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Semiclassical electrodynamics of a two-level system

Faiz Ahmad~
Department of Mathematics, University of Manchester Institute of Science and Technology, Manchester, M60 1QD, England

(Received 21 August 1974)

%e analyze the problem of a spin-1/2 system coupled to a longitudinal field Bo and a transverse field 2Bcoseo t.
We show that the magnetization is not periodic in general. Time-averaged population inversion is non-negative for
the case co = —y Bo. We discuss the significance of this result and show that eigenvalues of the Floquet Ha~i&-

tonian of Shirley's theory must be discontinuous at this point. The solution also exhibits satellite frequencies sym-

metrically displaced about odd multiples of co.

I. INTRODUCTION

Consider a spin-& system in a static magnetic
field B, and an oscillating field 2B cos+& applied
transverse to it. The static field removes de-
generacy and the oscillating field induces transi-
tions. Suppose that initially the spin is "pointing
down. " We wish to calculate the probability
P i /g ~ i /2 that the system has made a transition
to the "spin-up" state. This problem is equivalent
to that of solving SchrMinger's equation for a two-
level atom with a periodic potential. Therefore
all results derived in this paper are also applicable
to the latter case.

The magnetic moment M evolves according to
the well-known equation

d M/dt = y(M x B), (1.1)

where M= (M„,I„,M, ) and 8= (2Bcos&t, O, Bo).
We define

~, =- —yB„b =- ——,
' yB, M -=-, y@m.

The component m, of m measures the relative
population inversion: m, =1 corresponds to total
inversion and m, = —1 means that the atom is in

the ground state. It is related to the transition
probability P, /»/, in a simple manner:

E', y, ,y, =~(1+m, ) . (1.2)

Generally the time average of P, /. ../, is mea-
sured. This average is taken over times much
greater than the period of oscillation. The result
of this averaging is that all oscillating terms
drop out and the attention is focussed on the static
component of m„a, say. Those values of the static
field Bo for which ao is maximum determine posi-
tions of resonance. The difference —0 is known

as the Bloch-Siegert shift' and has been calculated
theoretically' ' and measured experimentally' to
a high degree of accuracy. Shirley' has described

an elegant method for calculating ao by showing

that it is related to the eigenvalues q of an infinite
Floquet matrix

a, = - 4 (Bq/s &u,)' . (1.3)

Equations (1.2) and (1.3} show that the time aver-
age P,„, of the transition probability is maximized
when the average occupation of the two states is
equally likely and the average induced rates out of
each state are equal. '

In this paper we shall describe a general method
for obtaining a bounded solution' ' for the transition
probability P, /»/, . In particular, we find that
when =„u~ is non-negative. We shall discuss
the physical significance of this result in Sec. IV
below and suggest how theories based on (1.3}
may have to be modified.

The plan of the paper is as follows: In Sec. III
we briefly comment on the perturbation series
solution for m, and compare it with the solution
in the rotating-field approximation (HFA}, i.e.,
when the oscillating field 2B cosset is replaced by
a rotating field

Bcost i +Bsint j,
where i and g are unit vectors in the x and y direc-
tions, respectively. In Sec. III we describe the
general solution for m, and discuss it in detail
for the special ease 0 = in Sec. IV. Section V
summarizes the results.

II. PERTURBATION THEORY

It is well known that ordinary perturbation theo-
ry, when applied to the problem of a two-level
system, gives rise to secular terms, ' i.e., terms
which increase indefinitely with time and there-
fore apparently violate the unitarity condition on
the transition amplitude. From (1.1) one can easi-
ly derive the following integral equation for the
relative population inversion eg, o:

m, (f)=—1+16b2
J cos&(t, —t )cos&(t, —t )cos&0(t, —t, )m, (t, )dt, dt, .

'0 '0
(2.1)
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We have assumed that initially m, = —1, i.e. , the atom is in the "spin-down" state. The equation can be
formally solved by iteration thus giving a. perturbation series. Up to first order in b we get

4b2 16bnarn 4b2 2(d,
ss, = 1+, + ', — cos2tct — ' cos(osc ))C —t )+ '

cos( tc- c)()—t ))~' ' '.
C0+ CO0

0 0
0

(2.2)

Secular terms appear when we go to higher orders.
Lett'ing

r = 16b'uP/(uP —&u')'

we notice that continuing (2.2) to all orders, the
constant term will contain an infinite geometric
progression —(1 —r+r' —~ }which can be
readily summed to get

I ((gn ~2)2 (~ ~ )2

1 +r (&' —&')'+ 16b'~' (& —&,)' + 4b'
(2.3)

This is precisely the constant term that one ob-
tains on making the rotating-field approximation.

Now let us set ~ = &0 in Eq. (2.1) and develop
the perturbation series as before. Secular terms
appear even to first order. However, we can
isolate a series

-[1—(2b)'(t —t )'/2! + (2b)'(t —t,)4/4! —~ ~ ~ ]

which sums to give

—cos2b(t- to) . (2.4)

III. BOUNDED SOLUTION FOR TRANSITION
PROBABILITY

In this section we shall describe a method which
readily gives m, as a sum of periodic functions.
Instead of Eq. (2.1) we shall work with the dif-
ferential equation satisfied by m, :

This is again seen to be the solution of the problem
in BFA when +=0.

The above examples illustrate that the problems
of perturbation theory arise merely because one
truncates the series after a few terms. It appears
plausible that if one could calculate a large number
of terms, then judicious rearrangement and sum-
mation would lead to the transition probability
being expressed in terms of periodic functions
alone. However, this procedure, even if success-
ful, would be very tedious. In Sec. III we describe
a more systematic method of tackling this problem.

d'm cPm d'm
+ 2[4b'+4b' cos2&(t —t,) + (u'+ e'],' —56bn&u sin2&u(t t, )

+[6b'(4'. —15~') cos2~(t - t.)+6b'(4" + ~0)+ (&'- ~20)'1 ' —6b'~(~', —9~') sin2&(t- t ) m =0 .

(3.1)

The initial conditions are

m, (t,)= 1, m)(t, )=0, m.-(t,)=16bn, m,-(t,)=0

The rotating-field approximation is equivalent to
truncating the summations (3.3) only after their
first terms to get

m, = —(& —& )'/&' —(4b'/&') cosh (t —t ),
m,'" (t,) = —16b2(16b2+4~2+ ~2), (3.2)

(3 4)
where primes denote derivatives. We assume a
solution of the form

where 4 is the so-called "nutation frequency, "
t), 2 ((g ~ }2 ~4b2 (3.5)

m, =g a„cosn&u(t —t,)+ g c„cos(t) +r&)(t —t,).
n=0 ~ OO

(3.3)

It is shown below that only even values of & and
r need be taken into account and that the assumed
solution is indeed the unique solution of the prob-
lem. No sine terms occur in (3.3) since all odd-
order derivatives vanish initially. In Appendix A
we show that & is independent of initial conditions.

Note that m, as given by (3.3) is not Periodic.
In general 4 will be an irrational number and
each term in the second sum will have a different
period. This is in contrast with theories which
a,ssume a priori that all components of the mag-
netization are periodic and therefore can be
Fourier expanded. ' However, one can determine
positions of resonances correctly solely because
this requires a consideration of the maxima of
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a, which can be done independently of the nonperiodic part of the solution. '
By substituting (3.3) in (3.1) we see that the a's and c's must satisfy certain recurrence relations. The

relation satisfied by a,„is'

( &o4 —2[(4n'+ 1)~' —452] ~20+ (4n' —1)~2[(4n' —1)~' —8b']) am„

—4b'e„(l —1/2n) [(2n + 1)'&u' —~' ]a,„2—4b'(1 + 1/2n)[(2n —1)'~' —~20] a~„„=0,
(3.6)

where &„=2 when n=1 and &„=1otherwise. We
shall assume that

lim a„=0 and lim c„=0 . (3.7)

We can express the ratios (b'/~')(a, /a, ), (b'/ur')
x (a /a4), etc. as infinite continued fractions Whose
convergence is fast for most values of b/&. If
we write the recurrence relation (3.6) in the form

pna2n - dna, n 2- n .n+2 =0
p

where P„,q„,r„h vae obvious definitions, we can
easily derive

amn-2
p n

Rn

&nCn+1

p
n+ 10n+2y

n+1 *
~n+2 (3.8)

c.,cos[(&, +2&~)(t —t.)1 (3.9a)

c,'„cos[(&,+ 2&~)(t —t,)] (3.9b)

where 4, g&, . One can again write expressions
of the form (3.8) and express each c„ in terms of
cp and c,'„ in terms of cp'. This leaves us with
three undetermined coefficients ap +p and cp.

By using Eq. (3.8) repeatedly, one can express
each a„ in terms of ap.

Analysis for the second series in (3.3) follows
along similar lines. In Appendix A me show that
the equation determining 4' has in general at
least two distinct roots giving rise to two aperiod-
ic solutions:

These mill be fixed when we use initial conditions
(3.2). Since the proposed solution satisfies the
differential equation and is consistent with the
initial conditions, it must indeed be the unique
solution of the problem.

We can calculate all a,„by using the value of a,
calculated by a completely different approach due
to Shirley. ' In his theory ao is given as Eq. (1.3),
where q is an eigenvalue of an infinite Ploquet
matrix. The square of q has a development in
terms of b'(&+~0):.

2 5~ 2+ 54

(w+&u )'
8~ (oP —6~~, —2&v', )5'

(a& ~&a )'(9&a'- co')
(3.10)

By using (3.8), (1.3), and (3.10) we can find all
a,„. We mill later show that this method fails
when =+p.

We have solved the problem without encountering
difficulties associated with the perturbation theory.
For sufficiently small values of b one may express
& and various coefficients as a power series in b,
which we do in the next section. . However, the
accuracy will be much improved if one uses ex-
pressions of the form (3.8) as they stand, since
they are valid for any value of b.

The calculation becomes simpler for the special
case (u =(o„since a first integral of Eg. (3.1) can
be obtained in this case. We shall treat this in
detail in the following section. This will illustrate
the application of the method described and mill
also enable us to make comparison with some
previous theories.

IV. THE CASE w =no

We set (u = ~0 in (3.1) and integrate to obtain

4 CPA'+4[2bm+~2+2b'cos 2~(t —to)) ——2' —40bm~sin2~(t —to) ' f32 '~b'c o2s(u(t-t ) —16b'sP)m, =0,

(4.1)
with m, (to) =-1, m,'(t, ) =0, m,"(to) =16b', and m,"(t,) =0. We assume a solution

m, =a, +P a,„cos2n~(t —t,)+ , c&c(ots—t,)+ g' c,„cos(b.+21'~)(t-t, ) .
n=1

The prime indicates that r =0 is to be omitted. The recurrence relation for a,„ is given by (3.6) by setting
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~ =&„. the corresponding relation for c,„ is as follows:

[ n'(n' —1)+ 2n(2n' —1)sz + (6n' —1)s'z' —{2n' —1)s'+4ns'(z' —z) +s'(z' —2z')]co„

—~s2(2n —1+2sz)(n+1+sz)c,„,—z s2(2n+1+2sz)(n-1+sz)c, „+,—0,
(4.2)

where s =—b/&o and sz =—6/2'. It is shown in

Appendix 8 that the frequency & can be expressed
as a power aeries in b/oo,

2b(1 l b2/loo +o b4/lo4, ) (4.3)

The first term on the right-hand side corresponds
to the RFA solution. Other terms represent cor-
rections of various orders.

If we caD the smallest frequency that occurs
in (4.1) the "nutation frequency, " &„say, we see
that this frequency grows as a function of b/oo

until it reaches

Tilts occurs when b/oo =0.52 approximately. After
that it starts decreasing because now 2- 4 is
more appropriately labeled the "nutation fre-
Quency.

Once 4 is known it is an easy matter to calcu-
late coefficients c2„ in terms of c~. %'e then make
use of initial conditions to fix ao and co. The final
result is as follows:

when b/& is approximately 2.07, and so on.
It seems plausible that P,„,, as a function of

intensity, goes through successive maxima and
minima. A similar conclusion was reached by
Reiss" who considered a 2s 1s transition in hy-
drogen, although his curves show only two ex-
tremum points. We also notice that a, is positive
and presumably remains positive until s = s, when
a, vanishes. This clearly disagrees with Shirley's
result that u, is always negative; hence P,„, can-
not exceed 0.5 [see Eq. (1.3)].' It is imperative to
resolve the discrepancy between the two theories.
This is done by noting that Shirley's original re-
sult, Eq. (1.3), will apply at &oo=&o only if the de-
rivative of q with respect to co, exists at that point.
~at one does in practice is obtain an expression
for q' [Eq. (3.10)] which is differentiable at ol = loo.
Extrema of q are found by solving" ' Bq'/S&oo = 0.
It is possible that sq-'/S~o exists at a certain point
while Bq/sligo does not. We shall show that this is
actually the case at ~, = ~. Since q' is continuous
at this point it follows that in the neighborhood of

ao = 4s'(I + -,' s' ),
2= 2~o

Q4 = —g 8 (1 + @8 ' )Qo

and so on. Also

{4 4a)

(4.4b)

(4.4c)

q =+(q')'/' for ooo& ~ (4.5a)

(4.5b)

c = —(1 —@s'——'s' )

c2=2 s(1+2 8+os +o s +' ' ' )co,
ca=tos {1 vs' ' ' )co ~

c „=c„(s--s).

(4.4d)

(4.4f)'

d tB~/d t +(dotPlz = 4bcoo cos(d(t —to)nl~ . (4.6)

where either upper or lower signs are to be taken.
Ne shall give a simple argument to support the

above conclusion. From (1.1) it follows that m,
and m, are cogpled through the equation

Here s =b/a&. For small intensities of the trans-
verse field (b =0), we can use the result of the
rotating-field approximation, Eq. (2.4), to obtain
the transition probability

I'-l/o. l/o =»n b{t to) ~

This is zero when &-0. For large values of in-
tensity, the concept of averaging becomes mean-
ingful and the time-averaged transition probability
P.„„, is now given by

I''- =2 (1+so) .
It is approximately equal to 2 for s «1. As one
increases the intensity, it grows larger. How-
ever, it again equals z for a certain value of b/&u,

so say, lying between I.23 and 1.24 and yet again

When v', —~'-' is small, the quantity a, +~a, must
be proportional to e', —cu' for any value of b, since
otherwise one can make the coefficient of the
cost@(t —t,) term in nl„arbitrarily large by choos-
ing &, sufficiently close to m. Here a, and a, are
the same as in (3.1). Assume

a, + 2 ao = y((O'o —Ol') .

From (3.8) we get

(4.7)

[x' —2(5 -4s')x+3(3 —Bs')
—18s'(25 —x)(1 —x)/G(x, s)]a, =4s'(9 —x) ao.

(4 8)
Here s ==b/u&, x=a'o/m', and G(x, s) denotes a con-
tinued-fraction expression whose details do not
concern us here, except that 6 does not vanish
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when x=1. The condition co,- ~ has now become
x-1. From (4.7) and (4.8) we get

(x —1)H(x, s)a, =yes(1 —x), (4.9)

where H(x, s) = 18 —2x —12s'+ 36s'(25 —x)/&(x, s) .
Now it is clear from (4.9) that

lim a, = (4.10)

On the other hand, when &u, =e, Eq. (4.10) no
longer applies. In this case one must resort to
some other means as, for example, to the method
used in this section to get (4.4a). The limit of a,
when ~, u may indeed be different from the value
of a, when u, =co. Comparison of Shirley's theory
with the present one clearly shows that the two
quantities must be different, therefore Eqs. (4.5)
are justified.

The physical significance of the above result
is best understood by considering the system in
a rotating reference frame. Pegg' has shown that
the eigenvalues q of the Floquet Hamiltonian of
Shirley's theory are the same as the eigenvalues
of the system in a frame so that the fields are
static. The frequency diagram of a spin- —,

' system
in a static magnetic field but without any trans-
verse field, viewed in a reference frame rotating
with angular frequency ~ around the z axis, is
shown in Fig. 1. The levels cross at co, =~. If
we apply a very weak perturbation the picture
should not change drastically.

Now suppose we apply a weak oscillating field
in the transverse plane. In the rotating frame the
magnetic field along the z axis is proportional to
u —co,. For positive values of u —co, this field is
pointing upwards, and for negative values of co —~,

it points downwards. The leading term in a pow-
er-series expansion of q is also proportional to
the magnetic field along the z axis. Pegg has
shown that

q = g((d —(do) +2(dp /(CO +(d ) + ' ~

We must take the positive square root when cu» Qpp

and the negative square root when &o«u&, t so that
q=-,'(&u —&u, ) in both casesj. Only then will the field
point upwards in one case and downwards in the
other.

The frequency diagram when both longitudinal
and transverse fields are present is usually drawn
as in Fig. 2(a). In light of the above discussion we
see that this diagram must be modified as in Fig.
2(b). The similarity of Figs. 1 and 2(b) is now
obvious. As the perturbation grows weaker, Fig.
2(b) will steadily change into Fig. 1. In this inter-
pretation, levels still cross at co, =~ in the sense
that the energy of A. + at ~, =~+0 equals that of

Mp

(b)

r

r
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FIG. 1. Eigenvalues of a two-state system as a func-

tion of ~0 in a rotating reference frame when there is no
oscillating field.

FIG. 2. (a) An incorrect view of eigenvalues when an
oscillating field is applied. (b) Correct interpretation
of the eigenvalue plot.
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X- at (pp=(d —0. It appears that eigenstates
~
X+)

and ~A. —) of the Floquet Hamiltonian become de-
generate near ~, = ~, and as the static magnetic
field is swept through this point the system makes
a transition without any transfer of energy.

V. CONCLUSIONS

We have shown that the time-averaged transition
probability is discontinuous at the point cu, = m.
We have not explored the possibility that it may
be discontinuous at other points as well. One can
use an argument like the one leading to (4.10) to
show that the limit of ap„when (p p- (2n + 1)(d may
be different from the value of a2„when (dp = (2n
+1)(p. An understanding of this phenomenon is
essential for a consistent formulation of the theory.
In the present analysis the width of the transition
at e, =~ is exactly zero, thus making it undetect-
able in any experiment. It is possible that, when
due account is taken of relaxation processes, this
transition may be broadened, giving rise to a peak
in the observed magnetic resonance curve at ~,
=co. Since this peak has not been observed so far,
we must conclude that the broadening due to re-
laxation, if it exists, must be very small.

Our solution clearly exhibits satellites, i.e.,
m„will contain terms oscillating not only at e, 3~,
5e, etc., but also at frequencies symmetrically
displaced around them at e + ~, 3~ + 4, etc. The
shape and relative intensities of the components
at the driving frequency (p (i.e., the Rayleigh line)
and its satellites are of special interest. Stroud'"
and Qush and Qush" have predicted the ratio of
the heights of the central peak and its satellites to
be 2:1 whereas Mollow»' and Newstein»d have ob-
tained a 3:1 ratio. Here we shall make a qualita-
tive estimate of the relative intensities of the sat-
ellites only. Denote amplitudes of cos((p+6)(& —tp)
and cos((p —b.)(t —t,) by s+ and s- respectively.
From (3.3) and (4.6) it follows that

mately equal. This conclusion seems to be in
agreement with recent experiments. "
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APPENDIX A: CALCULATION OF 6

Assume that the recurrence relation satisfied
by the coefficients c,„ is

+rc2r (r 27-2 4c2r+2 (Al)

n„, p„, y„are functions of 5, u&, (pp and A. For 2

=0 we get

upcp+Ppc + Ppc2 =0 (A2)

o.p+ Pp/k2+yp/k, =0. (A3)

Thus 4 is independent of initial conditions.
To a first approximation one may ignore terms

involving c, and c, in (A2) and determine h from
the condition

c(p((d, PPp) b, n, ) = 0 (A4)

which reduces to

&[&4 —2(4b' + (d' + (p'p) 42 + 8b2((d2 + (p2p) + ((p2 —(d2p)2] = ()

which gives

ol

Also we can obtain expressions of the form (3.8)
for c,/c, and c,/c, . Suppose

c,/c, = k, and c,/c, = k, ,

where k, and k, denote infinite continued fractions.
Substituting in (A2) we see that 4 must be chosen
so as to satisfy the equation

2bu&p(c, +c,)s+ =
(pp —((d +6)

g2 —~2+~2 + 452 g (~2~2 +4 4)k1/2
0 0

—((d+ (pp) +45 (A5)

2b(p, (c, +c,)
(p p

—((d —A)

In general c„c,«c, and ~« ~. Now magni-
tudes of s+ and s- will be approximately equal
when the detuning ~(pp —(p

~
is either much smaller

o~ much larger than 4. Only when

will
~
s+ ( be appreciably different from

~

s- ~.

Therefore, barring the last-mentioned possibility,
intensities of the two satellites will be approxi-

if b'«e', eo. The root & =0 corresponds to the
first sum in (3.3) and roots (A5) give rise to two
independent solutions which are required so that
(3.3) is a unique solution of the problem.

APPENDIX B: DERIVATION OF (4.3)

For n=0, Eq. (4.2) reduces to

(1 —z'+s z —2s2z2)cp+2(1 —2sz)(1+sz)c 2

+2(1+ 2sz)(1 —sz)c, =0.
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Also to order s4

2s(l +2sz)(2 + sr)co
C2 =

2sr +5s'z' —s' + 4s'(z' —z) +s'(z' —2s')

and

c,=c,(s- —s) .
(B2)

(Bs)

Substitute (B2) and (BS) in (Bl) and solve by itera-

tion. We get

8 = 1 —-s — s1 2 13 4
8 125

The series can be easily extended by including
higher-order terms in (B2) and (BS).

It can also be verified that (Bl) is satisfied vrhen
sz =+1. This gives & =+2+, which only corre-
sponds to the first sum in Eq. (4.2).
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