sec. III.

Apart from the isotherms drawn in Fig. 8, still
other P(g) isotherms describing essentially dif-
ferent thermodynamical systems exist. These are
a three-phase system (gas-modification-solid with

a gas-modification transition and a modification-
solid transition) and a two-phase system (gas-solid
with a gas-solid transition). For the values of v,
v(12), and v(13) used in Fig. 7 and Fig. 8, the
three-phase system is, for example, stable at
higher temperatures and the two-phase system is
stable at lower temperatures. Negative values of
v enlarge the temperature domain of stability for
both systems. Increasing of v(12) extends the
temperature domain of stability of the three-phase
system, while increasing of v(13) extends the tem-
perature domain of stability for the two-phase sys-
tem.

Concerning the influence of the combinatorial
parameters on the P(g) isotherms, one can state
that the restrictive conditions (34), (35), (36),
(37), (43), and (50) postulated in respect of a rea-
sonable course of the p(g) isotherms are neces-
sary but not sufficient conditions for a reasonable

course of the P(p) isotherms. Further restrictive
conditions must therefore be found. They can be
obtained by a discussion of the behavior of the
high respectively low-pressure asymptotes of the
P(p) isotherms. With the aid of (6) and (13), the
asymptotic behavior of all branches of the P(p)
isotherms can be easily investigated.

For the low-pressure limit of the gas phase,

P «0 p «0 (51)

is valid, while for the high-pressure limit of the
liquid phase,

P, —g, [-'(g,v +2m) + (1IP)f,],

p «g ]LL
«+QO

with

f, = & ln8+7yln( —,')+3@ ln( —,')
+ —', (p 1n( —,

'
) + g ln( —,

'
) + —', y ln( —,

'
) (53)

can be proved.
At high pressures for the modification [consider

the higher-pressure branch of the unfilled-circle
P (p) isotherm in Fig. 8], the following limits are
found:

P,.-@(-'4,v [I +» (»)]+2A+ (I/P) f,),
(sc) & (sc) + ~(sc)

(54)

with

f, =26 —(8z —X) =5+5,. (55)

The solid phase [consider the higher-pressure
branches of the filled-circle P(p) isotherms in

Fig. 8] is characterized by the following high-
pressure limits:

P„„-2a, 4'@[I+»(12)+4v(13)]+2m],
p(fcc) 1 p(fcc) 0 p(fcc) 0 ~ +00

1 & 2 & 3

(56)

Pf„~P„+P) (57)

is physically reasonable for arbitrary values of
Pv, v(12), and v(13). Consistently, it may be de-
manded that, at high pressures,

The high-pressure limits of the structures
p, &p, &p3 and p, &p, -=p, which belong to the lower-
density branches of the filled- and unfilled-circle
P(p) isotherms in Fig. 8 can be calculated only
approximately because the limits of the sublattice
densities p, are not known exactly in every case.
On account of (24) and the course of the corre-
sponding p(g) isotherms in Fig. 7, their high-
pressure limits must however be lower than those
of the structure p, & p2& p, (56) and the structure
p, -=p. & p. (54).

For the high-density behavior of the p(g} iso-
therms in Fig. 7, it was discussed that
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Pfcg PSC P 1

is valid in a large region of temperature,

(58) fulfilled. The group parameter X is bounded on
a.ccount of (34), (35), (55), (60) to the region

0&/& P); (59)
0 &X &8~ (65)

whereby p„depends on v, v(12), and v(13). In
connection with (57), the condition (58) also ap-
pears physically reasonable because the pressure
in a structure of greater density should be greater.
The condition (58) delivers a further restriction
of the combinatorial parameters y, 6, e, y, P, g. On
account of (52)-(56),

f&f &0 (60)

The relation (58) is violated at temperatures where
the asymptotes (52), (54), and (56) begin to cross
at infinitely high pressures.

The temperature where P, and P„, of (52) and (56)
cross is defined by

„vI»(12)+4v(13)1= (2/a, )f, (61)

The temperature where P, and P„of (52) and (54)
cross is defined by

0, „»(12)=(2/3Z, )(f, f.)- (62)

A crossing over of P&„and P„ finally occurs at
the temperature defined by

P„„,vv (13) = (1 /28', )f,. (63)

At the temperatures defined by (61)-(63), the cor-
responding pressure-temperature phase-transi-
tion curves have high-pressure asymptotes (com-
pare Figs. 10). The lower bound ph of the in-
terval (59) is given by the maximum of Pf f . P, „,
Psc f defined in (61)-(63). With the aid of (52)-
(63), one recognizes that when vv(12) &0 and
vv(13}&0 the relation (58) is valid for all tem-
peratures; otherwise, only in the finite interval
(59).

The restrictive conditions (34)-(37), (43), (50),
(53), (55) confine the possible values of the com-
binatorial parameters severely but they do not fix
them uniquely. This may be illustrated in Fig. 9.
On account of (18)-(20), (34), and (35), the possible
values of y, 6, e, y, g, y. can + represented as points
in the upper half (6 & 0) of 'the three-dimensional
&, &, y space. The relations

On the other hand, the discussion of the high-
pressure behavior of the P(p) isotherms by means
of (52}-(56)shows that P(p) isotherms which de-
scribe more than two phases can, in principle,
only occur if

I f,l«1, If,l«1. (66)

The condition (66) in connection with (43) and (55)
entails that the plane f, = Omust l—ie above the
plane f, —= 0 or both planes must at least coincide.
Therefore the condition

(67)

must be fulfilled.
In Fig. 9, the plane f, —= f, —= 0 with y = —", z is

chosen as a coordinate plane for the coordinates
e, y. The straight lines f, f„ f, f~, -and -f,-f,
represent the intersection lines of the planes
f, -=0, f, =0, and f, —= 0 with the plane f, —= 0 or f, —= 0.
The signs + and —indicate that the functions
f„f„f,are positive or negative in the corre-
sponding half-planes. A small hatched zone be-
tween the intersection points S and 8 in Fig. 9
lying just below the plane f, =f, = Odesig—nat—es the
values of y, 6, c, y, g, y, where the conditions (34)—
(37), (43), (50), (60), (65) and especially (66) and
(67) are all simultaneously fulfilled. Test cal-
culations performed for points of the hatched zone
show that points lying in the close neighborhood of
the intersection point S deliver most reasonable
p(g) and P (p) isotherms and phase diagrams as
drawn in Fig. 10.

f, —= 0, f, =—0, f, =0,

f, =-O, f, =O, f, =O,
(64)

whereby the f, are the functions defined in (36),
(37), (43), (50), (53), (55), represent a group of
planes in the &, &, y space with group parameter
g on account of (18)—(20). The planes f, =0, f, =—0,
f, —= 0 are parallel to the plane 6 =—0, while the plane
f, =—0 is vertical to the plane 6—= 0. The condition
(50) is automatically valid if. the condition (60) is

FIG. 9. Illustration of the 6, e, y subspace consisting
of all those points which correspond to compatible values
of the combinatorial parameters 6, g, c, y. The scale is
chosen in units of g.
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V. EQUATION OF STATE OF THE FLUID PHASES

For the calculation of the fluid-phase isotherms, the cumbersome graphical construction need not be
used as a comparatively simple analytical expression can be derived directly from the general state equa-
tions (6), (13), (21)-(25) by the assumption p, —= p, =—p, =p. The result is the following state equation:

1 (1 —p) &(I —2p)'t'(I —3p)~t'(I- 4p)~ '(1 —6p)"t6
(68)

The critical density p,@ and the critical temperature T.,i =I/hp«i of the gas-liquid transition can be easily
determined from (68) by d'p/dp' =0 and dP/dp =0 respectively; that is, by

and

y 6 4& 9qr 16$ 36y
(1 —p«i)' (p«i)' (1 —2p.g)' (1 —3p«i)' (1 4p-«i)' (1 —6p«i)' (1 —p.,i/Z, )'

p«)v =
peg]

y
1-p„.„

2c 3+
1 —2peg&

-1 —3peg~

6X ~/a'
1 —4p«i 1 —6pcg 1 —p«il@

The values of P.y and p«~ can be inserted in (6),
(13), and (21)—(23), delivering the critical chemi-
cal potential p..~~ and the critical pressure P„~.
Equation (69) has for values of y, e, 6, y, g, Z de-
termined in the way which was discussed at the
end of Sec. IV (e, y lying at the point S in Fig. 9)
only one root p~& in the interval 0 &p &g, . The
critical data are then

p,@
——0.06, P«iv =63.20,

p cgl = -0.11v, Pc@
——0.011v.

VI. RESULTS AND DISCUSSION

Among the most important results which can be
obtained for our model are the phase-transition
curves of a pressure-temperature phase diagram.
In Fig. 10, the phase-transition curves of our mod-
el (corresponding to the transition points Ph~ „
Ph( f„,Ph, „,Ph f„ in Fig. 8) are drawn in aP-Pv
diagram for fixed characteristic values of a pre-
dominantly attractive soft interaction (v &0) and
the interaction structure parameters v(12) and
v(13). They all rePvesent transitions of the f& st
order. The fluid-solid and the solid-solid transi-
tion curves extend up to infinitely high pressures
and temperatures.

Figure 10(a) represents a typical and realistic
phase diagram for the three-phase system (gas-
liquid-solid} of inert gases. It is valid when
v &0, v(12) &0, v(13) &0, 3v(12)+4v(13) &0, i 3v(12)
+4v(13)~ «1, ~v(12)~»1. Figures 10(b) and 10(c)
represent four-phase diagrams of our model. They
are valid when v &0, v(12) &O, v(13)&0, ~u(12)~«1,
lv(13)l 1. For Fig. 10(c), (u(13)~ is in addition
comparatively smaller than for Fig. 10(b). Fig-
ures 10(e}-10(g)also represent four-phase dia-
grams. They are valid when v &O, v(12)&O, v(13)

&0, 3v(12)+4v(13) &0, iv(13)i«1; v &0, v(12) &0,
C~(13) & 0, 3v (12)+ 4v (13) & 0, ~

F~(1 2) ~
«1; v & 0, v (]2)

& 0, v (I 3) & 0, I
v (I2) I «I, I

v (13)I
» I, resp«timely.

Some fluid-solid and solid-solid transition curves
of these diagrams exhibit rather peculiar courses
3t lower temperatures. They have high-pressure
asymptotes at temperatures defined by (61)-(63).
The same can be stated concerning the liquid-
solid transition curve of a gas-liquid-solid sys-
tem drawn in Fig. 10(d) which is valid when u &0,
v(12) &0, v(13)&0, 3v(12)+4v(13) & 0, ~v(12)i»1,
~v(13)~»1. In Figs. 10(h) and 10(i), the transition
curves of other three-phase systems without any
liquid phase are drawn. They are valid when
v &O, u(12)&0, v(13}&0,lv(12)l& 1, lv(13)l«1 and
v &O, v(12)&0, v(13)&0, 3v(12)+4v(13)&&0, ~v(12)~» 1,
respectively. The sc-fcc transition curve in Fig.
10(i) again has an asymptote defined by (63). In

Fig. 10(j), a phase diagram of a gas-solid system
is presented; this is valid when v &0, v(12) &0,
v(i3) &0, 3v(i2)+4v(13)» i, lv(»)l» i.

In the case of a predominantly repulsive inter-
action (v &0), qualitatively the same phase dia-
grams will occur but without any gas-liquid tran-
sition curves. The gas-liquid transition curves
are determined by v only, while the other transi-
tion curves are determined by vv(12) and vv(13).
v (12) and v(13) are then group parameters which
designate for fixed v a group of transition curves
and therefore a group of phase diagrams. "'" In

Fig. 10, only a few characteristic diagrams are
selected. Numerous intermediate diagrams in
which the triple points T~ and T, are shifted are
poss ible.

Transition curves as drawn in Fig. 10 will only
result if the parameters y, 5, e, y, g, g are chosen
in the way discussed at the end of Sec. IV (roost
adapted MQC approximation). ""Jf y, 5, e, y,
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' c

FIG. 10. Most important different types of the p-Pv
phase diagrams of the lattice model for a predominantly
attractive soft particle interaction (v & 0). The pressure
p is taken as the ordinate, while Pv =v/kT is taken as the
abscissa. The various areas where stable phases exist
are designated by the abbreviations: g =gas phase, l =
liquid phase, sc = simple-cubic modification phase, fcc
= solid phase with face-centered-cubic structure. The
filled circles at the ends of the gas-liquid transition
curves designate the gas-liquid critical points. The
points T& designate gas-liquid-solid triple points while
the points T2 designate fluid-solid-solid triple points.

f, y are chosen without considering (66), diagrams
like Fig. 10(a) and Figs. 10(b) and 10(c) cannot
occur. Instead of these diagrams, only diagrams
like Figs. 10(h), 10(i) and Fig. 10(j) without
any liquid phase will result. This is also true if
one uses the QC approximation o.(0, l„-,l, l„)=—1
which corresponds to the point

& =1+2'(2z —7),

y=-1+49@/6, e =-z(1+3@),

y =z(2-z), /=22m/3, g =11m/2,

in the &, &, y, g space which is not within the
hatched zone of Fig. 9. It is again confirmed that
QC approximations of the combinatorial factor

WI, „although very successful in the case of con-
ventional Ising lattice models, ""do not seem to
deliver as good phase diagrams for hard-core
lattice models as optimal adapted MQC approxi-
mations. ""If the functions f, and f, from (53) and
(55) become positive, one obtains MQC transition
curves for the fluid-solid and solid-solid transi-
tions only when vv(12)&0, vv(13)&0. These tran-
sition curves, however, exhibit an unreasonable
behavior at high pressures and temperatures, like
corresponding curves of other models drawn in

Fig. 11 of Ref. 45. The dependence of the phase
diagrams on the combinatorial parameters there-
fore seems to be very similar for all the inves-
tigated models. 44"

The phase diagrams in. Fig. 10 now clearly ex-
hibit the connection between the thermodynamic
behavior of our model and the geometrical struc-
ture of the interaction. One recognizes that in-
creasing of vv(12) in the positive direction gen-
erally favors crystalline structures against liquid
structures, even at lower pressures and tempera-
tures, while an increase in the negative direction
leads to multiphase systems, where the crys-
talline structures occur only at higher pressures
and temperatures. The occurrence of a close-
packed fcc structure at lower pressures and tem-
peratures is favored against the existence of sc
or liquid structures at large positive values of
~~(13), while in the case of large negative values
of vC~(13), close-packed fcc structures are also
generated, but at higher pressures and tempera-
tures. The macroscopic thermodynamic response
of our model on the microscopic influence by the
particle interaction seems to be intelligible from
the physical point of view.

In this way, our model describes the thermo-
dynamical properties of inert gases well, by the
phase diagram Fig. 10(a). We know from inert
gases that their atoms interact by a short hard-
core and a long-range„comparatively slowly-
varying, predominantly attractive particle inter-
action which is rather independent of the tempera-
ture. This interaction is also comparatively weak;
therefore liquid structures can occur. Otherwise,
we would observe diagrams as Fig. 10(j).

In nature, there are some substances which
occur in two fluid and two solid phases like our
model. An example is sulfur. On the other hand,
there is no substance known to the author which
exhibits a phase diagram which is completely con-
gruent with one of the four-phase diagrams of our
model plotted for fixed values of v, U(12) and
v(13) in Figs. 10(b)-10(g). It also seems to be
difficult to find in nature systems consisting of a
gas phase and two or one solid phases which ex-
hibit phase diagrams like those drawn in Figs.
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v(12)
Ji

0, 2

-0 1

T)v

-0,3

v(13)

0, 2

0, 05--

-0 1

p(T)' p

I

(T )v

FIG. 11. A possible dependence of the interaction
structure parameters v(12) and v(13) on Pv which entails
the sulfur-type phase diagram of Fig. 12.

10(h)-10(j).
The reason is that, in the case of real substances

which occur in more than one solid phase, the
interaction in the substance is built up by com-
plicated chemical bonds. The interaction is then
probably temperature dependent; that is, one must
assume suitable temperature functions for v(12)
and v(13). Examples of such functions are plotted
in Fig. 11.

If we for our model consider the temperature
functions of v(12) and v(13) of Fig. 11 while v is
kept fixed, a phase diagram with three triple
points T„T„T,such as that drawn in Fig. 12 re-
sults. One need only consider the v(12) and v(13)
functions of Fig. 11 in a phase diagram where the
complete group of the transition curves for all
values of the group parameters v(12) and v(13) is
drawn.

A comparison of the diagram Fig. 12 with the
phase diagrams of Fig. 10 shows that the diagram
of Fig. 12 is composed of three parts: a low-
temperature part in the region P(T2) &P ~- which
is similar to the diagram Fig. 10(c); a high-t™
perature part in the region 0~P ~P(T3) which is
similar to the diagram Fig. 10(a); a medium tem-
perature part in the region P(T,) ~I'~P(T, ) which

P i'

/3(T )v P(T, )y

FIG. 12. A four-phase sulfur-like P-Pv phase diagram
with three different triple points T&, T2, T3 and one
heavily drawn gas-liquid critical point. This diagram
is obtained for a fixed value of v and an assumed tem-
perature dependence of v(12) and v(13) on Pv as sketched
in Fig. 11. The areas of stable phases are designated
in the same way as in Fig. 10.

is similar to Figs. 10(g) and 10(f) in correspond-
ing subregions of [P(T,), t'(T, )j.

The phase diagram Fig. 12 is now identical with
that of sulfur if one identifies the rhombic modifi-
cation, the monocline modification, the liquid and
the gas phase of the sulfur with the close-packed
fcc structured solid phase, the sc structured modi-
fication, and the liquid and the gas phase of our model,
respectively. It is perhaps also possible that at
least parts of phase diagrams of other real sub-
stances occurring in nature can be represented
by phase diagrams of our model if a suitable tem-
perature dependence v(12)(t'v), v(13)(Pv) is as-
sumed.

The results obtained for our hard-core compound
lattice model have shown that the phase-transition
behavior of inert gases and also sulfur can be
understood, in principle, on the basis of this
model. The fcc close-packed density structure
of the solid phase of inert gases is well repro-
duced thereby.

The two crystalline modifications of our model
which have been identified with the corresponding
solid modifications of sulfur do not exhibit density
structures that are very true to nature. The in-
exact reproduction of density structures of phases
is however a general lack of lattice models. The
lack can be probably removed by increasing the
number of lattice sites and sublattices, whereby
the volume of the system and the radius of the
hard core is kept fixed. ' " The derivation and
solution of the corresponding state equations will
surely then lead to very difficult mathematical
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problems, whereby the insight into the connection
between thermodynamical properties of the model
and the interaction structure may perhaps be lost.
It therefore seems reasonable to show by more
simple, although more unrealistic, models that

the thermodynamical behavior of real substances
can be understood, in principle, by means of sta-
tistical-mechanical theories before more realistic
but much more complicated models are investi-
gated.
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