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We have considered the process of frequency conversion when the signal mode has an arbitrary field
distribution. The set of coupled partial differential equations is solved employing the angular spectrum
representation for the signal mode as well as for the idler mode. Explicit expressions for the signal and the
idler field are obtained in the far-field approximation. An expression for the signal mode intensity is obtained
which takes into account the effect of partial coherence as well as the effect of the bounded beam aperture. As
an illustration we have considered the case of a Gaussian beam in detail.

I. INTRODUCTION

With the availability of an intense light source
such as a laser, it is now possible to observe
several nonlinear effects. The nonlinearity of the
medium allows coupling among different modes,
and the energy exchange takes place from one
mode to another giving rise to various nonlinear
phenomena of physical interest such as parametric
amplification, frequency conversion, and others.'=
Assuming that only three modes experience sub-
stantial interaction, these parametric processes
are mathematically described by a set of three
nonlinear coupled partial differential equations.
These equations were first solved by Armstrong
et al . under the assumption that the three inter-
acting waves are polarized plane waves of infinite
extent. In that case, each of the partial differen-
tial equations can be exactly solved. However,
in the plane-wave theory, neither the effect of the
finite beam aperture nor the effect of partial co-
herence can be taken into account. Some numeri-
cal investigations are also carried out in the case
where the field distribution across the incident
beam is Gaussian.®-®

In the present investigation, we consider the
general case when the incident beam has an arbi-
trary field distribution with arbitrary state of
spatial coherence. In order to simplify the prob-
lem considerably, we make the usual parametric
approximation; i.e., we assume that the pump
field is so intense that the pump intensity does not
change during interaction. Under this approxima-
tion, the three nonlinear coupled partial differen-
tial equations reduce to a set of two linear coupled
partial differential equations. This set of equation:
has been obtained in Sec. II for a particular pro-
cess of up-frequency conversion. These equations
are solved in Sec. III, employing the technique of
the angular-spectrum representation of the wave
field.*-*? It is assumed that initially only the sig-
nal and the pump modes are present and the idler
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field is generated inside the medium during inter-
action. We find that the signal field, as well as
the idler field, can formally be expressed in
terms of the incident field. In order to obtain ex-
plicit expressions for the electric fields, we eval-
uate the integrals in Sec. IV under the far-field ap-
proximation. We find that the signal field, as well
as the idler field inside the medium, is a super-
position of two angular spectra with different angu-
lar variables. In Sec. V we have used these ex-
pressions to obtain the intensity distribution of the
signal mode. In Sec. VI we apply our result to a
particular case where the incident-signal field has
a Gaussian distribution. This case is of particular
interest as the light from a laser approximately
satisfies this condition (cf. Ref. 8). We have ob-
tained the intensity expressions for the signal and
the idler modes. These results are used to ob-
tain an expression for the conversion efficiency.

We have considered in detail only the process of
frequency conversion. However, it may be pointed
out that the method is quite general and may be
used to study other parametric processes.

II. BASIC SET OF EQUATIONS

We consider a crystalline medium filling the
space z>0. The pump field and the signal field
are incident on the plane z=0 from the left-hand
side, and the field distribution for both the beams
are known on this plane. At any point ¥ in the
medium, the frequency spectrum of the electric
field E(‘f, w) and that of the nonlinear part of the
polarization ﬁNL(E, w) satisfy the equation?® 3

[V?+ €(w)w?/IEF, ) = -~ @rw?/c®) Py, (F, w)
(2.1)
By, 0)= fxm(—w,w’,w—w') E(F, o)
XE(F,w-w)dw’, (2.2)
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where x®' is the second-order susceptibility ten-
sor, and we have considered only the lowest-
order contribution to the nonlinear polarization.

For the sake of simplicity, we assume that the
pump and the signal modes incident at the plane
z=0 are monochromatic, and at any point ¥ in the
medium we confine our attention to fields at three
frequencies w,;, w,, and w; such that

W3= W+ W, . (2.3)

Let the modes at frequencies w,, w,, w; be lin-
early polarized along unit vectors &,, §,, &, so
that we may write

EF, w)=8,E,F) (A=1,2,3; no summation).
(2.4)

From (2.1)-(2.4), we obtain the following set of
coupled nonlinear equations:

(V2 +R2)E,(T) = — (4ndk2/€,)E,(FEX(T) , (2.5)

(V2 +B2)E,(T) = — (4ndR2/€,)E,(F)EX(T) , (2.6)

(V2 + B2)E,(F) = - (4mdR3/€,)E,(F)E,(¥) , (2.7)
where

_Z @) .
d=8, X (~w;, ws, —w,) 16,8,

=80 XB (~wy, wy, —w,) 1 €&
=8 X®(~w;, w,, w,) 1 €8, (2.8)
and
k= (6)Y2wy/c, €=¢€(w,). (2.9)

The different expressions used in (2.8) are all
equal on account of the symmetry properties of
the susceptibility tensor l((z)_ In writing Eqgs.
(2.5)—(2.7), it has been assumed that the inter-
action can be treated in terms of an effective non-
linear coefficient d (cf. Appendix 3 of Ref. 8).

Various parametric processes can be described
by Egs. (2.5)-(2.7) by suitably identifying the sig-
nal and the pump mode. For instance, if we iden-
tify the fields at w, and w, as the pump and the
signal modes, respectively, we will be dealing
with the up-frequency conversion. The special
case w, =w, corresponds to second-harmonic gen-
eration. Similarly, if we identify w, as the signal
frequency and w, as the pump frequency, we ob-
tain the case of parametric amplification. In what
follows, we consider the process of frequency
conversion and accordingly write

E1(?)=Ep(-f)a Ez(F):Es(f)’ E3(F)=E1(-f)-
(2.10)

To simplify our calculations, let us assume that
the pump field is a plane wave propagating along
the z axis. Further, if the pump intensity is large

and remains constant throughout the interaction
(parametric approximation), we may write

E,[)=A, exp(i,z) , (2.11)

where A, is a constant. From Egs. (2.5)—(2.7) and
(2.11), we find that the signal and the idler fields
satisfy the coupled linear equations

(V2+R)E (T) = —4nd(k2/€,) A} exp(~ik, 2)E,(T) ,
(2.12)

(V24 B2)E (F) = —4nd (k2 /<,) A, exp(ik, 2)E,,(F) .
2.13)

These equations are solved in Sec. III under the
boundary conditions that E is given on the plane
z=0and E; is assumed to be zero on this plane.

III. ANGULAR SPECTRUM REPRESENTATION

In order to solve Eq. (2.12) and (2.13), we first
express the signal and the idler fields in angular-
spectrum representations,®

E,®)= [A,(p,q;2)e"% apdg , (3.1)

E®= [4,p,0:00e @ apag 3.2)

From Egs. (2.12), (2.13), (3.1), and (3.2), we ob-
tain the following set of equations satisfied by the
angular amplitudes'A; and A;:

2

9 k2 R
(—2+m§>As(p, q;2)=—4nd <E:>A;,“ exp(-ik,z)

0z
- XAb,q59), (3.3)
82 k2 .
<§z‘2‘+m§>Ai(1’,Q;Z) =<4nd <ﬁ>A, exp(ik,z)
1
xA(p,q;2), (3.4)
where

my=+[ky—(p*+¢?)V?, if pP+q?<k? (3.5a)
=i[p?+q*-R3)V?, ifpPeg®>RE. (3.5b)

In the absence of the coupling (d=0), each of
the Eqgs. (3.3) and (3.4) becomes homogeneous and
has the solution

A\(P,q52)=By(p,q)ei™* (A=s,7). (3.6)

If we substitute (3.6) in (3.1) or (3.2), we find that
E,(T) is a superposition of two types of waves:

(i) for values of m, given by (3.5a), it consists

of homogeneous waves propagating along the di-
rection with direction cosines proportional to
(p,q,m,); (ii) for values of m, given by (3.5b),

it consists of evanescent waves propagating in
the xy plane and attenuating exponentially with in-
creasing z.
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In order to solve the coupled set of equations
(3.3) and (3.4), we write A, in the following form
[cf. Eq. (3.6)]:

A\(P,q;2)=B,(p,q;2) expim,z), (A=s,i), (3.T)
where B, is a slowly varying function of z. On
neglecting the second derivative of B, with respect
to z, we find from Egs. (3.3), (3.4), and (3.7) that
9 . .
-SEBS(p,q;z)=2md(k§/€sms)A;‘ exp(-iAkz)
XBy(p,q;2) , (3.8)

SBEBi(p,q;z)=Zﬂid(ki/eimi)Apexp(iAkz)Bs(p,q;z) .
(3.9)

Here we have set
Ak=k,-m -m;. (3.10)

As we have assumed that initially at the plane
z=0, only the pump and signal modes are present,
we wish to solve Eqgs. (3.8) and (3.9) under the
boundary conditions that B,(p,q;0) is known and
B,(p,q;0)=0. This is readily done by employing
the normal modes. We find that

' ink
By(?,q;2)=By(p,q;0) <cosgz * g Smg2>

xexp(-iAkz/2), (3.11)
27rik2.dA> .
s :Z)= . fkidtA ki 3

Bl(P;q,Z) BS(P,CI,O)< €imig singz

xexp(iAkz/2) , (3.12)
where
2rk R dIA, B (AR)?\Y?
g:( K Atk + ) . 313)
€€ ;mm; 4 (

Finally, from Egs. (3.1), (3.2), (3.7), (3.11), and
(3.12), we obtain the following expressions for the

Y
- = x.,Y,
2 (x.3.)
-
"7
64_____ z

o

FIC. 1. Illustrating the coordinates of the source and
the observation plane.

electric fields of the signal and the idler modes at
any point in the medium:

E (T)= fdpdq B (p,q;0) (cosgz + %‘Ag_lg singz>
xexpli(px +qy +myz —38k2)], (3.14)
- , k%f singz
(T = i .0)2=82
E,(T)=2mdA, < dpdqB,(p,q;0) o
xexpli(px +qy +m; z + 3Akz)] .
(3.15)

B(p,q;0) is obtained in terms of the boundary
field E (&, n) [where (£,7) denotes a point on the
plane z =0 (cf. Fig. 1)] by setting z=0 in (3.1) and
taking the inverse Fourier transform:

Bs(p,q;0)=fﬂ—2fEs(£,n) exp[~i(p&+qm)]dsan.
(3.16)

IV. FAR-FIELD APPROXIMATION

Equations (3.14) and (3.15) formally represent
the general solutions for the electric fields. The
integrals over p and g in these equations may be
carried out in the far-field approximation kyz2>>0
(A=s or 7). If it is assumed that the source and
the observation planes are parallel to each other
and that their linear dimensions are small com-
pared to the asymptotic parameter %,z, one may
readily verify that the contributions to the inte-
grals in (3.14) and (3.15) will be significant for
small values of p and g only. We may therefore
write

m,= k1 -3(p%+q?)/k3], (4.1)
and from (3.10), we may write
Ak (ky+kg—k) +3 (k7 k) (P +q%)
=5k k(P +q%) . (4.2)

Keeping in view of Egs. (2.3) and (2.9), we have
here assumed that the collinear phase matching
condition

ket kg —F; =0 (4.3)

is satisfied. From (3.13) and (4.1), we may then
also write

1/1 1
=13 (Eem) rea) (4.4)
AUV
where u is given by
kR \Y?
u=2nd|A,|<—€—&€i . (4.5)
s~i

We now substitute (4.1), (4.2), and (4.4) in (3.14)

~ and (3.15) and use the method of stationary phase
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to obtain the asymptotic values for large z. It is
to be noted that we may set Ak=0 and g= u every-
where except in the trigonometric- or exponential-
phase terms. After straightforward evaluations,
we find that

ikgz [ pidy
e[ (s

iz Loy —z—a:’z—otl’
i
+£:Bs<_£_,_y_;0)] , (4.6)
a, za,’ za,
and
7y TeiHie E.skiA2>1/2[ e (L . >
Bi®) == <€iksA;,* T a, B, zal’zal’o
i,
+QEBS(L,_L;O>],
a, za,’ za,
(4.7)
where
1[1 1 11 }
al_z[ks+ki+“<k§+k';‘> , (4.8)
_l[i 1 <i i)]
=3 ks+ki-u k§+k"; ) (4.9)
b= —pz+3(%+y?)/z0, , (4.10)
bp= pz +3(x%+9%)/zq, . (4.11)

In the absence of the coupling, i.e., when d=0
(and hence also u=0), we note from Eqs. (4.8)—
(4.11) that o, =a, and ¥, =¢,. In this case, the
idler mode E;; is absent,

E,(F)=0. (4.12)

However, the expression for E, as obtained from
(4.6) is not strictly valid since, in this case, the
the contributions from the term containing
(AR/2g) singz to the integral in (3.14) cannot be
neglected even in the asymptotic limit of large z.
In fact, from (3.13) we find, on setting d =0, that
g=3Ak, and Eq. (3.14) then reduces to

E(T)= fdp dgBy(p,q;0) exp[i(px +qy +mz)].

(4.13)

On making use of Eq. (4.1) and applying the method
of stationary phase, we then obtain the following
expression for E in the far-field approximation:

2, 2
Eso('f)zﬂsBs(x_ka’l]?_s;o>exp':iks<z+x +y >]

iz z z 2z
(4.14)

It is worth noting that (4.14) may be obtained by
setting u=0 and &, =%, in (4.6).

V. INTENSITY DISTRIBUTION OF SIGNAL MODE

In Sec. IV, the expressions for the signal- and
the idler-field distributions were obtained. In this
section, we obtain an expression for the intensity
of the signal mode at any point T of the medium.
For this purpose, we rewrite Eq. (4.6) in the fol-
lowing form:

E x,y,2 =%eiksz[Eso(x,y, alksz)e-iz(alkg-vu.)
+E o (x,y, ak,z)e 7 @r-»] (5 1)
where E (x,y,2) is the signal field in absence of
any interaction and is given by Eq. (4.14).
If the signal field Eso('f') is assumed to be a plane
wave propagating along z axis, i.e., if
E ,(T)=C exp(ik,z) , (5.2)

where C is a constant, we find from (5.1) that
(cf. Ref. 13)

E (T)=Ce'*s*cospuz . (5.3)

From (5.1), we may obtain an expression for the
average intensity I (¥) of the signal mode. We
find that

1,6)= (B3 @), ()
= %{Io(x,y: alksz) +1,(x,y, azksz)
42 [ Tolx,y,ak z;%,y, ayk,2) I
xcos[2uz + (a, —a,)k2z]}. (5.4)

Here T',(T,,T,) is the mutual coherence function
at the two points 7, T,,

ro(—fl:-fz)=<E:o(-f1)Eso(fz)> ) (5-5)

and I(F) is the intensity at the point ¥ in absence
of any nonlinearities. The expressions for I, and
T', which correspond to a linear medium have been
obtained earlier.!.5

VI. GAUSSIAN BEAM

In this section, we consider the special case
when the incident-signal field has a Gaussian dis-
tribution and obtain the intensity distribution of
the signal mode as well as of the idler mode at
any point inside the nonlinear medium. The boun-
dary-field distribution E (£,7) at the plane 2=0 is
given by

E(&,m) =C exp[- (82 +7*)/9] , (6.1)

where §, is the spot size and Cis a constant. Sub-
stituting (6.1) in (3.16) and integrating over & and
1, we find that

B,(p,q;0)=(CQ2/4r) exp[-5Q2(p2+¢?)].  (6.2)

On substituting (6.2) in (4.6) and (4.7), we obtain
the following expressions for the signal and the
idler fields:
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. Ceiks.?ﬂz eitl ( Q ) )2} eia\z - Q 2
_Le i )et _ (24P ez —( 24P
E4(F) 4z3 {al exp[ 20,2/ 1F a, exp[ <2a2z> } ’ (6.3)

1

. CetrizQ? <€ L.A )1/2 et [ Q.0 )2} etvs {: < Q.0 )2}
(F)= —=—""0(Zs7i" 8 J.— —( = —_— — [ —==o
E,(T) i \eyp.As o, &P <2alz + exp 20, 7 , (6.4)

where E (F)=e*s*E (¥) cos [/J.(z +%5_p2>
pi=x2+92, (6.5) z

2.2

We may further simplify the above expressions +i6 &’&M‘—} , (6.6)
for the electric fields since the parameter pu/k, is en A, \Vz
usually very small (~10-°). The quantities 1/a, Ei('f)=z'e””"<?‘—‘—-£> E(F)
and 1/a, may therefore be expanded in a binomial
series in powers of u(k2+#2)/[kks(k; +k,)]. When-
ever these quantities occur in the exponent (as X sin [# (Z +
phase terms), one may, to a very good approxi-
mation, retain terms up to the first order, where- (6.7
as when these terms occur alone in the denomina-
tor, one may retain only the zeroth-order term. where
Under tl’.liS approximatit?n, we obtai.n, after some 6=2(k§+k§)/(ks+k,)2 (6.8)
calculations, the following expressions for the
signal and the idler fields: and

J

- BB, CQP R pz:l [ <kk szp)z]
_ Rk, CQq _kiks p° _( Riks S0P 6.9
Bol®) =3 v iz exP[zki+ks z JPL\E, 4k, 2 : (6.9)

The diffracted wave fields of a Gaussian beam at frequency w, in the medium in absence of nonlinear in-
teraction may be obtained by setting 1 =0 and k; =k, in (6.6) and (6.7). It is evident from (6.6)~(6.9) that
the signal mode as well as the idler mode is Gaussian with spot size .

k,+k. 2z
it s 2 6.10
Q= l;‘s Qo. ( )

The intensities of the signal mode and of theidler mode are given by

1 6p2>] (uap292 kik ) . L 00%\7 gipne (£00°028 ik, \
1) =1 2[ ( 2 0p” 2 (208 %09 s 2 s } P—0
@) =1,F) {cos ml2+3 7, cosh 2 B+h, +sin |:u (z +3 > sinh 2% Bk )|

€k . m | 1 5p2>] <p.6p292 Rk > [ < 1 6p >} . <u6p292 kb )
——sTi 2 — = 2 (£ 2% Tits 2 i 2(LC 79 Tits
I,(®) >y Io(r)lsm [/J. <z+2 ~ )| cosh ey +cos?| p(z+5 == )| sinh? (=5 IR

(6.11)

(6.12)

where
I,(F) = (EF@E,@)= | C|2(Q,/0)* exp(-20°/02) . (6.13)

It may easily be verified by setting p =0 in (6.11) or (6.12) that in the plane-wave limit, the signal and
the idler intensities are proportional to cos?uz and sin®uz, respectively.

Equation (6.12) can be used to obtain an expression for the conversion efficiency. The conversion ef-
ficiency 1 at any point T is defined as

P,@) [(&\?_L®
77(f)zif’s(x,y,o)'(és> I (x,y,0)’ (6.14)

where P (r) represents the power at the point ¥, and we have used the fact that P < €2 | From 6.1),
(6.12), (6.14), and (2.9), we find that
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Wi &1)2 [_ L__l_) 2] 2[( 1 50
n(T) ws<ﬂ exp 292 o p* | (sin | plz+5 =

+ cos? {u <z

5p°Q2 kiR
ﬂ cosh? (“—pz—ﬂ )

z Ri+ky

2 202 .
o3 20 | siae (L0 ki )} (6.15)

2% ki+k

We find from (6.15) that the conversion efficiency 7(r) has an angular dependence as well. On the axis

(p=0), it has the value

2
9—‘<9—°> sin®uz .
ws \
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