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Interaction between two coupled oscillators
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The quantum dynamics for two coupled harmonic. oscillators is presented. Using the coupled-boson
representation, the assumed problem is shown to be isomorphic with a perturbed angular-momentum
oscillator. The current operator is obtained and its associated expectation values with respect to the number
states, coherent states (Glauber states), and atomic coherent states are given. The eigenvalue spectrum of the
current operator is seen to be finite and discrete. An interesting correspondence between this analysis and past
work on Josephson tunneling and quantum interference is discussed.

I. INTRODUCTION

In this paper, we consider the quantum-mechan-
ical behavior of two coupled linear oscillators. In
the past, the coupled oscillator system has been
extensively studied in quantum mechanics; in this
analysis, however, the quantum aspects of the
system are treated from a less familiar point of
view'. As such, the discussions are somewhat
pedagogical; yet, there is an interesting corre-
spondence between this analysis and recent treat-
ments of quantum optical interference' and phase
effects in Josephson tunneling. '

The analaysis, in part, is carried out in the
Heisenberg picture. The equations of motion are
obtained and are shown to be isomorphic with a
perturbed angular-momentum oscillator, an iso-
morphism which is simply a manifestation of the
coupled-boson representation. The current opera-
tor (the rate of exchange of excitation number) is
obtained in terms of the appropriate angular-mo-
mentum operators.

The dynamical behavior of the coupled system is
studied using various initial states, namely, num-
ber states, coherent states, and angular-momen-
tum "atomic" coherent states. The eigenvalues of
the Hamiltonian and the current operator are also
discussed.

II. EQUATIONS OF MOTION

The coupled oscillator system under investiga-
tion is described by the model Hamiltonian

H =&@,N, +(u, N, +c(a,am +a,a, ),
where N, =a, a, (i =1,2) represents the number
operator for each oscillator and the a, 's satisfy
the usual boson commutation relations. The cou-
pling parameter & is assumed to be a real, posi-
tive constant and the units are chosen so that N =1
throughout. For purposes of our discussion, the
above Hamiltonian represents an idealization of
two boson systems exchanging excitations via tun-

(2a)

(2b)

(2c)

(2d)

L, = —,'(N, —N, ),
L =2(N +N ),

where the L,, operators satisfy the usual angular-
momentum commutation relations. In terms of the
angular-momentum operators, the Hamiltonian in
Eq. (1) becomes

H = &uL, +2&L„+ (&u, + &u2)L,

with

(4)

and the Heisenberg equations of motion become

L, = cvL„- 2cL, ,

L, =2&L, ,

L=O.

(5a)

(5b)

(5c)

(5d)

We also note that when a constant biasing voltage
Vo is applied across the tunnel junction, an addi-
tional term,

H' = &soN2 =- &uo(L —L,),

neling. A similar model, together with some phase
operator assumptions, was adopted by Nieto' in
order to establish the role of phase in Josephson
tunneling phenomena.

In the spirit of a tunneling problem, we seek to
calculate the current or rate of exchange of exci-
tation between the two oscillators. In this regard,
the current is naturally manifested when the cou-
pled oscillators are treated as an angular-momen-
tum oscillator. The correspondence between two
linear oscillators and an angular-momentum os-
cillator has been discussed by Schwinger' and is
commonly referred to as the coupled-boson rep-
resentation. Within this representation, it can
easily be shown that

L„=2(a, a, +ama, ),
L, = (1/2i)(a~ta, —anta, ),
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with

o =&~o

is prepared in Bn exact coherent state

n =e'~ &"'n (13a)

appears in the Hamiltonian, thereby changing v,
to ~2+ ~o. From these equations of motion, it is
clear that we can describe the exchange of excita-
tion between two oscillators in terms of the free
precessional motion of a perturbed angular-mo-
mentum oscillator.

The current operator, which is defined as the
net rate of exchange of excitation with time, is
given as

I =2I., =4-eL, (t) . (6)

The equation of motion for L,(t) is easily obtained
by taking the time derivative of Eq. (5b) and then
eliminating L„and L, through the use of Eqs. (5a)
and (5c). The result is

I „(t)=L,(0) cos(r)t+ (p)/(d)

"9-.(0) —I.(~/~)'-1]"L.(o)}smut, (7)

with

with

(13b)

(o.'I II o.& =4@& sin6)sinC (t),
with

(14a)

Here, I n, & represents the coherent state for each
free oscillator and is expressed as

(o tip

l~;&=exp(-ll ~rl') Q I „ln, ),
nr=p nr 'r

with

(N )r/pe(4(

where N; = (()((IN;I nr & is the mean excitation num-
ber and P; is the phase. Since the

I a, & states are
right eigenstates of a;, the expectation value of the
current operator with the n state is easily obtained
as

I
~ + 4e2]r/2 (8)

sin 8 = 2(N, N, )~'/N (14b)

tany = r((p/(d)' —1]~' (10)

III. EXPECTATION VALUE OF THE CURRENT

OPERATOR; COHERENT STATES

A measure of the current passing from one os-
cillator to the other is given by the expectation
value of I(t) with respect to the initial state of the
system. The explicit form of the current, obtained
by substituting Eq. (7) into Eq. (6), is

I(t) =4m (L,(0) cos(ut + ((d/(p)

x
I L„(0)—(((p/(p)' —1)~'] sin(pt}.

If we assume that each oscillator is initially pre-
pared in a number state, then the expectation
value of the current operator in Eq. (11) results in
the familiar expression

The other components of the perturbed angular-
momentum oscillator can easily be found since the
Hamiltonian in Eq. (3) is diagonalized by the uni-
tary transformation

U(y) eryz „(r).
with

Here C'(I) =(pt+Q and l = ,'N, where -p =4), —(!), and
N=—N~ +N2.

Now we consider the situation where the system
is prepared in an exact angular-momentum co-
herent state

lu&=s '" "'lv&, . (15)

I!r.&p represents the coherent state for a free angu-
lar-momentum oscillator and may be derived by
"suitably restricting" the Kronecker product of
Glauber states in Eq. (13b) to preclude all terms
not satisfying the condition that n, +n, =N, a con-
stant total particle number. In doing so, we obtain
a normalized expression for I!r&p as

1

(I ~, l'+ I ~,l')""

N

S!N-S !
(16)

Letting S = L+ m, N =21 and noting that an angular-
momentum state, Il,m), is expressed as a product
of the appropriate linear oscillator number
states, 'P

I!r&p in Eq. (16) can be rewritten as

(n, n, I II n, n, &.= (4c'/p))(n, —n, ) sin(pt .

If, on the other hand, the system is prepared in an
eigenstate of the Hamiltonian, ' then the expectation
value of the current operator is zero.

We now consider the situation where the system

r

xi+
I I

o.r""n,' If, m&."=-' (I+mt

Here, ( ) signifies the binomial coefficient.

(17)
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The above I p&o state has interesting properties,
most of which have already been elucidated by
Arecchi et at o(.see Appendix}. In previous dis-
cussions, "the I p&o states have been utilized in
describing the collective behavior of N two-level
atoms and, as such, have been called "atomic"
coherent states.

The expectation value of the current operator
with respect to the lg& state can easily be obtained
(see Appendix} to give

(pl II g&=4el sin&sine'(t), (18)

where sin& and C'(t} are discerned from Eq. (14)
and l =—,'N.

Lastly, we establish the relationship between
the I o'& state and the I p& state. In this regard, the
I n&o state is written as

I ~&, =exp[-o(l ~, l'+I ~,l')]

S N-S
x'Z Z [8 t(N g)!]so l~&glN &So~-

used by Shalom and Zak' to construct an ideal
model for quantum-mechanical interference.
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APPENDIX

Although we have constructed the I p&o state from
a suitably restricted I n&o state, we could have
equivalently arrived at such a state by binomially
distributing N indistinguishable particles into two
energy states, one with phase P, and occupation
probability P, the other with phase P, and occupa-
tion probability Q, such that P+p =1. The binomial
"packet" representing this system would then be

By multiplying and dividing by (N!/N") ' inside
the sum of over N and then using Eq. (16) to identi-
fy Ip, N)„ the above expression for I n&o becomes

1/2

Ip, q, &&= '""~
I I

(~~} (~~} -"
"=' kX-nj

x e'"~ In&~IN- n&, , (A1)

- N/2 ~—N/2~ e
l&&o= 2 rN!u/o I! ~N&o ~

N=p
(19)

IV. SPECTRUM OF THE CURRENT OPERATOR;

DISCUSSION

thereby indicating that the I n& state is the Poisson
"packet" of a I p, & state distributed over total par-
ticle number N.

where p = pz —po, and ( ) symbolizes the binomial
coefficient. (The phase factor, e'"o in Eq. (A1) is
hereafter suppressed. ) In addition, the lp, q, Q&

state is normalized since

N

(p, q, alp, q, p&=Q
I I

p" q" "=(p+q)" =1.
i N nj-

(A2)
In the Schrodinger picture, the current operator

[Eq. (6)] is I(0}=4eL,(0}. Thus, the eigenstates of
t(0} are I I, m)„with discrete eigenvalues 4em,
-l-m-1. The current operator can then be writ-
ten as

If we identify P and p as

p =I ~, l'/(I ~, l'+I ~l'}-=N, /N

and

(A3a)

I(0}=f,„(L (0)/I }, (20) q =I ~I'/(I ~, l'+I ~I'}=-N./N, (A3b)

with I =4&1. Since ~=2N, it then follows that the
current is quantized in intervals of 2/N. In a
model calculation, Nieto' has made use of sine
and cosine phase operators' in the Hamiltonian of
Eq. (1) to describe quantized current effects in
Josephson tunneling. However, it has been
argued" that the quantum-mechanical definition
of such phase operators is not unique. In this
regard, we have shown that the use of the coupled
boson representation in this model naturally re-
sults in a quantized current. Other conclusions
by Nieto' can also be deduced here.

The coupled boson representation. has also been

then lp, q, Q& in Eq. (A1) is equivalent to the I p, &o

state of Eq. (16).
For purposes of calculating expectation values,

let

x =up e'o~', y =vq e 'e~',

so that Eq. (A1) becomes

(A4}

Ip, q, y&=e*''"'"g
I I

~"y" "In&, IN-n), .
"=o &N nj

(A5}

In using the properties of a, and a, we can easily
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see that (L') =N(N-1)Pqe"~ =[N(N 1—)/N'](o n*}'

L, lp, q, y&=~,'s, lp, q, e&= y,„lp, q, k&, (A6)
(L,L )=Np+N(N-1)pq .

(Al le)

(A11f)

L Ip, q, l&=~,'e, lp, q, t&=x Ip, q, k&,

L,L I p, q, p& = a,"a,a, a, Ip, q, p&

Ip, q, 4&,

L L+ Ip, -q, p& = a2t a, a,~a2Ip, q, p&

N, Ip, q, y&=~,'~, lp, q, y&=x Ip, q, y&,

(A6a)

(A7)

(A7a)

(A8)

In the case of nondiagonal elements, we consider
the evaluation of (p ', q ', p'I L, Ip, q, p&.

From Eq. (A6), we see that

&P', q', O'IL, IP, q, q»=y, „(P',q', O'Ip, q, k&

-=e""/" '~ ~'yx' NJLxx'*+yy'*P .
Using x, y from Eq. (A4) then gives the results in

terms of p, q, and p.
The nature of the IP, q, P& state is best appre

ciated by examining the symmetrical form of Eq.
(Al), which is

N. Ip, q, 4&=~,'n, lp, q, l&=y, Ip, q, p&. (A9)

The relations in Eqs. (A6)-(A9) permit us to
calculate any diagonal or nondiagonal matrix ele-
ments with respect to IP, q, g& very easily as well
as to examine some of the salient features of the

Ip, q, p& state.
As an illustration of the ease with which expec-

tation values can be calculated, we consider the
evaluation of (p, q, /II +Ip, q, p&. From Eq. (A6},
we see that

1/2 (~»'"HA™
1+mi

xe"""'@ll,m) . (A12)

Ip, q, y&=e '"
Ip, q, 0=0&. (A13)

Hereafter, the phase factor e"@is dropped.
The e" ~ term is Eq. (A12), when "operating"

on I l, m&, can be re-expressed as e" '~, thereby
reducing Ip, q, p& to

(P, q, OIL, Ip, q, l&= &P, q, ml y,„ lp, q, k&
In addition, if we let

q = sin'2 8, P = cos'2 ~, (A14)

( ((
—„)~Ilail')"ll&l'&" ".

N n-
Using x = vp e'e ' and y = &pe '~ ' from Eq. (A4),
we see that

&P, q, ylL. Ip, q, t&=e "~Pe g IP"q" ",s N l „g
N-n)

which reduces to

x(cos-2'&)" Il,m); (A16)

it then follows from angular-momentum theory"
that Eq. (A15) reduces to

so that lp, q, Q =0) [Eq. (A12) with $ =0] becomes

1/2

IP, q, 4 =0&= Q
I

(»n26)'
m=-i l

(P, q, OIL. Ip, q, 4»=e "~Pa, (p+q)"
9 IP, q, y =0&=e '"2I l, l&, (A16)

=e-"N~pq . (A10)
I l, l) being the highest eigenstate of L, .

Thus IP, q, Q& in Eq. (A13} can be expressed as

All expectation values with respect to IP, q, P& can
be calculated in the same fashion to obtain Ip y&

+iI 2 -iI 8I l l& (A17)

(L+)=Neap(g e '~= (N/N)n, *o.2,— (A11a)

(L',)=N(N-1)pqe "~= [N(N 1)/N—2](n,*o. )'—

which shows that Ip, q, p& is an I l, l) eigenstate
of L n, where

(L L,)=Nq+N(N-1)pq,

(L &=Nvpq e'~=(N/N)n, n,*,

(A11b)

(Al 1c )

(Al ld)

n = (s in 8 c os P, s in & s in P, cos &} . (A18)

We, therefore, have established the connection
between the IP, q, g& state and the atomic coherent
states of Arecchi et al.6
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