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Aid or competition between two laser modes oscillating on different transitions of a three-level medium are
studied following the method of Lamb. An arbitrary amount of Doppler broadening is allowed for, The
"electric-quadrupole" term generated by back-to-back transitions of the two modes but having vanishing
electric dipole moment is found to have little effect on the oscillation intensities in typically observed
circumstances. This fact justifies, in part, the rate-equation approximation commonly used in multilevel

analysis. For a bidirectional ring cascade configuration, however, this coherence term can be important
because of constructive interference familiar from two-photon, Doppler-free spectroscopy. The ordinary (i.e.,
hole-burning) cross-saturation terms for cascade transitions produce mutual mode aid, rather than competition
as in the competitive cases. A curious consequence of this difference is greater accuracy in the third-order
theory of cascade transitions than in that of competitive transitions, as a result of partial cancellation of errors
incurred through neglect of higher orders, The treatment is generalized to multilevel media (four or more
levels) with numerical illustration and discussion of the method's relationship to laser oscillation involving

diatomic molecules.

I. INTRODUCTION

In 1957 a theory was proposed by Javan' for a
three-l. evel maser oscillator. By introducing a
high-intensity saturating field between two levels,
he showed that an induced emission of power at a
lower frequency corresponding to a transition be-
tween an intermediate energy level. and one or the
other of the two levels can occur. In 1963 and
1964 the detection of two- and three-step laser
cascades were reported in a series of papers.
A list of these papers is given in Haken, Der
Agobian, and Pauthier's' paper of 1965, which
treats a solid-state two-step cascade laser using
the second-quantization formalism. For the de-
scription of many phenomena, the semiclassical
Lamb theory' is accurate (see for example Ref. 4),
and simpler than the fully quantum-mechanical
treatment. Hence, most work (including the pres-
ent paper) is based on a semiclassical model. The
problem of l.aser-induced line narrowing on two
coupled transitions has been studied by Feld and
Javan' for the case of laser transitions detuned
from the center of its atomic gain profile and later
for a high-intensity gas laser by Feldman and
Feld." Feld and Javan, ' by scanning the gain
profile with a weak monochromatic probe field
collinear with the laser field, found two sharp
resonances at frequencies symmetric about the
line center. One of the peaks was considerably
narrower than the other, and both were much nar-
rower than the Doppler width of the laser field.
They named this effect "laser-induced line narrow-
ing. " The theory of a three-level gas-laser ampli-
fier has been treated semiclassically by Hansch
and Toschek. ' A good review and list of references
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FIG. 1. Two cases of the three-l. evel transitions. {a)
Cascade case in which transitions between 3 and 2 level. s
and between 2 and 1 l.evels are al.lowed. {b) Competitive
case with allowed transitions between 2 and 3 levels and
between 2 and 1 levels. The multilevel cascade is de-
picted in Fig. 12. The level numbering in the competi-
tive case is chosen to allow cascade formulas to be used
{with trivial modification) for the competitive cases.

of the work to date is given in that paper and in the
review paper by Beterov and Chebotaev. '

In this paper we extend the theory of Lamb' to
treat the problem of both homogeneous and Dopp-
ler-broadened three-level laser media. We treat
two configurations known as cascade and competi-
tive, which are shown in Fig. 1. In addition, we
treat multilevel cascades in which a distinct mode
of the field oscillates between individual level
pairs. This theory is applicable to some features
of diatomic molecular lasers. The choice of nota-
tion allows results obtained for the cascade case
to give corresponding results for the competitive
case by inspection. The remainder of this section
defines notation and philosophy of our models.
Further background material is given in Refs. 4
and 10.

As in the Lamb theory, each mode is assumed
to be plane wave usuall. y with sinusoidal a depen-
dence (running-wave cases are discussed in Ap-
pendix A):
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U„(z) = sin%„z

for which the cavity frequency

0„=—K„c=nwc/L . (2)
Here L is the length of the cavity, c is the speed
of light, and n is a large integer on the order of
10'. In general, the electric field has the expan-

sionn

E(z, t) =—g E„(t)exp[-i(v„t+ Q„)]U„(z) + c.c. , (3)
1

where the amplitude E„(t) and phase Q„vary little
in an optical. frequency period. The corresponding
induced polarization has the Fourier expansion

P(z, t) = —g (P„(t)exp[- i(v„t+ Q„)]U„(z)+c.c. ,
1

n (4)

where the complex polarization 6'„(t) is slowly
varying in time. The electromagnetic field in the
cavity satisfies Maxwell's equations. We demand
that the field be self-consistent, that is, that the
field assumed to induce polarization of the active
medium be equal to the field produced by that po-
larization according to Maxwell's equations. In
standard fashion we combine Eqs. (3) and (4)
with Maxwell's equations and get the self-consis-
tency equations

E„=--,' (v„/q„)E„-—,'(v„/~. ) im(e„),

v„+ P„=0„—, (v„/eo)E„—'Re((P„),

where e, is the permittivity of free space and Q„
is the quality factor of the cavity for mode n.

We cal.culate the polarizations 6'„ from quantum
mechanics using a (3 X 3) population matrix (an
unnormalized density matrix whose diagonal ele-
ments yield level populations). The rate-equations
approximation often used in laser theory here
yields nine linear equations for the population
matrix elements which are not readily solved
exactly by analytical techniques. Two elements
represent coherence between levels of a forbidden
transition (e.g. , levels 3 and 1 in the cascade
case). This coherence results from two interac-
tions of the electric field and is referred to as an
electric-quadrupole term (the electric-quadrupole
operator has a nonzero matrix element). It intro-
duces additional terms in the equations of motion.
Hence, the perturbation method is followed, and,
in general, terms like p» (population matrix com-
ponent) in the cascade case are nonzero in second
(and higher) order. Computer analysis of two-
mode operation of both homogeneously broadened
and gas lasers is done in each case. We find that
the mode coupling is quite weak, i.e., the modes
saturate themselves considerably more than one
another and, hence, oscillate almost independent-

p =A. —(i/K)[X, p] ——,'[I'p+pI'], (10)

where K is the total Hamiltonian of the system,
I', , =y,.D,, for which y; is the decay rate of the
level i, and A, , =~,&;, where ~,. is the pump rate
to the level i (assumed to vary little in an atomic
lifetime). Along the lines for a two-level mediu;n, '

ly. Moreover, in the cascade case, the terms
,

coupling the modes result in mutual aid rather
than the usual competition leading to a reduction
in errors originating from third-order theory
and a small. peak in the center of the Lamb dip
in the Doppler-broadened case.

In Sec. II general equations of motion for the
population matrix are derived and the relation-
ships between matrix components and the polar-
izations 6'„are given. In Sec. III the equations
for the cascade and the competitive cases, re-
spectively, for homogeneously broadened media
are solved in detail. Appendix A gives a deriva-
tion of the case for an arbitrary amount of Doppler
broadening and for simple running-wave cases.
In Sec. IV the amplitude- and frequency-determin-
ing equations for both cases are given along with
tables of coefficients. Section V discusses the
validity of the third-order theory, revealing that
errors incurred through neglect of higher-order
terms tend to cancel. one another for cascade tran-
sitions. Section VI presents steady-state numer-
ical solutions. Section VII generalizes the three-
level cascade treatment to N+1 levels possibly
sustaining N modes of the radiation field. Specif-
ical. ly, a distinct mode is associated with each
pair of levels. In Appendix B the relationship be-
tween this simple model and the anharmonic cas-
cades encountered in diatomic molecules such as

' CO is discussed. The section el.oses with multi-
mode numerical results.

II. POLARIZATION OF THE HOMOGENEOUSLY

BROADENED AND DOPPLER-BROADENED MEDIA

We represent the atom-field interaction by the
electric dipole perturbation energy

'Q =-er E.
In the rotating-wave approximation (RWA) for cas-
cade case, this energy has matrix elements [see
Fig. 1(a)]

g „=——,
'

P»E, (t) exp[- i(v, t+ Q, )]U, (z),

~„=——,
' P„E,(t) exp[- i(v, t+ P, )]U, (z),

where P»(&») is the electric dipole matrix ele-
ment between the 3 and 2 (2 and 1) levels. For
the competitive case, 0» =V» with the change

f32 ~23 The P' s are taken to be real. , without
loss of generality. In general, the equation of
motion for the population matrix is given by



12 THEORY OF LASER OSCILLATION ON TWO OR MORE. . . 1555

we obtain. the component equations of motion for
the population matrix for each case. For either
type of transition, g„ is zero so that

p„'=—( i&„+r„)p„+(i/@)&„(p„p„-)
+ (2/@)U12P31

fields. (See Ref. 4, Chap. 10 for a detailed dis-
cussion. ) Hence, in forming the macroscopic po-
larization (P„(t), one must include in (18) an inte-
gral. over the velocity distribution. Specifically,
the complex polarization 6'„of Eq. (4) is given by

tP„(t) =2P„„„exp[(iv„t+Q„)]
P21 = —(i~21+y21)P21+ ('/@&21(P22 -Pll)

- (i/@)U2$P$

P31 ( 31 r$1)P31 ( / )( $2P21 P32+21)

(12)

oO

dv dzU„*(z)p„„„(z,v, t) .n n+]. ,n s y ~

(20)

p» = .—r.p» —( / )(»p.. c. .),
p„=X, —y,p„+[(i/h)u„p„+ c.c.]

[('/@)U21P12+ C ~ C.] ~

p„-,—y,p„+[(1/ }U21P12+c.c.J,

(13)

(14)

(15)

(16)

Here, p„„„(z,v, t) obeys the same equations of
motion as p„„„(z,t) with time derivative read as
8/st+ v(8/Bz). The Doppler-broadened case is
worked out in Appendix A.

III. INTEGRATION OF THE EQUATIONS OF MOTION

where the frequencies ~33, &», and ~» are shown
in Fig. 1. To account approximately for collision
effects, i.e., the dephasing time due to collisions,
we include an addition y,",". "', etc. , in our defini-
tion of y;, in component equations defined by

y;„=2(r;+r, )+r,',"'",
i.e., there is additional broadening due to colli-
sions. The corresponding equations of motion for
the competitive configuration [see Fig. 1(b)] are
identical to (11)-(16). However, note that ~$2 for
the competitive case is negative leading to slight
change in the resonant denominator resulting from
the RWA. Note also that population inversions be-
tween states 2 and 3 have opposite signs in the two
cases. The differences in the two cases are de-
scribed explicitly in Table I of three-level coef-
ficients. The off-diagonal element p» represents
the coherence generated by pairs of electric di-
pole interactions and contributes to the expectation
value of the electric-quadrupole operator. In
terms of the population matrix components, the
complex polarization of (4) for the n+1-n transi-
tion is given by

(P„(t)=2 exp[i(v„t+ Q„)]

dzU„*(z) P„+1 „p„„,„(z, t), (18)

where M is the normalization constant
L

[ U.(z) I
'« .

0

We see that the off-diagonal. elements like p„„„
lead to polarization of the medium.

In a gas medium atoms move through the stand-
ing-wave electric field, seeing Doppler-shifted
frequencies, or equivalently amplitude-modulated

p'„'„' = X„/y„, u = 1, 2, 3, (22)

and (unsaturated) population differences are given
by

(0) (0)
n, n-l. p nn p n-l, n-1

= ~„/y„-~. ,/y. , (23)

We iterate the calculation to third order with
the assumption that the amplitudes E„and phases
Q„of the electric field (3) vary sufficiently little
in atomic lifetimes to be factored outside the time
integrations. Using the zeroth-order difference
(23) in the integral (21), we find the first-order
contribution for p» to be

P,2~ = ——2'(P$2/h )Ã$2(z, t)E2U2 exp[- i(v, t+ p2)]

x [(11'$2 —v2) +iy$2)]/[+$2 —v2)'+ y $2] . (24)

For the sake of brevity we write down the ex-
plicit formulas for the upper transition of the cas-
cade case only. The corresponding formulas for

Following the perturbation method, we solve
equations of motion up to third order in the elec-
tric field interaction and find the complex polariza-
tion (18). This is used in Eqs. (5) and (6) to obtain
amplitude- and frequency-determining equations.

The population matrix off-diagonal elements are
given by the formal integrals of (ll)-(13), for ex-
ample,

t

p» =- dt' exp —i+»+y»
x [%$2(z, t')(P3$ P22) +&12P31] . (21

ln zeroth order (no perturbation), off-diagonal ele-
ments are zero while the diagonal elements (popu-
lations of levels) are given by
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TABLE I. Summary of coefficients appearing in the amplitude- and frequency-determining Eqs. (37)-(40). n=2 refers
to 32 transition and n=1 to other transition. The corresponding coefficients for n=1 mode are given by the values above
with 2 1 and 32 21, y3 yi for cascade, and 32 &2, y3 yi for competitive. The n, p, F(), F( ), o., p, and42222
coefficients are same for both cases and 82211 and/2112 are given separately. Terms here are defined as follows: the
frequency v„(3); Q„ the cavity factor (Q) for mode n; ~32 {Fig. 1); Ip32 is the electric dipole element of transition (8);

cC32 is the Lorentzian (26); E'0 is the permittivity of free space; y3, y2, and yi are the decay constants of the levels 3 ~ 2,
and 1 and F2 is the decay constant of the polarization induced between levels 3 and 2 (18); N32 is a population inversion
of (35). Note the complex p„&~ are used in general mode amplitude and frequency equations [see Eqs. (9-18) and (9-19),
Chap. 9, Ref. 41.

Coefficient
Physical

interpretation

2
—-2 2/@2+&32 232(~» —v2)

-:(1)

p2 232(&32 —V2)EI
linear net gain

self-saturation

2
)= -'v

32 2'2
ACT

32
0 32

F(3) tI) 32 1 F(1)

first-order factor

third-order factor

C032 —Vn (1)~32{&32-v2»'
'y32 32

32 v2 2 (3
732

32

v2[(p32 $21) N21/( 0&2&21)

32{ 32- 2) 21( 21- 1)

linear mode pulling

self-pushing

complex cross-saturation population depletion part
(cascade)

2112 8 F32 ~32(~21/@ @32(32 v2)@31( 31 1 2)

x~[(N21/N32)$21(~21 vi) cD32( 32 2)]

2211 2 ( 32 31) N21/(+ 0+831)~

~@32( 32 "2) 31( 31

(1)
2112 32 ~32{~31/ ) 32(32 v2) 21( 1 2 21)

[(N31/N32)@31( 1 ~31) +32( 32 2)~

complex cross-saturation quadrupole part (cascade)

complex cross-saturation population depletion part
(competitive)

complex cross-saturation electric-quadrupole part
(competitive)

+ m+ em =&nn mm+n mme cross-saturation terms

&.(&~) =~!/b.'+(&~)'] . (26)

We denote the term in the square brackets of (25)

the other transition and the competitive cases can
easily be derived from them and are identical for
both cascade and competitive 2-1 transition. Also
we find p„"=0. The diagonal elements have van-
ishing contributions in first order, because excita-
tion to a superposition of levels is assumed not to
occur. Substituting the first-order contributions
into the equations of motion (11)-(16), we get, for
example, (accurate to second order)

i ..= ~. r.p, I.'(~,.—/I)'(A»—/r-. .)~:I~. i'

(25)

where 2»(e» —1,) is a special case of the Lorent-
zian function defined by

(2) =p» =-&»&»/&'s

p,,'=~,~„/y, -~,p„/y, ,
(2)

Pll 21+21/~1
(2)

(28)

(29)

(20)

The electric dipole elements p» and p» have van-
ishing contributions in second order, but the
"electric-quadrupole" term p „has the contribu-
tion

by E»&» (&» has the form of a rate constant),
that is,

&„=-'(i'»/@)'(I/w»)&; I U, I
'&..(~..—1'.) . (2&)

A» is given by A» with 3-2 and 2-1. In terms
of the A' s, the second-order contributions for the
populations are
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p3~2l = 3( F32 f3»/I2)E, UE2U2 exp[- i(v, t+ v2t+ p, + Q2)]

21+21( 21 1) 32+32( 32 2)]

&„(&&)= [y„+i(b,&u)] (32)

X &31(&31-V1- V2)

Here the complex denominator

(31) The third-order contributions to the populations
and electric quadrupole are zero. We find the
third-order polarization element p32' to be

p..' =23 exp[-3(v2f+ 42)]~..(~..—v.)(~../If)E. U((I/y, +Iiy, )N„&„&p-„/y, ,'(~—„—/If)'E,'~ V i'

+31( 31 1 2)[ 21+21( 21 1) 32+32 ( 32 2)]]
(33)

(35)

and p2', is given by p,2 with the following inter-
changes: (i) subscripts 1- 2 on the field variables
in Eq. (3), (ii) the subscript pair 32- 21 where-
ever it appears, and (iii) y, - y, . Using (18) we
get the first-order polarization

(P 'l(t) =- (P2 /e)R E " ' " I (34)2 32 32 2 (K —V )2+y2

where N» is given by the n =2 case of the expres-
sion

L

( V„(z)(2~„„„(~,f)d~
n p

1
N„+1 „(Z, t)dZ .

p

Here, we have discarded terms in (35) which vary
rapidly in z, i.e., cos2K„z. No approximation is in-
volved here for the running-wave case. The ex-
pression for (p~1'l(t) is derived from Eqs. (34) and
(35) by the interchanges 2- 1 and 3- 2. The third-
order contributions contain similar spatial. inte-
grals which are treated in substantially the same
way. Unl. ike normal two-mode theories, the terms
varying as cos(K, —K2)z are also rapidly varying,
since they refer to different transitions rather
than neighboring modes in a cavity.

We find the third-order contribution of the po-
larization of the second mode to be [combining
(18) with (33)]

6'2" (&) = .'2u32(~3-2 V2)(~»—/If) E2(3'(~32/t )(&32/y32)E2(1/y, +1/y2)&32(~32 —V.)

- (1/y. )(&„/If )'E', (&a iy. ) &.,(~„-v )

-2(~21/@')'E', &31(&31- 1- 2)'[&»&21(~»- 1)- 32&32( 32- 2)]] (36)

6', '(f) is given by (P23 (t) with the interchanges ap-
plied to (33) for p, 13~. (P2~3l(t) for the competitive
case can be obtained by taking the complex con-
jugate of (36) provided we let v, - —v, and note
that &» = —+» and N» ——N». The total polariza-
tion accurate to third order is given by the sum
of 6' ' (t) and (P ' (t). Thus, combining the polar-
ization contributions (34) and (36) with the self-
consistency Eqs. (5) and (6), we can find equations
that determine the field amplitudes and frequencies
(i.e., in Sec. IV). More general results allowing
for Doppler broadening are given in Appendix A.
The derivation there requires understanding of
the perturbation tree technique (see, for example,
Chap. 10 and Appendix D of Ref. 4) not used here
for the simpler homogeneously broadened medium.

IV. AMPLITUDE- AND FREQUENCY-DETERMINING
EQUATIONS: FORMAL STEADY -STATE SOLUTIONS

and the frequency-determining equations

2 2v1+ $1 =Q1+o, —p 1E1 —v12E»

2 22+~2 2+ 2 P2 2 21 1

(3 8)

(40)

Using the complex polarization up to third order
for each case and the self-consistency equations
(5) and (6), we find the amplitude-determining
equations
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The coefficients for the homogeneous cases are
given in Table I and for the inhomogeneous cases
in Table II. In the cascade case the 8's and &'s

have opposite signs to the usual two-mode transi-
tions. In essence the two transitions help each
other to lase rather than compete. This can be
seen from a physical point of view in that mode
2 (the upper transition) populates the middle laser
level which is the upper level for mode 1, that is,
mode 2 increases the population inversion for
mode 1. Similarly, mode 1 depopulates the low-
er level for mode 2, increasing the latter's inver-
s ion.

The analysis of steady-state operation is consid-
erably simplified through the use of the intensities
I„=E'„Multip. lying (37) and (38) by 2E, and 2E„
respectively, we find the equations of motion

I1 = 2 I1(~1—P1 I1 —812 I2)

I, =2I,(u, —P, I, —8„I,) .

(41)

(42)

Stationary solutions occur when I, =I, = 0. Physical
solutions of interest are those for which intensities

are non-negative and stable. Conditions for stabil-
ity for the competitive case are identical. to those
for normal two-mode theory discussed in Ref. 4,
Chap. 9-2. The coupling constant

C = 8,282, /P, P2

expresses the degree to which the modes are cou-
pled. C & 1 defines weak coupling, C = 1 neutral
coupling, and C& 1 strong coupling. In Appendix A
of Ref. 10, more general. conditions for stable so-
lutions are discussed. It is shown that for the cas-
cade case when C ~ 1, no stable solution exists.
This point is interpreted in See. V. It is conven-
ient to express the coefficients in terms of the
relative excitation defined by

X =N/Nr, (43a)

where N~ is the value of the population inversion N
at threshold (given by n =0 for central tuning). In
describing our numerical examples (Sec. VI), we
use X, and 5;„ for which the N~ are defined by
Qy Q2 0, respectively. We turn now to a stability
discussion for the cascade case.

TABLE II. Coefficients appearing in the amplitude- and frequency-determining equations (37)-(40), for the Doppler
limit for the 32 transition. For further explanation refer to the caption of Table I.

Coefficient
Physical

interpretation

o =——~+E( }exp[—(A@32 P2) /(Ku) 1
1 v 2 2

Q
2

P2 ——[1+ S2(%32 —V2)] E32
(3)

P I P 2/( e' Eu)] N32

~I2 =6(kP32/ ) (73 +72 )732 I2

/ ~0) 32 +uk) N32Re&[F32 +'(~32 1 2)l

linear net gain

self-saturation for n =2

first-order factor

third-order factor

linear mode pulling

00

3(U) = jp dv e (" "& /(U+ggzJ) plasma dispersion function

~2 (32 ~2)/ ~32] 32 (~32 ~2)+32
(3)

~2211 k ' "2[(IP32P21) 21/+ 60 YA")

t&32+2f (4)3f —Vf —t 2) +@32+2f(&32 —%2f V2 + Vf)]

~21'l2 &2~ "2[('P32P21) +21/@ 6+")
3f( 3f

self-pushing

complex cross-saturation population depletion part
(cascade)

complex cross-saturation quadrupole part
(cascade)

~2211 h6 2 [(62~31)N21/ 6073

[~2+3f (&32 + &3f —Vf —P2)+ 6032+3f (~32 —&3f —V2 + Vf)]

+2112=$62V2Z [(532'P31}N21/K 6PKQ)

+2i (32 3f +~f ~2) $32+3f ( 32 3f + f 2)

complex cross-saturation population depletion part
(competitive)

complex cross-saturation quadrupole part
(competitive)
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V. DISCUSSION OF THIRD-ORDER CASCADE THEORY p„=l, —y,p..—(&.', I./2@'r ..)(p„-p.,) . (46)

Pl 1 1 rlpll (~ 12 1/ r12)(P22 Pll) t

p„=&, —y,p„—(&',j„/2~'y„)(p» —p»)

(44)

In Sec. IV we noted that certain special problems
may arise in the formal solution of the equations
of motion in the cascade case. In particular, two-
mode third-order theories are characterized by
the coupling constant C [Eq. (43)], which deter-
mines the stable solutions of the equations, de-
pending on whether C is greater than or less than
unity (strong versus weak coupling). The coupling
constant, which is always positive, comes into
the solutions as a term (1 —C) in the denominator
(see Ref. 4, Chap. 9-2). This is apparently singu-
lar for C =1, but in all cases except the cascade,
the numerator also vanishes thereby removing the
singularity. In the cascade case, the third-order
theory is actually singular for C =1. In addition,
for strong coupling (C &1), the third-order theory
gives results that are nonphysical, namely un-
saturable exponential buildup, even when both
modes are below threshold. This is due to the
larger size and opposite sign (providing gain) of
the cross-saturation terms (6's) relative to the
self-saturation (P' s) in Eqs. (41) and (42).

In this section we use a simplified model of a
homogeneously broadened unidirectional ring laser
to explore the validity of the third-order theory in
the regime of C~ 1. We use this model since spa-
tial dependences cancel out and, with only a few
approximations, the corresponding exact theory
can be solved in closed form. We find two key re-
sults: First, that strong coupling does not appear
to be likely in the cascade case (although it may
occur for multilevel bidirectional operation as dis-
cussed in Appendix A); secondly, for C near 1,
one can use the third-order theory even if the
laser is not particularly close to threshold and
expect to get reasonable results. This second re-
sult is due to the fact that neglected higher-order
self-saturation terms tend to be canceled by cor-
responding higher-order cross-saturation terms,
particularly as the two phenomena approach one
another in magnitude (C - 1).

In order to obtain an exact solution for the homo-
geneously broadened unidirectional ring laser, it is
necessary to ignore the quadrupole terms, i.5.,
p». We note that these terms tend to cancel out
in the homogeneously broadened case (see 8»» in
Table I), so ignoring them should not be serious.
Without them, Eqs. (11)—(16) give on resonance
and in the rate-equation approximation (see Chap.
8-2 of Ref. 4),

We also write the equations for the time evolution
of the intensities as

& / t =g (P —P, )f, —(,/Q, )I, ,

dl. /dt =+g.(p„-p..)I, —(v,/Q, )f„
(47)

(48)

and use the relative excitations defined by Eq.
(44). We find the equation of motion

(v, /Q, )&,(1 +&,) +( /vQ. )&&,(g, /g. )s,r, /(r, + y.)

(1+&,)(1+&.) &,&,[r,-r,/(y, +r, )(r, +r,)]

Q
1' (49)

The equation for the second mode is found by in-
terchanging y, —y, and 1 —2 in the 6„, v„/Q„, and
K.

The corresponding third-order expression is
found by expanding the exact results to third order
to give

d„=2s„[o.„—p„d„—6„d„], (5o)

where n =1, 2, m =2, 1, and the self-saturation co-
efficients are

p, = (v, /Q, )51„

and the cross-saturation coefficients are

and

g ~@ ~1 ~3
Q, 'g. r, +r. (52)

g ~~ 2

Ql gl rl r2

The coupling constant is, therefore,

(53)

~i2 ~2& &~&3

(r, +y.)(y, +r.)
'

which is always less than one. It seems to be
generally the case that C is less than one. For
example, the standing-wave laser in this case
gives

where g„ is the small signal gain of the nth mode
defined by o„=g+„„„—v„/Q„ for central tuning.
The plus sign in Eq. (48) is for the cascade and the
negative sign for the competitive case. The equa-
tions for the population can be solved in steady
state with straightforward algebra. For typogra-
phical simplicity, we introduce the dimensionless
intensity

n
~

n ~ I
~~ 2

n ~ I ~ n
n t

1 1 fp
2

+ n+1, n

y„„y„282@„„„

+ (@'.,I,/2@'r„)(p,.—p») 9 (r, +r,)(r.+r.) ' (55)
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In our numerical computations we find reasonable
values of C which tend to be smaller than 0.3.
Thus, although it cannot be proved, we have been
unable to find a common case in which the singu-
larity actually occurs. The bidirectional case for
which C might equal or exceed unity (see Appendix
A) is probably not obtainable in any straightforward
fashion experimentally.

The question still remains of what happens to the
third-order results in the neighborhood of the
singular point C = 1. Although one would imagine
that the theory would have little validity there, we
find that just the opposite is the case. In fact, for
values of C& 1, the third-order results remain rea-
sonably accurate for far larger values of the rela-
tive excitation than one can reasonably use in or-
dinary single or multimode third-order calcula-
tions. A particular example is given in Figs. 2 and
3 which comes from solving Eqs. (42) and (49) in
steady state for the case where y, =y, =y, (C=-,').
One sees there that for one mode at threshold and
the other substantially above, the third-order and
exact answers are the same. The other mode is
off by about 28% at a relative excitation of 1.5,
with an overall accuracy of 14%. By comparison,

0.8

a single-mode calculation for the same relative
excitation would be off by 33%. We have tested
many other cases with values of C in this range
and have found these accuracies to be representa-
tive.

VI. THREE-LEVEL NUMERICAL RESULTS

In this section we report computer analysis of
the intensity equations (41) and (42) for both homo-
geneous and gas cases, yielding plots of mode in-
tensities versus cavity detuning. The intensity of
mode n is given in units of —2(P jh)'(y„y„„) ' for
convenience. We discuss the homogeneous case
first. For the competitive transitions the coupling
constant C of (43) has a maximum of about 0.3 at
resonance falling off by 10% at 100 MHz off reso-
nance, and for the cascade transitions it is prac-
tically a constant about 0.068 (very weak). For
relative excitations ~, =@,=1.2, the two modes
oscillate almost independently of each other (Figs.
4 and 5). We see that in the cascade case (Fig. 4),
the intensity of mode 1 oscillating alone is about
21% less than the two modes oscillating together,
while in the competitive case (Fig. 5), it is about
35% more than the two-mode transitions. This il-
lustrates the fact that cascade transitions help one
another. If one of the modes is exactly at thresh-
old, the presence of the other allows it to lase.
We find, however, that a relative excitation of

0.6
0.6

0.4
0.4

0. 2
0. 2

I I

1.61.0 1.2 1.4 1.8

FjG. 2. Graphs of intensities of the exact (solid line)
and the third-order (dashed line) cascade case for mode
1 versus 'X. 2 is fixed at 1.0 (threshoM value) and p2/p3

72/Yg = 1.0

0
1.0 1.2 1.4 1.6 1.8

FIG. 3. Graphs of intensities of the exact (dashed line)
and the third-order (solid line) cascade case for mode 2
versus X. X is fixed at 1.0 (threshold value) and y2/y3
=&2/p~ = 1.0. The two graphs are almost superimposed.
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FIG. 4. Graph of three-level. cascade transitions ver-
sus cavity detuning (which is about the same for both
modes), homogeneously broadened stationary atoms.
Solid line and dashed lines correspond to 32 and 21 tran-
sitions of Fig. 1(a), and the dashed-dotted line is the
single-mode intensity of 21 transition. Laser param-
eters used are ps=15.5, y~=41.0, y&=51.0, y» ——128.0,
y„=146.0, q„=13'.0 MHz, and X,=X,=1.2 [Eq. (43a)].
The 32 transition here rises substantially above the 21
transition due to the difference in scaling involved in the
dimensionles s intensities.

0.98 (less than threshold) for one mode and 1.2 for
the other is not enough to bring the first mode
above threshold. With excitation levels of 1.2 and
1.05, in the cascade case the second mode starts
to oscillate close to resonance (Fig. 6) (and of
course with much less intensity), while in the com-
petitive case the first mode suppresses the second
for all frequencies.

Figures 7 and 8 show the inhomogeneously broad-

0.8

FIG. 6. Graph of cascade transitions versus cavity
detuning, homogeneous case, for X2= 1.05. All the rest
of the parameters are the same as in Fig. 4. This mode
starts to oscil. late only close to resonance.

ened case results corresponding to Figs. 4 and 5.
In the competitive transitions (Fig. 8), we see a
simple Lamb dip at resonance with the intensity
of mode 1 53%%uo smaller than when oscillating alone.
In the cascade case (Fig. 7), when the two modes
are oscillating together, the mutual aid at reso-
nance yields small peaks at the center of the Lamb
dips. The intensity of the mode 1 oscillating alone
is about 40%%uo less than its intensity oscillating to-
gether with the other mode. In fact, the coupling
constant for the cascade ease is about 0.15 with a
25%%uq increase at line center, explaining the appear-
ance of the small peaks. This effect is more
clearly observed with the excitation parameters of
1.2 and 1.05 (Fig. 9), where mode 2 shows no dip

3.2

2.4

I—

0.4-
LLJI-
z' IW

0.2-

I—

1,6
QJ
I-

0.8

QQ S

50 loo-lOO -5O 0
6Q

FIG. 5. Graph of three-level competitive transitions
versus cavity detuning (same for both modes) for homo-
geneously broadened stationary atoms. Solid line and
dashed line correspond to 23 and 21 transitions of Fig.
1(b), and the dashed-dotted line is the single-mode inten-
sity of 21 transition. La:,er parameters used are p&

=51.0, y32=128, 0, y3)=14u. 0, and y2(=133.0 MHz and

i-g2- 1 2 [Eq, (43a)],

0.0
-500 -250 0 250 500

FIG. 7. Graph of three-level cascade transitions ver-
sus cavity detuning (which is about the same for both

modes), inhomogeneously broadened medium. Solid line

and dashed lines correspond to 32 and 21 transitions of
Fig. 1(a) and the dashed-dotted line is the single-mode
intensity of 21 transition. Laser parameters used are
the same as in Fig. 4, plus a Doppler broadening of Ku
= 1010 MHz.
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FIG. 8. Graph of three-level competitive transitions
versus cavity detuning (same for both modes) for inhomo-
geneously broadened medium. Sol.id line and dashed line
correspond to 23 and 21 transitions of Fig. 1(b), and the
dashed-dotted line is the single-mode intensity of the 21
transition. The substantially larger value of this single-
mode intensity is expl. ained by the larger coupling of C
= 0.65. Laser parameters used are the same as in Fig.
5, plus a Doppler broadening of Em=1010 MHz.

FIG. 10. Graph of three-level. cascade transitions ver-
sus cavity detuning for the gas case with the two transi-
tions detuned from each other by 50 MHz. Solid line and
dashed lines correspond to 32 and 21 transitions of Fig.
1(a). Laser parameters are same as in Fig. 7.

Hence, this interesting effect in the cascade ease
is solely due to the coherence term p3$.

at all. In contrast to the homogeneous case a rela-
tive excitation of 1.2 for mode 2 is enough to start
the first mode pumped )ust to &y 0 98 to lase.
Figures 10 and 11 are two-mode plots at excita-
tion levels of 1.2 and detuned by 50 MHz from each
other. The cascade transitions start oscillating
about 50 MHz apart, while the effect of competition
prohibits the other competitive mode from oscil-
lating until about 250 MHz apart.

Finally, we found that neglect of the coherence
terms (particularly in cascade case with same rel-
ative excitations for both modes) leads to essen-
tially the same results for the homogeneous transi-
tions, but leads to loss of the small peak observed
in the center of the Lamb dip in Figs. 9 and 10.

VII. MULTILEVEL CASCADE MODEL

In the present section we consider an N+1 level
cascade (Fig. 12). In doing so, we wish to make
connection with multiple-level cascades in diatomic
moleeules. %e thus generalize the three-level sys-
tem to an anharmonic oscillator. This model does
not totally represent the situation in a molecular
laser. In particular it neglects rotation and vibra-
tion-vibration (V-V) collisions. Nonetheless, for
reasons discussed in Appendix B, we believe it
has some pertinence to cascades in diatomic
molecules. As discussed in See. V, the small in-
tensity restriction is not as severe in the cascade

I.820
2.4-

I .365—
I—
M~ 0.9IO—

OA 55—/

/

0.000 !'
—500 -250 0 250 500

FIG. 9. Graph of cascade transitions versus cavity
detuning, inhomogeneous case, for X2= 1.05 (sol.id line).
All. the rest of the parameters are the same as in Fig. 7.

0.8 —
r
/

/

QQ~l I

—500 -250 0 250 500

FIG. 11, Graph of three-level. competitive transitions
versus cavity detuning for the gas ease with the two
transitions detuned from each other by 50 MHz. Solid
line and dashed l.ines correspond to 23 and 21 transitions
of Fig. 1(b). Laser parameters are the same as in Fig. 7.
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N

N N+1, N

with any given transition of the cascade chain.
This yields the electric dipole perturbation-en-
ergy matrix elements

——,
' P„„„F-„(t)exp[ —t (v„t + P„)]U„(z), k = l

n+k, n
=

0, k&]. ,

n=l

where n refers to the lower level of the transi-
tion. Here, the v's are all unequal (v„& v~ for
n &P). The equations of motion for the density
matrix components are

FIG. 12. Energy-level. diagram for a multil. evel
cascade. p„-a„—y„p„„—— P V„p,„+L.c)

k=nk 1

(57)

case as in the competitive case due to the partial
cancellation of neglected higher -order terms. The
relevant coefficients can be obtained by inspection
from the simpler values in Sec. IV. Hence, in this
section we give only the density-matrix and laser-
intensity equations of motion, by way of defining
the model quantitatively. Table III gives the coef-
ficients for the homogeneously broadened medium.
The Doppler and general cases are given by the
same set of subscript substitutions from the cor-
responding three-level cases. The section closes
with some numerical results.

We assume that only one cavity mode is resonant

2
P = -(' y+Tt,dp)P, —

P
'& P P P &

y)
k=nk 1 k=$61

(58)

The first-order contribution to the polarization
6'„(t) of Eq. (18) [or (20)] is given by three-level
value (34) with the subscript substitutions 2-n,
3-n+1. The third-order contribution for 6', is
given by the three-level case and that for (P„by
the three-level value for (P, (36) with the subscript
substitutions 1 -N —1, 2 -N, 3 -N +1. The third-
order contributions for (P„, 1 &n & N include effects

TABLE III. Summary of coefficients appearing in intensity and frequency Eqs. (59) and (60).
These reduce to values in Table I for appropriate choices of n.

Coefficient Physical interpretation

(1) g
q

+
2 Qn

~n = ~n +f, n(Mn +f n
—Vn) En+1

2 (3)

~(f) & Vnn+f n g
2

n +1 n 2 g n +f n
~p&n +1, n

(3) 3 2 f,(f) 1
+n+f, n 2 ~@n+f, n~ @~ ~n+f, n+n+1, n +

~n +1 4

linear net gain

self-saturation

first-order factor

third-order factor

On= n +1, n ~~n +1, n n I '

n +1, n
~n +1

I n
= ' n+i, n&n+i, n Vnj n +i,n

Y n+1

linear pulling

self-pushing

cross saturation
population depletion
part

+n +f,n@n +1,n ~n +1,n Vn~~

1
g V

~II(.n+1 nn+f&i, n~i n+f&f,«f)2~
d n,n,na i,naf g n

+ &p7nVn+fai, n&i

+n+i, n(n +i,n n~~n +fbi, na 1 ( n +f1 i,n 11 n t f~

kn, n k f,n k 1 'n 16
~ Vn tf n +i,n n +f1 i,n %1~ /A Cp]Sn +f,nw~n +i,n Vn~ CrOSS-SaturatiOn

quadrupole part
XS„+( ) n (f), ( n+(2), n -(/) Vn —Vnk))

+ t+n+iki, nb An+i%i, nk i~~n+fk f,nkf n %1~

~n m+ '~n m =&nnmm+&nmmn total cross-saturation
coefficients
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from interactions with modes n+1 and n —1, which
are given by, similar simple subscript substitu-
tions. These observations lead to the mode-inten-
sity equations of motion

I„=2I„(ot„—P„I„—6„„„I„„—6„„,I„,),
~n + 4n ~n on pn n 7n, n+ aIn+1 7n n-1 n-1 t

(59)

(60)

0.8-

0.6—
I-
Ch

0.4
I-

in which Oi, , = 0~, ~+i 7i, o 7~, „+,=0. The various
coefficients are defined in Table III for the homo-
geneously broadened case.

To illustrate the formalism, we present inten-
sity plots for two five-mode homogeneously broad-
ened cascade cases. The intensities are again
given in dimensionless units, and the different
pairs of adjacent transitions are weakly coupled,
typically with a coupling constant of 0.108. We
find that for the laser parameters chosen and even
with the maximum excitations of % =1.2, the third-
order theory still yields quite acceptable results
for the intensities of the cascade transitions. Fig-
ure 13 shows graphs of the mode intensities versus
the cavity detuning for the five modes, the first
mode oscillating with %=1.2 and the other modes
each pumped just to the threshold level, i.e., at
K„=1.0. For reference, the first mode oscillating
alone is indicated by a dotted line. I'he mutual
aid in cascading processes is again evident. Since
we pump all the lower levels (other than the upper-
most one) just to the threshold, the increase in the
intensities due to the additional transitions is not
strong. Supplementary runs show a slight increase
in the intensity of the upper transition occurs
whenever a new (lower) mode starts to oscillate.
This effect was also observed (as expected) in the
simpler three-level cases (see, e.g. , Figs. 4 and
6). This is the normal case in a multilevel cas-

cade laser like CO. As a trial computer run we
obtained intensity plots with pumping to the lower
levels, too, and found that the intensities increase
substantially by addition of an extra mode. How-
ever, this generally does not occur in experimental
cases. Typically, one is interested in extracting
the most energy by pumping a single level. . In our
runs we also used slightly decreasing values for
the electric dipole moments fP„„„coming down
the ladder, a choice corresponding to the case for
anharmonic diatomic molecules. Solutions for
three-, four-, and five-mode cases with equal
fP 's yielded intensities slightly smaller than the
previous corresponding cases. In another trial
run we filtered out the middle transition to see
whether the cascading process would go through,
but obviously it introduces a huge loss to the cas-
cade chain and the upper two modes and the lower
two lased as two independent pairs (Fig. 14).
Yardley" mentions similar experimental results
in which the absorption of transitions by atmo-
spheric water vapor may break the chain of the
cascade. He noted also that the use of a grating
to select individual lines results in loss of inten-
sity or even completely quenching the laser oscil-
lation.

APPENDIX A: POLARIZATION FOR ARBITRARY AMOUNT

OF DOPPLER BROADENING

In this appendix we calculate the first- and third-
order contributions to the polarization [Eq. (20) j
of the laser medium for an arbitrary amount of
Doppler broadening and for both two-mirror stand-
ing-wave and unidirectional ring-laser configura-
tions. The technique employed relies on the per-

I.08

0.8I

(f)z 05$-
LLJ

0.27-

0.2 0.00'
—60 —50 50

n

60

0.0—60 -50 0 50
b, Q

60

FIG. 13. Graphs of intensities of five modes oscill. ating
together at 25=1.2 and X4='X3=X2=X(=1.0; &6=20,
=19, y4=17, y3=14, F2=12, and yg=9 MHz; $65=1.4,
54=1. 35, 0'43=1.3, tf'~2=1.25, and P (=1.2.

FIG. 14. Graphs of intensities of the five modes oscil.-
lating together at X,=1.2, %4=1.0, %3=0.2, %2=1.2,
and %&=1.0. Laser parameters used are same as in
Fig. 13. As is seen in this graph, the third mode is not
only filtered out, but it also breaks the cascade chain
and the upper two modes and the lowest two oscill. ate as
two independent pairs.
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Standard, single-mode, perturbation tree (compar e
Fig. 10-4 in Ref. 4) . Leads to standard set of
integrals.

Coupling introduced
by common level (2) .

Coupling introduced by
p31 term (electric
quadrupole)

FIG. 15. Third-order perturbation tree for three-level. system having density matrix equations of motion (11)-(16).
The complex polarization 6'~~~(t) is the third-order contribution to Eq. (20).

turbation tree discussed in Chap. 10 and Appendix
D of Ref. 4. Inasmuch as this calculation is short-
er and substantially more general than that of
Sec. III, one might ask why both are included. We
chose to give the simple case in Sec. III because
of the probability that most individuals are not
familiar with the perturbation tree, however pow-
erful it is in treating problems of the present kind.

The first-order contribution to the polarization
is identical to that for two-level systems (see
Ref. 4) and deserves no further comment. The
third-order contribution is represented by the
tree in Fig. 15. Unlike the multimode treatment
of two-level systems [see Eq. (D-3) of Ref. 4], it

is generally necessary here to distinguish between
wave numbers K„ in dealing with the Doppler
shifts inasmuch as the K„are associated with dif-
ferent transitions, leading to appreciable differ-
ences between the K„v factors. For this purpose,
we expand the modal product

II = U„(z)U„(z')Up(z")U, (z"'),

where z'=z —vv', z" =z —v~'-vv", z" =z —v7'
—VT —vT", and U„(z) = sin(K„z) explicitly. Using
standard trigonometric identities and neglecting
terms varying rapidly in space [like cos(2K„z)] and
odd in v, we find

II = icos[(K„—K„—K +K, )z]cos[K,vT'" —(K~-K, )vT" —(K„+K~—K, )vT']

+cos[(K„-K„+K~—K, )z] cos[K,vr'" —(K~ —K, )vt" +(K„—K~+K, )»']

+cos(K„+K„—K~ —K, )z cos[K,vt"'+ (K~+K, )vv" —(K„—K~ —K, )v~']) . (A2)

Taking the K, 's equal in the velocity cosines, ' we recover Eq. (D-3) of Ref. 4. For the tree limbs 5 and I),
, we have the specialization n = p. =2, p =cr = 1. Defining the average wave number E and the constants c„by
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K= —,'(K, +K,), K„=c„K, (AS)

we have

II(I =6, 6) = gcos[Kc(c,~" —c,~')]+cosPhi(c, T"'+c,v')]+cos[2(K, —K)z] cos[Kv(c, ~" +2c,7" + (2c, —c,)v')]).
(A4)

Here, the term with z dependence is assumed to vary sufficiently rapidly to cancel out in the spatial inte-
gration. Similar expressions result for the seventh and eighth limbs of the tree.

writing t e polarization contribution 6'2&3) from the tree, we have

4 3 8 3

i''=, ', i *„i''+-M) 'z, expl iiv, i +a-, 'ij (i*,,z,'p g r,.+i',p,* p g &,.),
w=]. l=5

where the complex third-order integral

fj7' O'T exp — U)I +2S ~EQT
0 k=l

(A6)

and the population inversion factors N, and con-
stants s ', are defined in Table Vf and the complex
frequencies U„ in Table V. The third-order com-
plex coefficients are given by

and we recover the coefficients in Table I. In
general, the T&„are given hy E|I. (D 9) of Itef
In the Doppler limit, T, and T, are given by

h»» = &vP,', (O'Ku c,) ' g g T,„,
3

3»»= —,——'2v(5»P»)'(O'Kue, )
' g (T, +T, )

In the stationary system limit

/Mi ii 0 1 Nii lvlV)2 V&3 i

U i2 &i U t i+ 2 U &3

This gives

»11 v ( $2 ~21) ( 0) 21Y2

x[(c,u»+c, u») '+(c,u„+c,v„) ']. (A10)

For Qy cp 1 this reduces to the value in Table
II. The T» term is multiplied by N» ——O. The
other terms have negligible size in the Doppler
limit. The T» has nonzero value in the Doppler
limit (T„,T„=0), which for c, not too different
from c, yields the value

TABLE IV. Definitions of factors sw{'&) and population
inversion factors N, w appearing in third-order integrals
(A6).

$3$( 3g vy v2) (Cgvgy+ c2 V83) (Al 1)

This reduces to the value in Table II for c, = c, =1.
Inasmuch as we have taken K, 4K, in dropping

terms with cos[2(K, —K,)z], one might ask how

N32

N3~
TABLE V. Complex frequencies»z appearing in third-

order integrals of (A6).
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y2& + z(u2& —v&)
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valid it is to simultaneously take K,v =K2v. As
given by (A10) or (All), a substantial (e.g. , 5%)
difference between K, and K, (that is, between c,
and c,) leads to noticeable results. But only an ap-
preciable change in the population inversions
N„„,(z, t) over a distance 2~/2(K, -K, ) can lead
to a nonzero value of the cos[2(K, -K,)z] term
after the z integration is performed. For example,
for a 1-gm wavelength, if N(z, t) changes by 50'fq

or less over a centimeter, m/(K, -K,) can equal a
millimeter with essentially complete cancellation.
This corresponds to 2w/K2(c, —c,) =0.1 or c, —c,
=0.0005, for which the approximation c, = c2 in
(A10) or (All) is excellent.

The running-wave ring-laser cases are also of
interest. For these the field is given by

E(z, i) = —Q E„(t)exp[-i(v„t+ y„-K„z)]+c.c. ,
1

(A12)

where K„can be taken negative to yield a wave
propagating in the minus z direction. In the rota-
ting-wave approximation, the perturbation energy
'Un+1 n readS

g„„„=-2 p„„+„(i)exp[-i(v„t+ y„—K„z)].
(A12)

We consider two cases: unidirectional (both modes
propagate along the z axis) and bidirectional (mode
2 propagates along z and mode 1 along minus z).
The spatial mode product (Al) reduces in either
case to

II = exp(-iKv[(c„+ c~+ c,)r'+ (c, + c,)7"+ c,~"']).

(A14)

From the perturbation tree, we write the various
values of the c's as given in Table VI. The tech-
nique here is a simple example of the tabular
method employed by O'Bryan and Sargent" and
Hanson and Sargent". The resulting T, integrals
are also identified in the table from Table IV.

The complex saturation coefficients are then
given by appropriate sums of the integrals in Table
VI. Specifically, the complex self-saturation co-
efficient is

1-1x [cgv 2g + c2 U2S j

~2211 4 v~ ( ~32 ~21) N 21(@ u 0)
1-1

X C1U61+ C2U63) 7

2 112

(A18)

(A19)

This leads to 6's half the size of the P's. On the
other hand, the bidirectional case has a substan-
tial quadrupole contribution due to the partial, can-
cellation of Doppler shifts in the resonance de-

+222 = p2+ip2 = 8 vlP@A Kuco) [T~2+T2~+ T~~+T42] ~

(A15)

The cross-depletion coefficient is (unidirectional)

g„,= ——,
' v(P„P„)'(h'Kue, ) '[T~+T„] (A16)

and the quadrupole coefficient is (unidirectional)

= —8 v(@32 p2i) (O'Kueo) [—Tvs+ Tas] ~ (A17)

with similar expressions (easily summed from
Table VI for the bidirectional cases. In particular,
only the T» integrals survive in the Doppler limit,
yielding

~2222 ~4 vz ~ 32N32(@' u&0) '(y, ' +&2

TABLE VI. Calculation of the third-order integrals (A6) for running-wave (ring) lasers.
Both unidirectional (both modes travel in same direction) and bidirectional cases are consid-
ered. The c„are determined from the perturbation tree in Fig. 15, with the energy matrix
elements (A13) and the mode-factor product (A14),

CII cp Cg mi p p a m2 p o m3 o

C2 C2 C2

C2 C2 —C2

C2 C2 C2

C2 C2 C2

5 C2 —Ci Ci
6 C2 Ci —Ci
7 —Ci Ci C2

8 Ci C2 Ci

C2 Ci Ci

C2 Ci Ci

Ci Ci C2

Ci C2 —Ci

C2

C2

C2

C2

C2

C2

C2

C2

C2

C2

C2

C2

0
0

Ci +C2

Ci +C2

C2 —Ci

C2 —Ci

C2
—C2
—C2

C2

Ci
—Ci

C2

Ci

—Ci

Ci

C2
—Ci

T12
T2i
T31
T42

T52

T6i
T73
T83

T5i
T82

T72
T8i

either

unidirectional

bidirectional
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.i»--"'(@»&»)'Ã»(O'Ku~, )

&&(~, '+u, ,')[c,u„+ c,u„] '. (A20)

As y„-y„ this yields a 8„approximately equal
in magnitude but opposite in sign to P, of Eq.
(A15). See Sec. V for a discussion of this some-
what anomalous low-saturation case. It is not
clear to us hom the case mould be obtained ex-
perimentally. Moreover, in the multilevel cas-
cade, with modes of alternating direction, the
middle modes could, in fact, have more net gain
than self-saturation leading to a breakdown of the
third-order approach altogether. A similar can-
cellation of Doppler shifts occurs for the unidirec-
tional competitive case, there leading to approxi-
mately equal P's and 6's and to standard mode-in-
hibition effects.

nominator 1/[y»+i{tu» —v, —u2)], i.e., v, +K,v+ v2

K2v vg + vp unless K, is very different from K, .
This is now a familiar type of cancellation due to
the onset of two-photon spectroscopy. ' Hence, the
sum of the bidirectional cross-saturation coeffi-
cients has the Doppler limit value

82211 2112 21 21

er in vibrational quantum number.
V-V rates decrease with increasing quantum

number (as AE increases) and for sufficient high
v (v -30)" radiative and vibration-translation
(V-T) processes are the dominant factors in the
relaxation rates. The V-V transition probabilities
due to short-range forces decrease with lowering
the temperature, but this is compensated by the
long-range forces which increase the rate con-
stants. Thus, V-V exchange in upper levels (v
&8)17 becomes the efficient process determining
the level lifetimes (T„) for the laser transitions.
Hancock and Smith" and Jeffers and Kelley" dis-
cuss the V-V and V-T energy transfer rates. Qnce
a small portion of CO moleeules is vibrationally
excited into the higher levels, the excited mole-
cules relax mainly by the V-V energy exchange
process, and since the lower levels have a larger
decay rate, the ratios of population densities in
the adjacent levels increases thereby allowing the
lasing process to occur. " One might describe the
time dependence of pumping and relaxation pro-
cesses by writing the equation of motion for the
population density p„„of one of the levels (ignoring
the small coherence terms) as

APPENDIX 8: RELATIONSHIP TO DIATOMIC

MOLECU LES

Qur model neglects numerous characteristics
of diatomic moleeules. " In particular, the mole-
cules have a set of rotational levels'"~&with magnetic
sublevels) for each vibrational level, whereas we
consider a single level alone. In support of this
simplification, we note that typically only one ro-
tational level per vibrational level is directly in-
volved in laser action. Other rotational levels do
interact indirectly through rapid collisions that
repopulate the population distribution. To describe
this phenomenon, we suppose that the Boltzmann
distribution in the rotational levels corresponding
to a single vibrational level is maintained in time
through the collisions. As such the level lifetimes
are not affected by the collisions, but the induced
dipole moments dephase accordingly (the T, time
is reduced, here represented by dipole decay con-
stants like y»). Hence, we do not include any spe-
cial factors in the atomic equations of motion to
account for these processes.

V-V eolbsions lead to an effect that tends to
pump an inversion. " Specifically, because the
higher-lying levels are more closely spaced than
the lomer levels, the collision process

CO(u —1) + CO(1)- CO(u) + CO(0) + rkE (B1)

releases energy. The reverse process must ab-
sorb energy and is therefore less probable. Hence,
V-V collisions tend to pump the molecules up high-

e

Pnn ~AnPkkPnn ~nkPk+1, k+ lPn-l, n -1
k&n

—(i/)2) [the dipole interaction term]

(B2)

~k Pkk (B3)

and

n Q nkPk+ 1,k+ 1Pn -1, n -1 (B4)

are time and population independent.
A detailed study of dipole-moment function and

vibration-rotation matrix elements for CQ has
been done by Young and Eaehus 9 and others.
In our simplified model we use dipole-moment
values that fit these models approximately. Cale-
donia and Center" developed a model for the
steady-state vibrational distribution functions of
anharmonie oscillators based on rate-equation
type of solutions including the eollisional exchange
processes of V-V and V-T and the radiative decay
rates for different species of gas present in the

mhere the 8'k„are transfer rates. The kinetic
terms also contain processes which take the mole-
cule from n to n+ 1 level. These have been left
out for reasons of simplicity. We suppose that,
in steady-state cases, the decay "constant" y„and
pump rate X„of (57) given by
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system. Other theoretical models by Treanor,
Rich, and Rehm" and Rich" are also based on
the rate-equation approximation, and depict char-
acteristics like small-signal gain versus vibra-

tional quantum number v and vibrational populations
versus v at different temperatures, pressures, and
gas mixtures.
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