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Coherent transient effect in Raman pulse propagation
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In this paper we develop a theoretical analysis which describes a coherent transient effect of two en-
tering pulses —one laser and one Stokes—in a Raman-active medium. The field (Maxwell) and atomic
(Schrodinger, density-matrix representation) equations are coupled in a self-consistent manner in time
and space by virtue of the resultant second-order nonlinear macroscopic polarizations at the two fre-
quencies. This treatment is accomplished under the circumstances where atomic coherence plays a pre-
dominant role. The equations derived here may be referred to as "Raman Bloch-Maxwell equations. "
The resultant equations yield a new aspect of transient stimulated Raman scattering and thus coherent
Raman propagation. The transient-pulse behavior may be understood as self-induced modulation of co-
herent amplification and absorption. The self-induced modulation for the step-function input pulse is
described by a combination of Jacobian elliptic functions depending on the input intensity. Computer
calculations of transient-pulse evolution reveal interesting pulse breakup phenomena with peak amplifi-
cation, energy transmission, pulse advance or delay, and pulse-narrowing effects.

I. INTRODUCTION

The investigation of optical coherent interac-
tions with matter has received considerable atten-
tion with the recent development of ultrashort-
light-pulse technique s. Coherent propagation of
optical pulses on the basis of quantum-mechanical
coherent interaction in a time region within a ho-
mogeneous relaxation time is primarily revealed
as the self-induced transparency effect. ' This
phenomenon has been studied by McCall and Hahn
in connection with one-photon resonant interac-
tions with a collection of independent two-level
systems.

Particular interest of the problem is that optical
wav-- ' with different frequencies are concerned
with coherent multiphoton transition in a multilevel
system. For local coherent effects such as photon
echoes, some theoretical approaches of Raman
echoes' and double resonance echoes' ' have been
reported. While, for coherent propagation effects,
a qualitative prediction of two-photon self-induced
transparency, where twice the propagating fre-
quency is resonant with the two-level system, has
been discussed in previous works. ' ' In our pre-
vious papers, ' "the first observation and theo-
retical study with respect to a new type of two-
photon coherent propagation of two different-fre-
quency optical short pulses in a gaseous three-
level system were presented.

We shall now discuss the coherent Raman pro-
pagation effect. " Recent development of the theory
of stimulated Raman scattering as well as experi-
mental studies are gradually confirming transient
behavior of the Raman process in the picosecond

region. "" In a time region shorter than longi-
tudinal and transverse relaxation times, T, and
T„coherent propagation effects may dominantly
appear, yielding large signal amplification and
modulation predicted by previous papers. ""How-
ever, the predictive analysis did not take proper
consideration of the pulse formation in the self-
consistency requirement in the circumstances
where atomic coherence plays a predominant role.
A treatment using rate equations is not sufficient
for coherent Stokes scattering for the ultrashort
pulse propagation under these circumstances.
Analyses of two-photon coherent radiation" in Ra-
man transitions have been recently reported by
Hopf" and Brewer, '4 who dealt with free-induction
decay coherently excited by a step-function input
pulse. These theoretical treatments will be modi-
fied if they involve the coherent propagation.

In the present paper, we shall especially inves-
tigate transient effects of the laser and the Stokes
pulses undergoing coherent propagation in a Ra-
man-active medium of which spectrum broadening
is restricted to a "sharp line" case. Here we take
into account the Raman-active response coher-
ently excited by a resonant beating of two external-
ly generated coherent fields. It is emphasized that
this process should be analyzed under the following
conditions: coherent interaction predominantly
acting on the system, and the two propagating
fields determined in a self-consistent manner. It
has been already clarified by the authors that such
coherent propagation of different-frequency optical
short pulses interacting with a three-level system
results in two-photon self-induced transparen-
cy."'" We can use a similar procedure for the
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present case. First, we can obtain the system of
coherent propagation equations from the combined
Maxwell and Schrodinger (density-matrix repre-
sentation) equations in self-consistent form for
the Stokes and laser fields. The equations of mo-
tion for the medium may be referred to as "Ra-
man Bloch equations, " analogous to "two-photon
Bloch equations" in Ref. 10. Second, an analytical
description is given in connection with a set of
Jacobian elliptic functions, which shows a period-
ic, amplified self-induced modulation for the
Stokes wave. Third, a transient pulse behavior
simulated by computer calculation reveals anoma-
lous pulse evolutions, pulse -energy transmissions,
and pulse velocities which are inherent to a coher-
ent stimulated Raman transition accompanying
population inversion. In the present paper we shall
deal with only the envelope formation of the laser
and the Stokes pulses. The other complementary
aspects of the problem, namely the equation of
the phase evolution and the frequency chirping of
the pulse at different pulse velocities of the Stokes
and laser waves, will be considered in a forth-
coming, more extended paper.

II. FORMULATION

0 o V,
X'= 0 0 Vs

Vl* Vs 0

where V, =-p, 8,. cosC„p., is the matrix element
of the electric dipole moment in the relevant tran-
sition, and 0, = &a&, t —k. ,z +g, . The density matrix
obeys the equation of motion

—= ——[K p]
Sp

where K=K'+K'; K' is the unperturbed Hamil-
tonian. Here, the rotating-wave approximation is
assumed. It is also postulated that the slowly-
varying amplitude and phase approximation is valid
for p, S, , and P,. in the usual sense and also for
a variation of off-resonance frequency 4co0
=

~ 4&vi, (= ) 4&v,
~

with respect to the virtual state
3, where 4',. =e,. -0, The elements of p» and

p» are implicitly transfered to p», yielding an
induced two-photon polarization at the phonon fre-
quency by means of the integral of the components
of p» and p» in Eq. (3) under the above assump-
tions. This integral leads to a resulting explicit
form for the two-photon Raman coupling.

Thus, one can obtain the working equations for
the medium as follows:

(Pss —Pll) =
2gs @s~I.P (el 3 &42)'cos+x

dt 2
The basic equations which describe the coherent

propagation of both the Stokes and the laser fields
b s(z, t) and S~(z, t) in a three-level system in-
cluding a representative virtual state are derived
by combining IVfaxwell's equations and the equa-
tions of motion by means of a density matrix. %'e

can develop the present formulation in a way simi-
lar to that of Ref. 10 by simply altering the level
composition. Here, we take into consideration on-
ly the first-order Stokes generation, although the
higher-order Stokes or anti-Stokes emission may
appear strongly in such coherent process.

We assume that two monochromatic plane-wave
classical fields are given as

P sVz
6400

cf 'L p, gp, L,
(

—(o»+o,*,) sink, ],
(4a)

(4b)

E,(z, t) = 8,.(z, t) .cos[(d, t —)'s,z + y,. (z, t)] (t = l., S),
13 13 gt (P33 llP) l Cos@~

AC00

(4c)

where the electric fields E~ and E~ induce the
transitions between the energy levels 1-3 and 2-3
in the three-level system consisting the ground
state 1, a phonon or electronic excited state 2, and
the far-off-resonance virtual state 3. The fre-
quencies ~1 and ~~ are assumed to be far-off-
resonance from the eigenfrequencies &~ and &
for each transition.

The interacting Hamiltonian may be written

+3(&» —a,*s) sinks],

Oss +&33 ——- (Pss —Pss) & 3 COS'Ps
num

&,[(o„+o,*,) cosa,
2 AA(d0

+t(o» —o,*s) sin%~],

(4d)

(4e)
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where

o „=p „e'"&(j =I., S, X;0, =&~ —&s),

@. = na&, t —k,z + p;,
y„= a(ut —(k~ —ks)z +(Pz —P s),

act as sources in the self-consistent form for the
electric field in accordance with Maxwell's equa-
tions. Jn general, one could represent the evolu-
tion of the plane-wave light pulses of Eq. (1) by
the second-order wave equations

and &2E, g. 82E,. &m' 62I,.
Bz 2 c2 Bt' c2 Bt2 (9)

PL P33 Pily P 8 P33 P22& PX P22 Pl 1 s

(o» +o,*,) = u ~ cosC „+v, sin% „,
(o»+o,*,) =u s cosC s+ vs sinks,

(o»+o,",) =u~ cosQ~+ v~ singz,

(6a)

(6b)

(6c)

where +„=((u~ —(us)t —(k~ —ks)z+(yz —ys). In
Eqs. (6), u„and v„are related to the respective in-
phase and out-of-phase components of the induced
polarizations. Substituting Eqs. (5) and (6) into
Eqs. (4a) —(4c) and eliminating u~, us, v~, and

v~, the response of the atomic system to the pro-
pagating electric fields is described by

hu = Ace~ —Av ~.

Some variables are defined like the Bloch vector
as follows:

ag~ q~ eh~, (g )
88 c Bt

8$s 7js 8$s yp (g )
~Z C

(10a)

(10b)

Bpg 'ill, 8(f)g+— &ski. = ~Ps (2t"z hIP~ + &s&su~)Bz c Bz

(1 la)

where g,. is the host refractive index at cu,- and c is
the velocity of light in vacuum. Under the slowly
varying amplitude and phase approximation as
mentioned above, one can replace Eq. (9) with the
reduced wave equations after substituting Eqs.
(6b), (6c), (4d), and (4e) into (8), and Eqs. (1) and

(8) into (9), and. equating the coefficients of cos4',.
and sin%, Thus, the reduced wave equations are

px = ~~~~ sv„—(1/T, )px,

~ 9 ss —PL, ~~&~+4z+ 4„s vx Zi ux i4' 4(do 2

(7a)

(7b)

S@s ls S'jt s 1+—, t .&s=-.ps(»s&sp~+»h. u~),Bg c ~z

(11b)
where

P s~s —P J.~l.
Hy = — 643 + ) + 2 Qy —Rhl hgP), —

I 'Uy
~4 A 6(do 2

(7c)

where z = pangs/2h'h&u„Q„= &f&~ —ps.
Damping effects have been introduced phenom-

enologically by means of a longitudinal relaxation
time T, of the Raman excited state 2, and by means
of a homogeneous, transv. erse relaxation time T', .
The behavior of the atomic system represented by
Eqs. (7) is found to be analogous to that for a one-
photon transition in a two-level system except for
the fields involving Raman (two-photon) coupling
and for the frequency shift (pshs —tL~h~)/4@ &uo.
Therefore, the above equations may be refered to
as "Baman Bloch equations" analogous to "Two-
photon Bloch equations" in Refs. 10 and 11.

The induced macroscopic polarizations at the
input frequencies co~ and co~ may be described as

P~ =N, p ~(u~ cos4'z + vz sin%'~),

P s =Mops(us cost's+ v s sin%'s),

(8a)

(8b)

where N, is the particle density, and (~ ~ ~ ) stands
for the averaging over the inhomogeneous broad-
ening g(A&u). The expressions of u, and v; are de-
rived by substituting Eqs. (5) and (6) into Eqs.
(4d) and (4e). The above macroscopic polarizations

P,. =2',Q,.psych/chq, .~&a, .

Equations (7), (10), and (11) characterize the dy-
namics of the Baman process in the fully self-
consistent form without approximation in which a
variation of the field is treated to be constant with

respect to space and time "in the interaction with
matter. " Although the atomic system seems to be-
have in appearance in the same way as for a two-
level system represented by the Bloch-Maxwell
equations, the polarization at each frequency ap-
pearing on the right-hand side of Eqs. (10) results
from the product of another field and the term gz
arising from the second-order induced polarization
of the effective Raman coupling due to the off-
diagonal elements. This feature is a novel effect
belonging to Raman transitions in the dynamic
self-consistent form: We proceed with a discus-
sion of the coherent propagation of two photons by
analyzing only the dynamics of this nonlinear pro-
cess. Therefore, for the present analysis the
"zero-phase" solution ($, =0) is assumed in a self-
consistent fashion, neglecting the frequency shift
due to the fields, which was shown to be satisfac-
tory for an amplifier when g(b, &u) is a symmetrical
function. 2' For the Raman transition, let 4u =D

in the usual sense and T, =T,' =~ in Eqs. (7), and
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]et g(&~)- 5(b, ~) as a sharp line for the averaging
over g(a~) in Eqs. (10). This restriction of g(b, &u)

= 5(h~) does not change the essential response of
the inhomogeneously broadened medium under the
atomic coherence condition. ' Under the above as-
sumption, the solutions for the medium are

v,, (z, t) = —siny(z, t),

p„(z, t) = -cosy(z, t) .

The wave equations are then

(12)

(13)

&Sz(z, t) ns. SSz(z, t) i S .
( )Bz c ~t

+- =2 L Ssi y t —pL I

(14a)

shs(z, t) qs sSs(z, t)
8z c Bt

+ = —s PsSz siny(z, t) —'/sSs ~

where

t

y(z, t) = —z h (z, t') S (z, t') dt',

(14b)

(15)

y, is the loss factor due to impurities and scat-
tering. The minus sign in Eq. (15) implies an in-
verse phase relation between Sz and Ss. Equa-
tions (14) easily lead to Ss~/P~+ Ss/Ps= const,
namely the Manley-Rowe relation if we ignore the
loss terms. It is worthwhile to note that simple
equations describing the usual stimulated Raman
scattering is easily derived from Eqs. (14) for a
small area sing = y after carrying out an integral
involving the two-photon coupling.

Equations (14) are the basic equations necessary
in order to discuss some properties of coherent
Raman propagation or coherent stimulated Baman
scattering. If we define coherent gain factors for
the two-photon Baman coupling, they are written
as follows:

277NpQs L, P sP I .
@ ggs 1. — + slnK

C~lgs &64)p
(18)

~sSin -K ~musd
2 k640p

g sin K g g
2 kE(dp

(1Va)

(1Vb)

Of particular interest is that for Gaussian input
pulses yielding a large value of y(0, t}, the above
induced yolarizations cause a reyetition of two
modes of absorption and emission with respect to
time like a variation of a wave packet in accor-

It may be useful to define the out-of-phase com-
yonents of the induced second-order macroscopic
polarization p,,~ contributing to the respective fields
at co~ and ~s.

dance with a repetition of the sign of the sinusoidal
function.

Here we study a coherent amplification of the
Baman pulse energy along the propagating distance
for the small pulse area. Let S,-(z, t) be a rectang-
ular pulse with pulse width v' along the time axis.
Equations (14), after integrating out the time de-
pendence, lead to

d—S,' = ,«13,-7'-S sS', , (18a)

—h,' = ,' zP—s7'S',hsz, (18b}

neglecting the additional loss terms. These equations
differ from the ordinary steady- state rate equation
because of no influence of & and T„and the pres-
ent equations involve only the pulse width 7',
while the rate equation is valid for the pulse enve-
lope over the relaxation time. Accordingly, the
coherent amplification of the Raman pulse could
be solved in consequence. The solutions for the
energy transmissions Tz(z) and Ts(z) are given
as follows:

where

Ss~(z) 7' 1+5
Ss~(0)T' 5+exp(sK7'Pgoz) '

h,'(z) 7' 1+5

Ss~(z) 7' 1 + 5 exp(=,'zr'Pgp) '

(19)

(20)

~ = &sSz(0)/&z S s(o),

Po 0--PsSz(0) + Pz, Ss(0) = PsSi(z) + PiSs(z)

The parameter 5 is the input intensity ratio. The
above expression for I, shows the sum of the pow-
ers of the respective fields. The pulse energy
transmissions T, (z) are plotted against distance
in Fig. 1.

For a given input ratio 6 the Stokes pulse energy
is amplified along the distance, while the laser
pulse is attenuated. For an input laser pulse large
comyared with the input Stokes pulse, i.e., a large
value of 5, the laser pulse decays remarkably,
yielding the complementary amplification for the
Stokes pulse congruent with the Manley-Bowe rela-
tion. Equations (19) and (20) indicate the fact that
initially the transmitting pulse energy for the laser
decays exyonentially with distance and the pulse
energy for the Stokes is amplified in the asso-
ciated way. However, finally the energy of the
laser pulse goes to zero and the energy of the
Stokes pulse to the constant value of Pj,. There-
fore, all of a given input energy of the laser is ul-
timately transfered to the Stokes pulse at an infi-
nitely large distance. This coherent amplification
and attenuation in the small area is significantly
analogous to a result using the rate equation. "
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(15) and (22), the I6'L8(g) and $86(f) are given as

2P,I, + ~so(&SLp 2')fl +tn [7 '(K —4)' ])
«b,'p(1+tn'[7. '(g gp);m]] +2't),

[{
II'h', (1+tn'[7 '(g —g,);m]]+2p

(23a)

(2P P )' '.
(25)

and the population difference p~ is obtained from
Eq. (13) under the initial condition of p» =1 in the
ground state,

( )
74@zp(1 —tn'[7 '(g g,);m]] + gpss
K@ (1 +tn'[T '(g- g,);m]] +2p

where tn is the Jacobian elliptic function: m is the
modulus

FIG. l. Amplification rate Ts for the Stokes pulse and
absorption rate TL for the laser for a small input area,
calculated from Eqs. (19) and (20), plotted against the
propagating distance keeping the input intensity ratio 6
constant.

and the definition

1/7 = (2g)~ g (/&ip +2P )I (26)

III. COHERENT PROPAGATION IN A STEADY STATE

Stimulated Raman scattering in a stationary state
has been studied by many researchers. In this
section, we wish to investigate the property of
steady-state propagation in the coherent Raman
process. Analytical solutions of Eqs. (14) in the
steady state predict the evolution of specially
shaped pulses with pulse breakup even for step-
function input pulses.

In the moving frame g = t -z/V, where the pulse
velocity V is conveniently assumed to be equal for
both the Stokes and the laser pulses in the steady
state, Eqs. (14) lead to

m=1.0, s 2, 8 1

2-
m=. 63, s=8, g=1

2-
1 2 3 4 5 6

I I ~

7 8$/~

m=. 89,s=3, 0=1

0 I I I I I I I I I

1 2 3 4 5 6 7 8 g/~
2 8

has been made. Physically, the above solutions
correspond to Stokes and laser fields whose amy-
litudes are modulated periodically with a period
T =2TK(m), where K(m) is the complete elliptic
integral of the first kind. It becomes evident from
Eqs. (23) and Fig. 2 that the modulation is caused
by an alternation of the amplification for the Stokes
wave and the absorption for the laser on the basis

L S
=-—', j3 I sis —s dsd di),

S LPsd sis -s '—,I I di),

(21a)

(21b)
2-

dS
/

I I I I I ~ I I ~

1 2 3 4 5 6 7 8 t/s'

-1- 2-

~s

m=. 77,s=2, 0=5

1 2 3 4 5 6 7 8 t/s.

$'L(g) = $'Lp —(p L~/)[1 —cosy(g)],

$68(g) = &L —(P6/a) [1 —cosy(g)] .

(22a)

(22b)

Carrying out integrals after coupling y(f) of Eqs.

where pI = c Vp;/(c —7 V), and 77
=

77, was ass-umed.
We take into account simultaneous coherent pro-
pagation of both of the externally generated co-
herent fields. To describe the evolution of the two
fields in the steady state, the respective ampli-
tudes of the initial electric fields would be set
equal to constants @$p @La for f=-~. Thus, the
first integrals of Eqs. (21) are calculated from the
initial condition

1 r
~I

r
I I I I

1 2 3 4

sir
I I I I I

5 6 7 8{/v
m=. 63, s=3, 0=100

1 2 3 4 5 6 7 8 g/&

FIG. 2. Self-induced modulation for laser and Stokes
pulses in steady-state propagation for step-function
input pulses, estimated from Eqs. (23). Solid lines,
periodic coherent amplification for the Stokes input
pulse. Dashed line, complementary absorption for the
laser. Both ordinates are normalized by the respective
input intensity. The parameter m is the modulus of the
Jacobian elliptic function tn and s is the normalized
input intensity of the Stokes pulse ~esp/Ps& 8 indicates
the inPut-intensity ratio Ps PLp/PL Psp.
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of the periodic population inversion as apparent in
Eq. (24). In this alternation, the energy conserva-
tion law for the incident pulses is found to be satis-
fied. The amplitude modulation for the both fields
is of interest when the modulus ~ approaches uni-
ty. The period of both propagating pulses then ap-
proaches infinity and the elliptic solutions are giv-
en approximately by the mell-known hyperbolic-
secant solutions, "as illustrated in Fig. 2. From
the figures and Eq. (26) one notices that the pulse
narrowing and the high repetition of the pulse train
appear with increasing the incident input-intensity
ratio 8, where 8=PzS~,/P~hz, . Therefore, such
an intense Raman field coherently interacts with
a collection of atoms or molecules, resulting in
the self-induced periodic modulation whose period
deyends upon the incident input yowers.

5-
D-

1-
5-
0-
1-

A, =0.1

=30' - E'
5-

0-
1-
5-

0-
1-
5-

0-

A, =0.5.
E2

L
(b)

Fig. 5). This process naturally implies that the
pulse energy of the laser wave is ultimately
changed into the Stokes pulse as long as the input
pulse area is less than &. This property agrees
with the result for the energy transmission for a
small pulse area consisting of the step-function
input pulses discussed in Sec. III. In this sense

5- 5-

IV. COHERENT EFFECT ON TRANSIENT PULSE
BEHAVIOR

An analysis of the pulse evolution exhibiting co-
herent transient effects is performed by numeri-
cally integrating Eqs. (14). The numerical calcula-
tions were achieved by an application of a finite-
difference method to the basic equations. As a
result, computer-generated output pulses of
$~(z, t) and Sz(z, t) for the coherent Raman pro-
pagation are illustrated in Fig. 3. The initial pulse
shayes, which have a given input pulse area A 0
= y(0, ~) estimated from Eq. (15), were taken as
Gaussian functions with the full pulse width of 1.2
7'p where v, is the time unit, taken as 10 psec.
Equal peak intensities for the simultaneous inci-
dent beams at the Stokes and laser frequencies
[$ = h~(0, t)/~ z(0, t) = 1.0] were assumed. The in-
tensities of S,'(z, t) are normalized to the height of
the input pulse. The time is measured in units of
7', and the propagating distance z in P ' [P = 10 '

',P~P~& ~
for convenience. The parameters used

here were conveniently estimated from a Baman
transition in CS, at an incident wavelength 6943 A

characterized by the typical values of p.~, =1.6
X10 "cmesu, N, =10"/cm', and 6(u, =1.6x10'
cm '. Thus, the evaluation of these values yields
an order of 10' cm ' for Pz ~ so that we can expect
a very large amount of energy exchange between
the Stokes and the laser fields, which causes a
deey modulation within a very short propagation
distance.

Figures 3(a)-3(c) exhibit a monotonic coherent
amplification for the Stokes wave and accompany-
ing attenuation for the laser wave in any input area
less than A, = &. The amplification apparently in-
creases with respect to the propagating distance,
in contrast to the attenuation. The pulse energy of
the Stokes wave at infinite distance increases with
higher input area until the area w is reached (see

0-
1-
5-
0-
0

I I I I

, 5 0 , 5
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FIG. 3. Computer-generated output pulses showing
transient pulse evolution for Gaussian input pulses at
the respective frequency. Equal input intensity $2 (0 t)
=5'&0 tz, (, ) was assumed (i.e., the pulse-height ratio

S

( =1.0). The pulse height is normalized to one of the
input pulses at z=0. Ao [=q(0, ~)] in (a)-(f) shows the
various input areas in units of ~ radians. Time is mea-
sured in units of vo =10 psec and the propagating dis-
tance z in P ~.
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(27)

the amplification of the incident Stokes beams cor-
responds to the usual stimulated Baman scattering
in the nonstationary process. "'" However, for an
area greater than r the laser pulse reasonably af-
fects its own pulse shape with the peak amplifica-
tion and the pulse narrowing due to the coherently
regenerative response of a collection of atomic
systems. Attention should be drawn to the inter-
esting fact that the forming of laser pulses takes
place with a time lag, in comparison with the
Stokes pulse evolution, and also at a higher input
area the total number of breakup pulses for both
fields is proportional to a number m for an input
area m7T. For instance, in Figs. 3(d) —3(f) the
peak amplification of Stokes and laser waves al-
ternately appears as a function of time and con-
sequentially yields the pulse breakup. Physically,
the anomalous behavior indicates that firstly, for
an initial area m, one transition producing the
population inversion is achieved accompanying the
stimulated absorption of the laser pulse and the
relevant stimulated emission to the Stokes giulse.
Secondly, in the next m area the population from
the excited state causes absorption of the subse-
quent section of the amplified Stokes wave and
amplification for the laser pulse. As a result, the
population goes back to the initial ground state at
the final time of the 2m cycle. Accordingly, it is
not surprising that a given input pulse area more
than 2m yields the interesting transient phenomenon
of pulse breakup with peak amplification.

We next take into account how the previous re-
sults are modified when we vary the input-pulse
intensity ratio $ keeping the input area A, constant.
Typical pulse formation for g =10.0 is plotted in
Fig. 4. In this case, sharp peak amplification for
the Stokes pulses conspicuously appears in con-
trast to the case for the laser pulses which main-
tain a smooth variation in distance and time. It
should be noticed that the pulse forming takes place
in the leading portion of the laser pulse and does
not show marked pulse breakup at any higher input
pulse area, analogous to the usual stimulated Ra-
man scattering. The amplification of the pulse
energy is a maximum at an input pulse area of r.
The reason for this unilateral deep modulation is
that a Baman transition within a 2r cycle is as-
cribed to simultaneous annihilation of a laser pulse
and creation of a Stokes pulse with equivalent pho-
tons, and the reciprocal process. Accordingly,
the modulation of the laser becomes less marked
in appearance.

The energy transmission of the incident Stokes
and laser pulses are described by the quantities
I'~ and I'I., where

r = dt S z t dt 8 0 t .
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FIG. 4. Transient pulse evolution at the respective
frequency plotted for a different input intensity with
the ratio $ =10.0, keeping the input pulse area Ap con-
stant. (a)-(d) correspond to input areas Ap = {0 1 4o0)7l'.
Note the factor of 10 increase in the ordinate for the
Stokes pulse height. The time and the distance are the
saxne as in Fig. 3.

The values of I', are plotted against the input area
A, in Fig. 5 for the equal-intensity input of both
beams. The pulse velocity is measured as the
shift to the peak of the velocity of light in an inert
background as illustrated in Figs. 6 and 7 using
the delay and advance times t~,

The behavior of transmission summarizes the
consequence of the above pulse evolutions. Maxi-
mum amplification and absorption clearly take
place for an input pulse area of m. As concerns
the pulse speed, a small delay of the Stokes pulse
is seen in a region less than the area &. For an
area more than r a pulse advance takes place.
Since the pulse evolution originates in the forma-
tion of the second-order nonlinear polarization
characterized by a sinusoidal function involving the
time integral of the product of the two fields, peak
evolution due to the stimulated emission in an area
less than w is delayed compared with the peak ve-
locity of the incident wave, and also the first peak
within the multiple pulses for more than an input
pulse area of & may appear near or in front of the
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FIG.V. PuPulse advance and delay time for the Stokes
pulse &&z vs the input pulse area Ao. The sign is the
same as in Fig. 6.

are found to be analogous to that of two-photon co-
herent propagation "'"

The ulpulse-narrowing property, which depends on
the input intensity is shown F . 8.in xg. . It appears
from the figure that in the region above an area of
r, remarkable narrowing of the pulse width for
the laser and the Stokes pulses occurs where the
coherent effect predominates for the both fields.
The coherent Raman process hardl ieMs t

si y xnyu pulsespu se narrowing for the equal-intensit i t
in a lower-intensity input pulse area. However,
for the relatively low-intensity input of the Stokes
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FIG. 6. HeHere and in Fig. 7 we show plots of ulse
advance and delae ay tame of both frequency pulses vs the

oso p se

input area Ao. t&z shows the relative time for the laser.
The upper half plus sia ~~ us sign) corresponds to pulse advance,

o p se clay with re-and the lower half (minus sign) to uls d
spect to the velocity of light in vacuum.
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FIG. 8. Summa ry of the variation of the pulse width
at the final propagation stage z=15P ~ vs the in ut
A, corres ondp kg to the various pulse evolutions in
Fig. 3 for $ =1.0. ThThe average pulse width for the break-
up pulses is plotted. Pulse narrowing of the laser is not
remarkable for less than input ~-area because of no
coherent regeneration for the laser field.
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compared with that of the laser, the remarked
pulse narrowing is expected as shown in Fig. 4.

A pulse width within the multiply divided pulses
is found to be compressed to about 1 psec at higher
input pulse areas. In this case the peak power is
estimated to be 6x 10" W/cm' for a w square pulse
for the both fields from the above typical values for
a Raman-active medium. For an electronic Ha-
man transition in atomic gases, the peak power for
the pulse width 1 psec becomes a reasonable value
of 2x 10' W/cm' for the typical values of p.~ z
= Vx]0 "cmesu (oscillator strength f~ ~ =0.6),
+ ='10"/cm', and n, (u, =4x10' cm '. This peak
amplification due to the pulse breakup and the
'compression may be easily attained within a self-
focusing filament where the high-density field
10' "W/cm' is initially obtained, as pointed out
by other researchers. ""

V. SUMMARY AND CONCLUSIONS

In the present paper we have given a theoretical
approach for the coherent transient effect in the
propagation of the simultaneously entering Stokes
and laser pulses in a Raman-active medium. As
a result, novel and interesting features were ob-
tained with respect to the pulse evolutions of the
laser and the Stokes pulses by introducing the co-
herent Baman propagation equations, i.e. , "Ha-
man Bloch-Maxwell equations. " These effects
are understood from the interaction of the indi-

vidual fieMs by virtue of the second-order induced
polarizations on the basis of periodic population
inversion. Such intense Raman and laser fields
coherently interact with a collection of atoms or
molecules. Therefore, the coherent propagation
effect causes a periodic amplified self-induced
modulation which does produce an ultrashort pulse
train within the relaxation times.

Experimental preparation for the observation re-
quires a sufficiently long transverse relaxation
time and a high-density incident power. This latter
condition may be obtained under the circumstances
of a self-focusing filament in a liquid or rarefield
gases. Atomic or molecular gases may be avail-
able because of the long relaxation times of 10 '-
10 "sec. In this case the condition for a coherent
two-photon interaction, namely z8~8~ »1/T„
1/T„which is derived from the Raman-Bloch
equations, reasonably holds for the appropriate
high-density field.

The present analysis lacks the phase evolution
and the frequency chirping at different pulse ve-
locities. However, it appears that the present
Haman Bloch-Maxwell equations wholly involve the
origin of the analysis for the coherent Baman in-
teraction under the self-consistency requirement.
A recent experimental study of coherent Baman
scattering in CdS has yielded an interesting phe-
nomenon. Further analysis of coherent Raman
scattering with the use of the present equations
will be reported elsewhere.
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