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Asymptotic expansion for the temporal coherence functions of a finite blackbody
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Planckian thermal radiation of temperature T shows a broad continuous spectrum and poor, monotonically

decreasing, temporal coherence, We study the effects due to the discreteness of the exact resonances in a

finite, cube-shaped cavity (volume L') bounded by perfectly reflecting walls. Using the Poisson summation

technique, we calculate the almost periodic spatially averaged temporal (t) correlation tensors in terms of the

simultaneous asymptotic series in powers of both 1/LT and t/L with Riemann and Epstein zeta-function

coefficients. The according cross-spectral tensors yield all orders of the expansion of the spectral mode density

including the oscillatory terms.

I. INTRODUCTION

The study of blackbody radiation at the turn of
the century' started a revolution in thought that
has dominated physics ever since. The current
interest in this oldest subject of modern physics
has two main sources. First, quantum optics and
the theory of partial coherence study the black-
body as the best known example for chaotic
fields. ' ' Second, size, shape, and proximity
effects and their impact on the venerable laws of
thermal radiation are studied in connection with
the Casimir effect, ' ' the radiation transfer be-
tween closely spaced bodies, " "and the spectral
and total energy densities of small cavities" "
related to the problem of far-infrared radiation
standards as well as to the concept of the density
of states and quantum-size effects in the statistical
mechanics of noninteracting systems. Both the
aspects of coherence and boundaries are combined
in the studies of the correlation of thermal radia-
tion in finite cavities" and the quantum electro-
dynamics in the vicinity of material walls. ""

The discreteness of the exact eigenvalue spec-
trum is waived in the statistical physics of very
large systems, where the quasicontinuum approach
leading to the analytical density of states is adopt-
ed. This approach can be extended to finite, but
not too small, systems by describing surface and

shape effects in terms of the refined smoothed
spectral distribution. The corresponding correc-
tion terms for the Planck and Stefan-Boltzmann
radiation laws were derived from studying the
eigenvalue distribution of the electromagnetic
wave equation in finite domains bounded by per-
fectly reflecting walls. " " The quasicontinuum
approach, however, suppresses the fluctuations
around the averaged mode density related to the
finite distance between adjacent levels.

A systematic study of the oscillatory "fine struc-
ture" of the distribution is available for the scalar
wave equation" related to the quantum-size effects
in nonrelativistic perfect gases, e.g., for elec-
trons in metal grains or the nuclear-shell correc-
tion. The analogous problem for the more in-
volved electromagnetic wave equation related to
the thermal photon gas in small blackbodies is
unsolved hitherto, although oscillations have been
observed earlier' ' in numerically computed
spectral densities. The discreteness of the spec-
trum is of particular interest in time-dependent
statistical mechanics. It is responsible for the
Poincar6 cycles of the time correlation functions,
whereas continuous spectra lead to the mell-known
aperiodic long-time relaxations. Thus, the quasi-
continuum approach produces the well-known rapid
and monotonic decrease of the temporal coherence
( y(t)( of the blackbody radiation, ' '~" showing the
small coherence length (below Sc/KT) and the long-
time behavior ) y[ ~ (Tt)', with T denoting the tem-
perature and t the time. Unfortunately, the im-
proved quasicontinuum approach in terms of re-
fined smoothed spectral densities is meaningful
for very short times t only. "

In this paper, both these problems —the exact
analytical density of states including the oscilla-
tory terms, and the exact analytical temporal
coherence tensors for any time t—are solved si-
multaneously. We consider the case of the thermal
radiation field in a cube-shaped cavity of arbi-
trary size with perfectly reflecting walls and use
the Poisson-lattice summation technique and the
quantum optical Wiener-Khintchine theorem. ' '
As we are not interested in proximity effects" "
here, we consider the spatial average of the tem-
poral correlation tensors, i.e.,

(t)=V ' f dxE„„„(x,0;x, t),
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with V denoting the volume of the cavity and where
$„„(x,0; y, f) is the electric field correlation tensor
as introduced by Glauber' and Mehta and Wolf. '
The magnetic and mixed tensors $»(t) and 5R»(t)
are defined in the same manner. It is easily
inferred from Refs. 2 and 3 that the Fourier
transform of the trace g„g»(t} of (1) produces
the spectral energy density of the radiation field.
We calculate (1) with the aid of the Poisson sum-
mation and find the spectral density by inverting
the Fourier transform. The above average cor-
relation tensor is of physical relevance in a situa-
tion where the thermal emission of a blackbody
source is studied by correlation experiments or
Fourier-transform spectroscopy. The average
temporal coherence tensors are global properties
of the cavity radiation field considered as a whole,
very much like the spectral energy density re-
sponsible for the spectral emissivity. Further-
more, the study of the spatial average is suffi-
cient for the demonstration of the long-time cor-
relation effects typical for a finite system show-
ing a discrete spectrum. We would, however,
like to mention that the position-dependent time
correlation $„,(x, 0; x, t) is as well a quantity of
great physical interest (see, e.g. , Refs. 20-22).

In Sec. II we establish the general correlation
tensors for the cube of finite edge length L. In
Sec. III we calculate the average tensors in terms
of both the exact series and the complete asymp-
totic expansion around Sc/KTI ~ along with the
electric field autocorrelation function (E(0)E(t)}.
Section IV is devoted to the discussion of the re-
sults as well as to the impact on the density of
states and the total radiation energy.

II. CORRELATION TENSORS FOR THE CUBE-

SHAPED CAVITY

Let us consider the thermal radiation field of
temperature T enclosed in a finite domain G of
volume V and study the electric, magnetic, and
mixed correlation tensors introduced by Glauber'
and Mehta and Wolf. ' We assume that G has a
discrete spectrum of resonance frequencies ~,
with 0& co, & g & ~ ~ belonging to the normal modes

h„„=tr fpZ', '(x, t, )Z,'"(y, t, )}

= (k /2) Q (u& E, (t)u P „(x)u, „(y), (3)

K„„tr=-gZ'„&(x,t, )B,"&(y, t, )}
= (-i@c/2)P E, (t)u,* &(x)[ Vxu, (y)]„,

with

p. , v=1, 2, 3, x, y&Q, t=I;, —t, ,

u&-„.
&
„=(8/I')'"e„(k, n) cosk„x„II sink, x, ,

a

p being the canonical density operator, t." the vacu-
um velocity of light, 5 the Planck constant divided
by 2m, and K the Boltzmann constant. The asterisk
indicates the complex conjugate. We observe that
the above tensors cannot be expected to be spatial-
ly homogeneous as in the free-space limit' ' and
hence do not necessarily depend on the relative
distance (y —x) only. For the same reason, the
temPoral correlation tensors (where y=x) as well
as the energy densities (where 'y=x and t, =t, ) are
expected to depend on the actual position x EQ.

Let us now consider the cube-shaped cavity with
perfectly reflecting walls, where the normal modes
are characterized by the indices (k; n) = (k„k„
k„n). Here, k denotes the wave vector (»/Qn,
I. being the edge length of the cavity and n a lattice
vector (n„n„n, ) with non-negative integers n;, and
e is the polarization index with the possible value
1 or 2. The eigenfrequencies are u&(k;n) =k/c, with
k denoting ~k~. The p, th components of the normal
modes read

u, (x)e ' &', x~g, (2)
with», = 1, 2, 3 and v& [1,2, 3}, g c p, , and with the
unit polarization vectors e(k; n) defined as usual. '
From (3) and (7) we calculate

where the u, = (u, „u»,u») are an orthonormal
system of solutions of the Helmholtz equation
obeying div u, = 0 and some boundary conditions.
Using the same units as in Refs. 2 and 4, we ex-
pand the electric and magnetic field operators
E =E'+'+E& ' and B=B'"+8~ ' in terms of the u, .
Avoiding the usual approximations valid in the
free-space limit only, ' ' we obtain

S„p=4hcL 'Q (k'5„p —k„k„)k 'E(k, t)SK„„(k;x,y},

(8)

with

-i keg
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S„,= cosk„x„cosk,y„g sink, x g sink, y,
a&p 0 &V

with F as defined by E(I. (9), k =(w/L)(pp, +n', +n,')'~',
and k=(w/L)(n', +n,')"'. In order to evaluate (15),
we symmetrize the summations and obtain

(10)
Results similar to (8) hold for (8„, and5R„, ; one
has only to replace the spatial function S„, by

I'(t) = (hc/24L')
n1,n2, n3= -~

ky (k)

S„,= sink„x„sink, y, [ cosk,x,
~Ay

cosk ~~y~~

—(hc/8L') g (vn, /L)E(vn, /L)+KT/12L~,
n 1

(16)

respectively.

III. SPATIAL - AVERAGE EXPANSIONS

We now calculate the spatial-average temporal
correlation tensors by putting y =x and integrating
over the cube. From (8)-(12) we obtain

~))v 6)(v h)) ))(t) ~ (8)(v 5))v(8))))(t) ~ II))v

(13)

Accounting for the cube symmetry and rearranging
the summations we are led to

$„„(t)=i„„(t)=i(t), I =1, 2, 3,

with the temporal coherence function

I'(t)=(hc/sv)( p )v(at),
f73 —1

(14)

+-,'P av((, c)),
n1, n2=1

(15)

S"„„—= —' ok inky, [ ik, , [ ok, y
~Ay O' &V

(12)

where we define kE(k) for k = 0 by analytic con-
tinuation, kF(k)-KT/hc for k-0. We now trans-
form the two sums appearing in (16) using the
Poisson summation formula. Introducing the ap-
propriate spherical coordinates and integrating
over the angle cp, the first sum is expressed as

+ OO oo

(2v'/L) P ~t &F(v~/L) '
1I 20 3

g(s, z) = g (n+z) ',
n=O

we find that the term corresponding to v =0 in (17)
is related to g(4, z), whereas the terms corre-
sponding to v4 0 can be written in terms g(3, z).
The second sum is related to &(2, z) in a similar
manner. Introducing the reduced parameters

T =KTt/h, p =hc—/KTL, — (18)

we finally obtain

x dge '""""' sin0
Jp

(17)
with v denoting

~ v~, v=(v» v„v, ) with integer v;,
and a similar expression is found for the second
sum in (16). Integrating over 9 and invoking the
Fourier integral representation" of the general-
ized Riemann zeta functions

L'I (~, P) = , , g(4, 1 +i ~) — , I(2, I +i ~) +
Ac kc )ac

12m p V 1~V 2~V 3=-ao
v '[g(3, I +i(7 —2v/P)) —g(3, I +i(r+ 2v/P)) j

[g(2, 1+i(T—2m/p))+&(2, I +i(T+2m/p))], (19)

where the primes indicate that the terms corre-
sponding to v=0 andean =0, respectively, are
omitted in the summation.

We now replace the two sums appearing in the
above rigorous representation of the temporal

coherence function by an asymptotic series. Using
&(s, 1+z) =&(s, z) -z ' and the asymptotic ex-
pansions of f(s, z) for ~z~-~, which we calculate
from relations involving the polygamma func-
tions, "'"we obtain
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Sc
8m

n =0

TL ~bc/K, I.& ct. (21)

Under these conditions the leading terms of (20)
read

Q 2 '"(2n+1)q„(~P)'",
n =0

(20)

i -—(q,v[1+O(p')] + O(~'p')} — [q, + O(7 p'))
. Ac 3 2

(22)

with

q = g(2m+2) —(m +1)&s(2m +4, 3)/6m,

where the ordinary Riemann zeta function

g(s)= Q n ',
n =].

the Epstein zeta function

In particular, (19) and (20) enable us to establish
an expansion for the electric field autocorrelation
function'

Ce(t) ~ V '
] dx tr[pE(x, 0)E(x, t)j

of the cube. Up to a normalization constant, we
obtain

ge(s, p) =
V

J ) ~ ~ ~ ~
V-

V= V~q V2q. ~ . q VP
1T2

Cs(7', P) ~ Ref(4, 1+i w) ——P'Ref(2, 1+i w) +—p'

and the Bernoulli numbers B» are involved.
Together with the first three terms of (19), the
above asymptotic series are a rigorous repre-
sentation of 1(w, P) in the limit P-0, for rP &2.
For finite, but not too large P and wP, a finite
number of leading terms of the expansion provide
a useful approximation of I"(r, P), say P ~ 1 and rP
&1 or

——q,P ——g 2 '"(2n+1)q„(rP)'".
n =g

(23)

For intermediate times the/KT, but still obeying
t&L/c, we can use the expansions of Re&(s, 1+i T)
for T -~." Adopting a new normalization we thus
find the approximation

(24)

IV. DISCUSSION AND THE SPECTRAL DENSITY

Let us now discuss the main results, (13) and

(14), (19)-(21), and (23) and (24), and compare
them with the thermodynamic or free-space
limit' ' L-~ and previous partial results ob-
tained by heuristic methods. " In the free-space
limit, the temporal (x =y) electric and magnetic
correlation tensors are diagonal and the mixed
tensor vanishes. These results are reproduced
for finite cubes [see (13)] provided that the spatial
averaging (1) is adopted. Furthermore, the six
diagonal components $»(t) and Q»(t) are identical
in the thermodynamic limit. This result is con-
firmed here [see (14)] by virtue of the cubical
symmetry, but it would not hold, e.g. , for a cuboi-
dal cavity showing different edge lengths, I., W L,
WL,. The well-known result for the infinite-space
temporal coherence function appears as the first
term of (19). All the following terms are correc-
tions due to the finite size of the cavity and be-
come obsolete in the limit I.-~. Obviously the

g» and 8» show no first o)der co)") ec-tion pro-
portional to L2. This result, too, is a consequence
of the symmetry of the problem. We observe that
the relevant physical parameters for the complete
expansions (19) and (20) are LT and t/L. For some
arbitrary finite LT, I'(t) does not vanish in the
limit t-~; i.e., the finite size of the system pro-
duces a long-tinge memory of the temporal co-
herence. We observe that the real parts of the
higher-order corrections appearing in (19) and

(20) are smaller and less complicated than the
imaginary parts. This remark applies as well
to the long-time expansions of g(4, I +is) and

g(2, 1+iv). Consequently, the relatively simple
expansions (23) and (24) for Cecc Rei' can be es-
tablished. The first three terms in (23) (and only
these) can be conjectured from a heuristic inte-
gration of the appropriate smoothed mode den-
sity, "leaving the range of validity open to a Pos-
teriori trials. Here, however, we were able to
establish the conditions (21) in a rigorous manner,
because we know the asymptotic expansion (20) to
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all orders in both LT and t/L
With respect to the phase problem"' "related

to the above temporal coherence function I'(t) we
mention that not only g(4, 1+i7), but also
g(2, 1+iv) has no zeros on the axis Imr = 0 or in
the lower half plane Imr&0, because the corre-
sponding path integrals over 4=argF vanish.

The rigorous expression (19) allows us to cal-
culate the spatial average of the cross-spectral
tensors W„„(x,y, &u), with (k) =kc introduced by
Mehta and Wolf'; e.g. , for the electric field we
have

)ksr'r(re) = V ' f r(xicsr'„r(x, x, re)= dt e' 'h„, (t)

=5q, W((k)) =. 5„„
t

dte' 'I'(t),

L U=, (TL) — (TL)'+ TL—
15(hc)' 4hc 2

(27)

where the diagonal component W(&u) is proportional
to the spectral energy density of the radiation field.
Thus, by taking the Fourier transform of (19) and

omitting the thermal-energy factor, we derive a
rigorous and complete expression for the spect al
mode density D(k) of the cube-shaped cavity,

k'k' i F"' sinkekk)
m2 2vkl.

V ~,V~, VS=-

3L +

i+ Q coskmki)+-, 'C(k), (k6.)
m=-~

where v and the primes have the same meaning as
above [see (17) and (19)). Here, L'k'/v', -3I/2m,
and —,

' 5(k) are known as the volume, edge, and

corner terms"' "and were previously interpreted
as the leading terms of an asymptotic expansion of
the smoothed mode density D(k) around Lk-~.
The subsequent terms of (26), unknown hitherto,
describe the oscillatory behavior of D(k) around
D(k). The calculation is sketched in the Appendix.

The complete expansion (20) enables us to re-
derive a previous result" for the total energy den-

sityy

in terms of U = lim, ,(6F(t)) with a precise
remainder,

APPENDIX

Having used the units of Qlauber's paper, ' the
erose-spectral tensor (25) differs from the one
originally defined by Mehta and Wolf' by the factor
47t. It is shown in the first paper of Bef. 6 that

8'„"„'x, x, v

represents the contribution from the frequency
range v, v+dv to the expectation value of the elec-
tric energy at the position x. Integration of (A1)
over the cube volume thus yields the spectral
electric energy of the whole cavity in that fre-
quency range. Accounting for the isotropy„ the
spectral magnetic energy, and for u = 2mv, the
total spectral energy density u(&u) dv is obtained
as

(Al)

u((u) = 6 d t e' ' I (t),

with F(t) as given by (19). The Fourier transform
of (19) is achieved by transforming the Riemann
zeta ser ies term by term using

with arbitrarily large M )0, where

(I, =-', [m'- m 'ga(4, 3)]

with gz(4, 3) =16.532 31596 .' We observe that
an incorrect value for ga(4, 3) was used in Refs.
12 and 16. We mention that the fourth term in the
above expansion is assumed to describe the Casi-
mir effect and was independently obtained by
Lukosz. ' The result (27) can be verified as well
by integrating hckD(k)(e"' /r" 1) -' using (26).

The above investigation is related to further
interesting problems. We mention the comparison
of the asymptotic expansions with computational
results for very small IT directly achievable from
the sum (15) and the related Poincarh cycles, the
calculation of the visibility i F(t)/I'(0) ~, the gen-
eralization to less symmetric domains, e.g. , the
cuboid, and the comparison with different ap-
proaches made for the infinite-slab and half-space
geometries. ' " An according study is in prog-
ress.

Q f dec '"" (n+r'(r *km/())J-' krr(-i)' kre ' ' e"'
n=1 «™

(I —1)! KT e" ' —1

for /=2, 3 and leads to

+ OO + OQ

n(re) . , „ i (, , I,
( (
/, Q cos(kmrek/c)) —,'(irT/Z. ')C(re).

v~, v2, vs=-~ m=-~

(A3)

(A4)
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Multiplying by (e —1)/Ke and realizing that
6(&u)(e" '" —1)/k &u = 6(&u)/XT we finally obtain the
density of states (26).

By applying the Poisson summation, (26) can be
rewritten as

We observe that (26) can as well be obtained di-
rectly from the definition' ' '

D(k) =-,'

(A6)

+ oo

6(kL, -nm)+-', 6(k).
through a Poisson summation.
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