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The evolution of slowly varying wave pulses in strongly dispersive and absorptive media is studied by
a recursive method. It is shown that the resulting envelope function may be obtained by including
correction terms of arbitrary dispersive and absorptive orders. Different definitions of pulse velocity are
discussed in some detail and finally, qualitative examples of a Gaussian pulse in a cold plasma and an
atomic medium are given, illustrating the importance of higher-order terms in the velocity expression.
Particularly, the packet velocity is shown to be dependent on pulse width besides dispersion.

I. INTRODUCTION

The propagation of signals in absorptive and dis-
persive media is continually of basic theoretical
and practical interest. The conventional method of
treating pulse-wave propagation in such media is
to use the Fourier representation of the wave pack-
et in terms of its spectral function at some given
position.? This representation is developed by
means of a Taylor expansion of the function &
=k(w), where k and w denote wave number and fre-
quency, respectively. However, for higher expan-
sion terms the resulting integrals become difficult,
and resort is taken to numerical computations.
Another approach to the problem is to express the
Fourier integral as a convolution integral,? or to
calculate the wave field by the saddle-point method
(see for example Ref. 3).

The evolution of slowly varying pulses in strong-
ly dispersive, but nonabsorbing media can be stu-
died by a recursive method,*i.e., a system of
coupled first-order differential equations for suc-
cessive approximations is derived and solved re-
cursively. In the present paper we will extend this
analysis to absorptive media and show that it is
possible to obtain correction terms of arbitrary
dispersive and absorptive orders for the envelope
function, under certain conditions.

It is well known that the velocity of propagation
of wave packets through a dispersive but nonab-
sorbing medium to first approximation is equal
to the group velocity and to the velocity of energy
propagation. For an absorbing medium, on the
other hand, difficulties arise in attempting to de-
termine the packet velocity which has a definite
physical meaning.

The first attempt to determine the group velocity
was made by Brillouin,® who found for a special
case, that the packet velocity for weak absorption
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is
v, =(8k,/Bw)™!, (1.1)

where &, is the real part of the wave number. It is
found, however, that v, as given by (1.1) may be
greater than the free-space velocity of light in
certain frequency ranges. Normally this is not
justified except in certain cases (see Ref. 6).

Terina” has investigated the propagation of a
quasimonochromatic pulse with Gaussian envelope
through a dispersive and strongly absorptive cold
plasma. The pulse velocity was defined here as
the velocity of propagation of the temporal maxi-
mum of the envelope at a given distance.

Another possibility to determine the pulse veloc-
ity is to calculate the velocity of propagation of the
spatial maximum of the envelope function at a giv-
en time.® This concept of pulse velocity is dis-
cussed in more detail by Suchy.3

Thus, it appears from the literature that differ-
ent definitions and resulting different expressions
of the pulse velocity are used without any direct
physical justifications. The purpose of this paper
is to give a more detailed analysis of these prob-
lems. We will investigate the propagation of a
slowly varying, particularly Gaussian, pulse in
an absorptive and strongly dispersive medium. The
temporal and spatial concepts of pulse velocity will
be treated and differences between them discussed.
We will also show that it is possible to obtain cor-
rection terms of higher dispersive and absorptive
orders to the pulse velocity. The results are then
applied to the case of a cold plasma with collisions,
and to an atomic medium.

II. STANDARD ANALYSIS

In one-dimensional propagation of nonstationary
waves, the field is defined by a Fourier integral,
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E(t,x)=2n

+o

f Fw) expli[wt - B(w)x]} dw, (2.1)
where k(w) is the complex wave number, and f(w)
is the spectral function of the initial wave form

J

Et, =g [ F (@) expil(w - wp)t - [k, @) = by ()

where k,(w) and k;(w) are the real and imaginary
parts of the wave number. The analytical evalua-
tion of the Fourier integral (2.3) is not possible
for general functions f(w) and #(w). The standard
approximation to obtain the main contribution to
this integral is to expand &,(w) and k;(w) in a Tay-
lor series around w,.

Taking into account the two first terms of the
expansion of %, (w) and only the first term of the
expansion of k;(w), we obtain the first-order ex-
pression

E,(t, x) = et f(t —x/v,), (2.4)

i.e., the initial form of the envelope function is
damped by the factor e*®“* and travels with the
velocity v, = (akr/aw);(‘). If we choose the input
pulse with a Gaussian envelope,

E (t,0)=f(l) =A exp(-bt?), (2.5)
it is possible to evaluate explicitly the second-or-
der expression obtained by including quadratic
terms in the Taylor expansion

Aekilwok

Et, %)= 50 ©%, /6%, |72

1 +2ixb(82k7/3w2)w0

Xexp (— ) , (2.6)
i.e., the wave packet spreads out.!

The above procedure is adequate if the spectral
function f(w) is sharply peaked around w,, and the
medium is moderately dispersive and absorptive.
In the next section we will give an analytical treat-
ment of situations where one or both of these con-
ditions is violated and it becomes necessary to in-
clude higher-order terms in the expansion for
k,(w) and k;(w).

III. RECURSIVE METHOD

The analysis will be based on the following as-
sumptions: (a) The field of a wave pulse travelling
through a linear, homogeneous, dispersive, and
absorptive medium is characterized by a set of dif-
ferential equations.® ! (b) The solutions are of the
form

E(t, x) = E(t, x) exp{i[wyt =k, (w,)x]}, (3.1)
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E(t,0). Writing
E(t) x) = E()(t, "C) exp{i[wot - kr(wo)x]} ’ (2-2)
we identify the envelope function E (f, x) as
— ik (w)x} dw , (2.3)

r

where E (i, x) is a slowly varying envelope function
compared to exp{i[w, -k, (w,)x]}. This may be ex-
pressed qualitatively as
[8E (¢, x)/3¢t| _
wo!Eo(ta x) '
[8E(t, x) /x| _
k,(wo) | Eq(t, x) |

(c) The imaginary part of the wave number is one
order of magnitude smaller than the real part of
the wave number, i.e.,

[ki(wo) /R, (wy) | = € <1.

€ <1,
(3.2)

€, <1,

(3.3)

(d) We will assume ¢€,, €, and € to be of the same
order and use only the symbol €. (e) Only a single-
mode problem is considered.

The differential equation describing the evolution
of the envelope function can be written as

b

where

P,=k, -k, (w,),

9 0 — o 9
i o) Bolls )= 20 Pu( 575 5) Eolt, 2) =0,
n=0

(3.4)
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P, =—ik(w,) +i {(
(%) &
dw" w, at" ”

(
(3.5)

If we, in agreement with our assumptions, express
the envelope function as a Fourier integral (2.3)
and expand k,(w) and k;(w) in a Taylor series
around w,, it is easy to show that Eq. (3.4) is sat-
isfied.

To solve Eq. (3.4) we will use the perturbation
technique, which leads to the solution of a recur-
rence formula. We introduce the ordering param-

eter € and write
<_3 8
at’ ox )’

an—lki
awn“l

+ 0o

Z €"P,
n=0

o 0

Pop ( 5 *)

E (¢, x)= i €'e,(t, x).

n=0

(3.6)
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The power series in € obtained by inserting Eq.
(3.6) into Eq. (3.4) is identically zero if

)
E - <at ax) e, (t,x)=0, n=0,1,... .

For » =0 we obtain
Pe,(t,x)=0, (3.8)

which has nontrivial solutions if P,=0. Omitting
terms proportional to P, which vanish, we can re-
write (3.7) as a recursive system of equations

(3.7)

eo(t,x)=eki(“°)”fl: ( ) =ehioTf(g)
1,3 =it L(The RACE (i%‘)wf'(z)},

e,(t, x) =eki@o)x{g_’\i(c’;sfg)wofm(g) 3 (Z—Z%) wof”(&)]
5[ 042, () os(2 )
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e, . 8 0
xn =1 ZPn—m+1 (a—t’ a) enlt, x), 3.9)
m=0

which yields
Dey _, De

D =0, —b"l‘—lpzeo,

(3.10)
De .
—'sz—=z(P3e0+Plez),

Using (3.5) we find the particular solutions to (3.10)
as

(3.11)

where f is an arbitrary function which satisfies the initial condition E (¢,0) =f(t). It is obvious that this pro-
cess could be continued to give higher-order correction terms to the envelope function.
The most well known and simple form of a slowly varying wave train is that with a Gaussian envelope

given by (2.5).

Eo(t,x):A{lJrixb[(:zi’) @bE2—1)+ 2(2’2) g}

The envelope function according to (3.6) and (3.11) then becomes

xb [ (5%k, 0%k,
2 [<8w3>w02b£(3 ) -(W>w03(2b52_1)]

_’ﬁzz_befz) b(3 - 12587 +4b%E1) - 4bg(azk> (%) 8 -2be)+(2)’ 2(2b52-1)]}
wo Yo Wy wO

x explk;(wy)x —bE2] + ,

where £=f - (ak,/aw)wox. To compare this with the
expression (2.6) obtained from the integral repre-
sentation we use the relation

e i) e [F o)
u’ ‘/—exp 4z )| oz \/,Z_exp T4z )]
(3.13)
and rewrite (2.6) as

w0 =afesal 5 () - (3), %))

(3.14)

Xexp[ki (wo)x - b gzl .

For sufficiently small values of the quantities
[x(azk,/awz)wol and Ix(aki/aw)wof we can expand
the exponential operator in (3.14) and obtain a re-
sult in accordance to (3.12). Thus, we note that
the recursive method and the standard analysis

(3.12)

r

give equivalent results within the degree of approx-
imation. However, the expression for the envelope
function resulting from the recursive method is
obtained for a general pulse form and can include
correction terms of arbitrary dispersive and ab-
sorptive orders. Finally, we also note that the
parameter e can be identified with characteristic
physical quantities as follows: From (3.11) we
obtain

21

€o

I%(sz /8w wof" (&) |+ | (8k;/8w)wo /' (£) |

(&)
ol

. (8k;/8wW)w,
00

€~

(82k /sz)wo
02

], (3.15)
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where o2 is the original width of the packet (02
=1/b for a Gaussian pulse). This implies that the
asymptotic solution (3.6) is valid for

02

(@, /w7, | +To (%, /6w) T °

X <Xy~ (3.16)

IV. THE VELOCITIES OF A WAVE PACKET

We will now discuss the basic characteristics
and nature of the concepts of the pulse velocity.
It is obvious that the envelope function | E, (¢, x)|
may have two different types of maxima: a tem-
poral maximum at a given distance x, and a spatial
maximum at a given time ¢. Consequently we can
define two types of pulse velocity: the “temporal”
and “spatial” pulse velocity, respectively. Our
analysis is based on the results derived from the
recursive method in Sec. III. For convenience
we will use the notations

<a"”k,> 1
8wn+1 u.)o Ui"; ’

4

3"+1k- 1

(‘”‘*aw" ;>w =gy, #=0,1,2,... @.1)
0

E=t—-x/v, .

A. “Temporal” pulse velocity

A number of authors®’ 7' ! define the pulse veloc-
ity as the velocity of propagation of the temporal
maximum of the envelope function |E,(f,x)| at a
given distance x according to the formula

vy=x/ty, 4.2)
where ¢, is the time of the temporal maximum of
the envelope and is determined from

ABEA | 4.3)

ot t=ty

Using the results of the recursive method for
the Gaussian pulse Eq. (3.12) together with (4.2)
and (4.3), we obtain for | E,(t,x)| =] e,(¢,x)| the
first-order expression v{"’ =v,, and for | E,(¢,x)|
~[| eglt,x) +e,(t,x)| 2 +] e, (t, x)| 2]/ the velocity
becomes to second order

1 1 20x/fvya +b /v
0™ ", T1+4bx/a’ +20x%(1/a® — 362 /0L®)
1 2bx
N— 2T 4,
v, * via ’ “.4)

where we have assumed that all terms including £"
for n=2 are negligible near the maximum. The
second expression in (4.4) is obtained for 1/v}
-0, 1/a’ -0, and by means of the condition (3.186).
It appears from (4.4) that the “temporal” pulse

velocity in an absorptive and dispersive medium
is not constant. As the distance x increases, the
change in the fine-structure frequency (i.e., the
spectrum of the pulse) causes a variation in its
velocity x/t,.*' In fact, each spectral interval
(w, w +dw) moves at its own velocity which differs
in each interval (x,x +dx). Thus, we can define
the differential velocity for each point x according

to
dty\ !
Vg =(—d—;cﬂ> . 4.5)

However, the pulse-velocity definition most ap-
propriate in connection with the experiments is
the differential velocity averaged over a distance
from the origin x =0 up to the point x,

x| N
J;;‘ [ax’ Jug, & ) tyx)
which is equal to (4.2).

V= (4~6)

B. “Spatial” pulse velocity

The concept of “spatial” pulse velocity was sug-
gested by Barsukov and Ginzburg,® and later dis-
cussed in more detail by Suchy.® According to the
definition

ax

Vyea =~a‘t‘— N (47)

where x, is the distance travelled by the spatial
maximum of the envelope at a given time ¢{ and
which is determined from

8] By(t, x)|

Pt A At =0 , 4..8)
ox X =%y (
they found the expression
v Y (4.9)

——
xd 1—v§/a2 ’

which is valid for a medium with moderate absorp-
tion. This result does not depend on the initial
pulse form.

We will now derive the velocity expression for a
Gaussian pulse using the results given by the re-
cursive method. Thus, from Eq. (3.12) together
with Egs. (4.7) and (4.8) we get in the first-order
approximation v{}’ =v,, and to second order

0@ oy 1-v1/a%-bWwl2 =2k (W W, /vla]
xd & [1-v2(1/a®-b/w!% +4bt /v}a)]? ’

(4.10)

where we have assumed that 1/v7 =0, 1/a’~0 and
neglected all terms including £" and x" for n= 2

according to the condition (3.16). If we assume in
(4.10) that 1/v,—0, we obtain directly the expres-
sion (4.9). We conclude that the “spatial” velocity
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(4.10) depends on the parameters of the medium,
the propagation time and the width of the initial
pulse form. The relation (4.12) defines the differ-
ential velocity of the spatial maximum of the
envelope. We can also introduce the averaged
“spatial” velocity

t
vem [ valt) /e =l =@V, (.11)
0
which for the Gaussian pulse is
@) = (73
S Y S Lk
y 1 -02[1/a® =b/v? = 2k (w,)v,/via]
1 -0v2(1/a2 =b/v}? +4bt/vja)
(4.12)

It appears that the concepts of “temporal” and
“spatial” velocity give different results. The basic
problem is now to define which of the velocities
has a physical meaning and is a measurable quanti-
ty. The literature gives different answers on this
question. Suchy® is of the opinion that the “tempo-
ral” velocity is not a velocity in a physical mean-
ing despite its correct dimensions. This conclu-
sion is based on the fact that the “spatial” velocity
given by (4.9) is greater than the “temporal” ve-
locity v, =v,. Furthermore, only the “spatial”
velocity includes the influence of absorption, while
the “temporal” velocity remains the same as in
the nonabsorbing case.

We will note here that these arguments are un-
acceptable if we include correction terms of higher
dispersive and absorptive orders for the envelope
function. Then, the “temporal” and “spatial” ve-
locities become functions of x and t, respectively,
and the curves of temporal and spatial maxima in
an x-¢ plane are no longer straight lines. General-
ly, it is seen that the temporal and spatial maxima
for an absorbing medium are situated on two dif-
ferent curves and they always differ from the cor-
responding curves in the nonabsorbing case. The
character of the pulse velocity is related rather to
the choice of the initial pulse form. If the initial
pulse form is E,(0, x) and we write the dispersion
relation as w =w(k), it is correct to calculate the
“spatial” pulse velocity, which is a function of
time. However, if the inital pulse is E (¢, x) and
the dispersion relation is written as k=k(w), it is
natural to work with the “temporal” pulse velocity,
which is a function of distance.

One of the decisive properties in this context
is the measurement of the pulse velocity. For the
experimentalist it is easier to measure the time
at which the maximum of the pulse moves from
position x, to position x;, than to determine the
distance at which the spatial maximum arrives at

a given time point /. Therefore, he will be more
interested in the “temporal” velocity of propaga-
tion of the pulse. However, it should be mentioned
that there are situations when it is natural to use
the “spatial” velocity. We may think of an astro-
nomical source giving rise to a pulse at =0 within
the source |x|< L and the signal is received at a
certain distance from the source as a function of
time.

Many of the measurements of the pulse velocity
in resonant systems have been made by placing
the material under study in a mode-locked laser
cavity and measuring the change in the pulse
repetition rate. Using this technique, Faxvog
et al*® found that the pulse velocity in a Ne absorp-
tion cell placed inside a self-locked He-Ne laser
exceeds ¢, the free space velocity of light, by
about 3 parts in 10*. The measured velocity is in
fact the “temporal” pulse velocity. Measurement
of the pulse repetition frequency at the output of
a self-locked laser with a fixed cavity length cor-
responds to a measurement of the time required
for the maximum of the pulse to travel a given
length of propagation path. A similar technique
was used by Casperson and Yariv'® to determine
the “temporal” pulse velocity in a high-gain
3.51-um xenon laser. The observed velocity was
less than the vacuum speed of light by as much as
a factor of 2.5. We notice, however, that the ex-
periments in Refs. 12 and 13 consider only reso-
nant pulse propagation for which the correction
terms to the group velocity, see (4.4), are equal
to zero. An interesting experiment to measure
the “temporal” pulse velocity in dilute rubidium
vapor was made by Grischkowsky.'* In contrast
to the earlier intracavity experiments, the Rb-
vapor cell was here completely passive and lo-
cated outside the laser. However, this experiment
deals with the case far out in the resonance wings
where the dispersion of the damping is small and
the higher-order correction terms to the group
velocity are negligible. No measurements of the
pulse velocity are known to the authors which
verify the expression (4.4), i.e., take into account
correction terms including effects of the pulse
width. However, such correction terms should be
of interest, for example, in measurement of the
propagation of whistler packets in a collisional
plasma, like in Ref. 15, where the correction to
the group velocity can be up to 5% for the extreme
values of the cited parameters.

C. Applications

1. Cold plasma

We will apply the expression (4.4) to calculate
the “temporal” velocity of propagation of a Gaus-



sian pulse in a homogeneous, isotropic, cold
plasma with collisions. We assume for simplicity
that the dispersion relation can be written as

W w3
k(w)~z—(l—m> ’ (413)

where w,=(N2/e,m)"? is the plasma frequency, and

v is the effective collision frequency. Under the
condition w?> 1%, (high-frequency case), the ve-
locity obtained from (4.4) is

C

S 1
Ve T w3/2w3 = 2(x/¢)b (Wi Ve /wE) (4.14)
which according to (3.16) is valid for
2 3
X K gy~ 2 (4.15)

WAL +0yVe)

where o, is the original pulse width (0%2=1/b).
Using for example the parameters of the iono-
spheric E layer: vy, =2nx10%/sec, w,=6mx108/
sec, wy/w,~1, and 0,=4 pusec, we can calculate
from (4.14), v{®/c~1/(1.5 - 5X10 %) where

X <X~ 26x10° m.

2. Atomic medium
The dispersion relation for an atomic medium
is

2
k(w)z—?(l-——-—uﬂf————

— 1
To(w-a- i/T2)> o loplal<t,

(4.16)

where  is the resonance frequency, and T, is the
relaxation time. If we introduce 1= (w,—Q)7T5,
and a =x| w3 75/4c0o?, the pulse velocity can be
written from (4.4) and (4.16) as

1 1 |w§|1§ 4< a)
W_C:F4c(1+n2)3(1'_n) l;ao ’

(=) +n?)
P (4.17)
_ (1+7?)?

it =3[ M8 =P [+ 0o(1+ 10 /T5] °

a

where — [+] corresponds to the case of a nonin-
verted (w?>0) [inverted (w?< 0)] medium.
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TABLE L. Conditions when v{ > c.

0<|n|<1 1<|n| <V3 [nl>v3
wi>0 a<a a>a
wl<o a>a, a>0

We conclude that the pulse velocity will exceed
the vacuum velocity ¢ for 1 and « values given by
Table I. Particularly, when |n|=1 the small cor-
rection term proportional to @ will determine if
the pulse velocity is larger or less than the vacuum
velocity.

Finally it should be noted that when the pulse
velocity exceeds the free-space velocity of light
(i.e., when the velocity of the maximum exceeds
the velocity of the pulse front), steepening effects
eventually invalidate the assumption of slowly
varying amplitudes. A qualitative condition is that
the propagation path should be less than the pulse
width divided by (1/c = 1/v,).

V. CONCLUSIONS

We have introduced an analytical method to study
the evolution of slowly varying pulses in strongly
dispersive and absorptive media. This method,
contrary to the standard analysis, gives the possi-
bility by simple calculations, to obtain correction
terms of arbitrary dispersive and absorptive
orders for the envelope function. The results ob-
tained from the recursive method are valid only
for a propagation path limited by a critical value.

Different concepts of pulse velocity in dispersive
and absorptive media have been discussed. It was
shown, using the recursive method, that it is pos-
sible to obtain velocity expressions containing cor-
rection terms of higher dispersive and absorptive
order. The “temporal” pulse velocity has a definite
physical meaning and it will be the quantity which
is most easy to determine in an experiment. The
application of our results to an atomic medium
shows that the pulse velocity can be greater or less
than the free-space velocity of light, depending on
the length of propagation path and the shift between
the pulse center frequency and the atomic line-
center frequency.
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