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The quantum theory of a one-dimensional optical cavity is developed with emphasis on the presence
of output coupling. First the resonant mode is defined and calculated classically. Then the field is
decomposed into a sequence of modes by introducing an imaginary boundary at a large distance. The
mode functions are proved to be orthogonal with respect to an integration with the dielectric constant
as a weighting factor. The Hamiltonian of the field is shown to be equivalent to that of a collection of
independent harmonic oscillators, the mass of which is a function of the frequency of oscillation. This
equivalent of mass appears on normalizing the mode functions and proves to carry information on the
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structure of the cavity. Quantization of the field is carried out, and the commutation relation for the
electric fields inside and outside the cavity is derived. The commutator is composed of an infinite set
of derivatives of & functions, which discloses the effect of the presence of output coupling and that of
the small size of the cavity on the radiation field. Also, the commutator is shown to have some prop-
erties common with the classical resonant mode, i.e., the property of exponential decay and its rate.

I. INTRODUCTION

Fully quantum-mechanical treatments of laser
action have been published by several authors.!
The losses of the laser cavity have been accounted
for by introducing loss oscillators? that consisted
of phonons or bound electrons. Strictly speaking,
these approaches do not give information on the
radiation field coupled out of the cavity. If we
wish to include in the theory the radiation fields
both inside and outside of the cavity coupled to
each other, we cannot use the standard technique
of the field decomposition into modes, which relies
on the presence of homogeneous optical material
in the whole space. Because most laser materials
and cavity reflectors have different dielectric con-
stants from that of the vacuum, and the size of
the laser cavity is often small compared with the
coherence length of typical, spontaneously emit-
ted light, we must encounter the problems of both
optical discontinuity and size effect.

In this paper we develop a quantum theory of a
passive one-dimensional optical cavity with output
coupling. A set of orthogonal functions are found
with which we can expand the vector potential for
our one-dimensional field extending from within
the cavity to outside, which allows quantization
of the whole field. The effect of output coupling
and of the small size of the cavity appears in ex-
plicit forms in the commutator for the electric
fields, one inside and the other outside the cavity.

In Sec. II we describe the model of the one-
dimensional optical cavity having output coupling.
The cavity is analyzed classically, and the reso-
nant and antiresonant modes are defined in Sec.

III. Resonant modes are defined as ones that have
only outgoing or incoming waves outside the cavity
and not both. The antiresonant modes are in a
sense opposite to resonant modes. In Sec. IV the
space is bounded by perfectly conducting walls and
the radiation field is divided into a sequence of
modes, the eigenmodes of the bounded space in-
cluding the cavity. The Hamiltonian of the field is
calculated and is shown to be equivalent to a sum
of Hamiltonians of independent harmonic oscil-
lators, each corresponding to the respective
eigenmode. The field is quantized in Sec. V, and
some discussion is made about the unique prob-
lems arising in our particular radiation field.
Finally in Sec. VI, the commutation relation be-
tween the electric fields internal and external to
the cavity is derived. The commutator has a
rather complicated appearance because of the
structure of the cavity, which forces us to depart
from the usual light-cone concept applicable to a
free space.

II. MODEL OF THE CAVITY

Although it is desirable to consider realistic
three-dimensional cavities, in view of difficulties
involved in three-dimensional analyses of optical
cavities, we confine ourselves to only one-dimen-
sional problems. We assume that the radiation
field is homogeneous in the x-y plane and is a
function only of the space variable z and of time
t. The optical cavity is composed of a trans-
parent dielectric extending from z =-d to z =0.
One end of the cavity at z =—d is bounded by a per-
fectly conducting medium. The other end of the
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cavity at z =0 is not coated and has finite reflec-
tivity allowing coupling of the fields at both sides
of this boundary. The space outside of the cavity
is assumed to be vacuum everywhere. The left-
hand space z <—d is irrelevant to later calcula-
tions.

We are considering a cavity which is infinitely
large in the x-y plane. This structure is one of
the simplest forms of optical cavities applicable
to solid-state lasers except for the simplification
to one dimension and for the assumption that one
end is uncoated. Another simple form may be an
empty cavity ended by a conducting wall and a
slab of dielectric,® which is applicable to gaseous
lasers. This type of cavity will be considered in
subsequent papers. Symmetric cavities without
conducting walls are likely to yield essentially
the same results as the present model or the
above alternative, except that they provide out-
put coupling at both ends of the cavity.

Turning to our model, the dielectric is assumed
to behave classically* and to have a simple dis-
persion relation w =ck, where the letters have
their usual meanings. Also, the fact that the
velocity of light in any dielectric is smaller than
that in the vacuum is used throughout. We further
assume that the magnetic permeability yu is the
same for the dielectric and for the vacuum. Thus
any portion of the space is characterized by only
one quantity, the dielectric constant € or, alter-
natively, by the velocity of light ¢ in the medium.
As a further simplifying assumption, we assume
that the one-dimensional field is polarized in only
one direction and that the vector potential has
only x components. This assumption is not essen-
tial in our problem, but allows us to treat the
problem with scalar quantities.

III. CLASSICAL DERIVATION OF THE RESONANT
MODES OF THE CAVITY

For later comparison, we derive here the reso-
nant modes of the cavity classically. Also, the
antiresonant modes, as we shall call them, appear
automatically in the calculation. These two classes
of modes are, in a sense, two limiting cases of
more general modes that are introduced in Sec. IV.
The meanings of these modes in quantum-mechan-
ical calculations of the radiation processes around
the cavity are discussed in Secs. V and VI.

In order to clarify the features of the output
coupling with respect to the resonant modes of the
cavity, we discard the usual definition® of the
resonant modes—that they undergo a phase shift
of integral multiples of 27 during a round trip in
the cavity. Instead, we define the resonant mode
as one that has only an outgoing wave in the free

space, i.e., outside of the cavity.®

We now seek these modes in the framework of
the classical electrodynamics. By assumption,
our vector potential is written as

A(z,1)=A(z, D), 1)
where the arrow indicates vector quantities. The
wave equation for the function A(z,?) in continuous
media is

<_3.>2A(z,z)=?12—<§—t—>2A(z,t), @)

9z
1/2

where ¢ = (€u)""2 is the velocity of light in the
medium. Working in the Coulomb gauge, we have

divA(z, t) =0, (3)

which is satisfied automatically by (1). At the
boundaries, the field must obey the following
boundary conditions.” At z =-d, where the dielec-
tric is bounded by the perfect conductor, the tan-
gential component of the electric vector must
vanish. The tangential component of the magnetic
vector should be proportional to the surface cur-
rent J. Normal components are missing by as-
sumption. At the interface of the dielectric and
the vacuum, z =0, the tangential components of
both electric and magnetic vectors must be con-
tinuous. The magnetic vector is (1/u)curlK, which
reduces, in our model, to (1/u)(8A/8z). Thus we
have

(0/0t)A(z,t)=0, atz=-d, (4a)
(0/3t)Al(z,t) = (5/0t)A%(2, ), atz=0, (4b)
(8/02)A(z,t)=(8/02)A%z,t), atz=0, (4c)

(1/u)(e/82)A(z,t) =4,

where the superscripts 1 and O refer to the spatial
regions —d<z <0 and z >0, respectively. In the
following, we adopt the convention that every phys-
ical quantity in the cavity is signified by the super-
script 1 and those outside of the cavity by 0, The
magnetic permeability is dropped from (4c) by
the assumption that u! = u° The last equation (4d)
gives the surface current flowing perpendicular to
the magnetic vector at z=—d once the latter is ob-
tained, and imposes no restriction on the solu-
tions. Thus the problem reduces to solving the
wave equation (2) under the conditions of (4a), (4b),
and (4c).

According to our definition of the resonant modes
of an optical cavity, we try solutions of the form

Az, t)=u(z)e!* +c.c., -d<z<0 (5a)
Az, t)=vet R Lo e 2>0 (5b)

where v is a constant. Equation (2) then yields

at z =-d, (4d)

w

(E%>zu(z)+<——>zu(z)=0, -d<z<0 (6)

cl
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and

B=zw/c% 2z>0. (7
The solution of (6) is of the form

u(z) =aett's ybe~ ' (8)
with

kRt=w/ct. 9)

The boundary conditions (4a), (4b), and (4c) now
yield an eigenvalue problem for the coefficients
a, b, and v. After minor algebra we have the
following determinantal equation giving possible
values of the angular frequency w:

wd et (wd
cos\—7)*i 5 sm<?>=0. (10)

This shows that w is complex, so that we rewrite
it as

w=w 1+iy,, (11)
where w’ and v, are real. Equation (10) then yields
2w'd 2y,d\ _ c'Fc°
cos ( o >exp <-— s ) = T30 (12)
and

sin(2w’d/c') =0. 13)

The light velocity ¢! in the dielectric is smaller
than ¢, the light velocity in vacuum:

ct<co, (14)
Under this condition we get
w, =2k +1)mc'/2d, k=0,1,2,..., (15)
ct %+ ¢t
'}’wk=i7’=i5a—ln<m>, ¥>0. (16)

When substituted into Eqs. (5b), (7), and (11), the
positive value of yw, gives a desired outgoing wave
propagated in the positive z direction:

A°(z,t) =y, expli wi(t - 2/c®) - y(t - 2/c°). 17)
The negative value gives an incoming wave:
A(z,t) =v, expli wi(t +2/c%) + v (t +2/c). (18)

Therefore, an alternative definition of a resonant
mode may be that it should have only incoming
waves outside of the cavity.

The resonant modes derived here have complex
frequencies, so that they have finite bandwidths
determined by y. Accordingly, the propagation
constants k! and k° have imaginary parts, which
give broadenings in k2 space. In other words, these
resonant modes are not stationary modes. These
nonstationary modes are not convenient for quan-
tization. In later sections we shall call the field
components having the frequencies of Eq. (15)

resonant modes.
We define antiresonant modes for later compari-
son. Equation (13) gives the possibility that

2wld/ct=2kn, k=123,..., (19)

which is excluded by the condition (14). This can
be a solution if the inequality (14) is reversed.
Also, these are frequencies of the eigenmodes of
the cavity if the cavity is bounded by a perfectly
conducting medium both at z =—d and at 2 =0. Let
us call the field components having the frequencies
of Eq. (19) antiresonant modes.

IV. HAMILTONIAN FORMULATION OF THE FIELD

An alternative representation of the field suitable
for the field quantization should be based on sta-
tionary modes. For this purpose we set a boundary
of a perfectly conducting wall at a large distance
L in the positive z direction. The optical cavity
is then enclosed in a large one-dimensional cavity
bounded at z =-d and at z =L. In addition to the
boundary conditions (4a), (4b), and (4c), we have
a new boundary condition

(8/0t)A%(z,t)=0, atz=L, (20)

We solve the wave equation (2) under these four
conditions. Try solutions of the form

Al(z,t)=u(z)e!* +c.c., -d<z<0 (21a)
A(z,t)=v(z)e' +c.c., 0<z<L, 21b)
Substitution into (2) yields
d 2
<——> u(z)+ (' Pu(z)=0, (22a)
dz
d 2
(E) v(z)+ (R°)Pv(z) =0, (22b)
with
ki =w/ct = w(e! ’J'i)1/2’ i=1,0, (23)
which have general solutions like
u(z):aleiklz +ble-ik12’ (242)
u(z) =a°e‘ko‘+b°e'ikoz, (24b)

The boundary conditions (4a), (4b), (4c), and (20)
now read

ale-ikld +bleikld =0 (25)
al +b' =a®+b°, (26)
a'k' — bk =a®k° - bOkO, @7)
a%#*°L | pogmi°L _q (28)

Again, we have an eigenvalue problem. The deter-
minant of the coefficients of a', b*, a° and b° must
vanish. Using (23), we obtain for the kth eigen-
mode
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We understand that &' is an abbreviation to &} un-
less explicitly written as k§ , etc. Of course
physical processes cannot depend on L, a quantity
introduced only for mathematical convenience.

L can ie eliminated using (29’) as

w,d
¢ tan—%
c

w, L
+c%tan Cko =0, (29)

or in a more convenient form for later calcula-
tions

tan (k°L) = — (k9/k') tan ('d), 297)

. . Az, t)= &t /R° R'd sink®z + sink! kO,
where k' is an abbreviation of k}, i=1,0. This (z,5) Z.:fk[( /K) cosk!d sink®z +sink'd cosk?s]

equation, giving allowed frequencies in our model,

’
is the key to all the following procedure towards xcos(@t +2,), 0<z<L. (30b7)
quantization. Now the number of independent equa- For complete elimination of L, it must be con-
tions for the above four coefficients reduces to sidered to be infinitely large and the concept of
three, and we can determine the ratios of these density of modes must be introduced, which will
coefficients. Thus we have an explicit expression be discussed in Sec. V.
for the kth eigenfunction A,(z,¢) with a single un- Having determined the eigenmodes of our one-
determined coefficient. The general solution is a dimensional field, we now proceed to calculation
superposition of these eigenfunctions. For exam- of the Hamiltonian H of the field. It is given by
ple, we have L 5

€/ d 1 9 2
H:j —| == A(z,8)) +=—(—A( t)) dz.
1 o _al2\at 2u \ 08z 4
Al(z,t) =kasmk (z +d)cos(w,t +®,), -d<z<0
F (31)
(30a)
Writing
k'coskld ..
0 t)= —————— gink%(z - L t+9
A(z,t) ;fk %0 coskoL S (z )cos (@t +%,), Ty =foco8 (W, L +®,), (32)
0<z<L. (30b d
(308) Et—qk =P, (33)
Here the @, are arbitrary phases and the f, are
real constants giving the amplitudes of the modes. we have
4] €1 2 1 2
H= f {E(Zpksink‘(z +d)> + —2—<Z k'q,cosk'(z +d)> :\dz
-d % HAT
Il e k! cosk'd 21 k' cosk'd 2
=~ 2P Sinko(z — - ROg, =BT & of 5 _
+f0 [ 3 (Zk:pk 7 ooshoL, S (z L)> + 2#(; 9% 70 e os 0L cosk®(z L)> ]dz. (34)

In the Appendix we show that the cross terms for any combination of two different modes vanish identically:

0 1
H;,;= f (‘62— 2p;p;sinki(z +d)sinkj(z +d)+ —ZIIL— 2k} kL q, q, cosk}(z +d)coski(z +d)> dz

-d

. fL<€° B} coskidcosk}d
0

s B0y T einkO( y —
5 2ib; %9 k$cosk] L cosk) L sink(z — L) sinkj(z - L)

ki Rk} coskldcoskld

1 0 5,0
g PRk ROk cosk? L coskI L

2u

Thus H is made up of squared quantities contributed from each eigenmode. Now evaluation of f is straight-
forward. We interchange the sequence of integration and summation, integrate each term separately, and
sum them:

_ el sin2k1d> 1 sin2kld\ €° 2<klcosk1d>2 sin2k°L>
H_Zk { 4 ‘D”<d_ 2kt )" ap (K'q,) <d+ 2! )+Tpk R coskoL) \“ ™ T 20

cosk)(z — L)cosky(z - L)> dz =0, i#]. (35)

1 o Rkl coskld \? Sin2kOL
+4_“ (% qk)2<m> (L+—W—>]. o)
By Eq. (23) we have fourth sine functions. Thus we have
(B /ROR =€ /€% ()Y n=e'af . (37) - { M)a } 2 .
H=7 2|4+ cosmor ) L|[PR+ (@a ] (38)

So that the first and the third sine functions cancel
by virtue of (29’), and so do the second and the This result has the familiar form of the Hamil-
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tonian for a collection of independent harmonic
oscillators except that their equivalents to mass
are dependent on the frequency of oscillation.
These different masses of the oscillators reflect
the structure of the optical cavity and the nature
of the media. They will later exhibit important
consequences on the commutation relations for
the field and on the radiation processes such as
emission, absorption, and propagation of radia-
tion around the cavity, which we will discuss in
Secs. V and VL.

We are now in a position to quantize our one-
dimensional radiation field extending over the
whole space including the optical cavity and the
free space outside of it.

V. QUANTIZATION

At first we normalize the mode functions ap-
pearing in (30) by introducing new variables @,
and P, defined by

coskld \? 12
Qk:{%EI\:d+(-C—g§ﬁ) L}} qy, (39)

1/2
I cosk'd )2
Pk-{ze [a+ (222 Y2 V. (@0)
In terms of these variables, the vector potential
(30) is rewritten as

. 2 1/2
Az, 1) =zk Qk( €'ld + (coskld/c.osk"L)"‘L]>
xXsink!(z +d), -d<z<0, (41a)

9 12
4z, 1) =zn: % ( €'[d + (coskld/cosk°L)?L] )

kl 1
%%sink"(z—L), 0<z<L.
If we formally write (41p)
A(z,t)=_Q,Uy(2), -d<z<L 42)
kR

where explicit expressions for the mode functions
U,(z) are given by (41), U,(z) satisfy the following
normalized orthogonality relation:

L
L (2)U,(2)U,(2)dz =5,,, @3)
which we prove in the Appendix. U,(z) are nor-
malized with the weighting factor €, the dielectric
constant. The presence of these functions is the
basis of the present quantization of our one-di-
mensional radiation field as is discussed in the

Appendix.
Substitution of (39) and (40) into (38) yields
H=3) (P3+wiQd). (44)
13
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Now we quantize the system by imposing the fol-
lowing commutation relations on the variables
Q,’s and P,’s:

[Qi,Qj]=[Pi,Pj]=0, [Qtij]=7:ﬁ6u- (45)
Q, and P, are now operators acting on the kth

mode.
Define annihilation and creation operators as

ay = (21w, 2w, Q, + iP,), (46a)

ay = (21w,) % (w,Q, - iP,), (46b)
which satisfy the commutation relation

la;,a}]=0, 47)

as is easily derived by (45). The inverse relation
to (46) is

Q.= (/2w M2 (a, +a}), (48a)
P, =—i(iw,/2)2(a, - a}). (48b)
Substituting (48) into (44) and using (47), we have
H:Z hw,(afa, +3). (49)
k

But we can subtract the zero-point energy without
violation of the uncertainty,®

H=) hw,ata,=9 Hy. (49")
k 3

The state ¥ of the radiation field obeys the Schro-
dinger equation

., 0
zh—a-—t- ¥ =HY, (50)

The solution is

ﬂz=IkI b =IkI exXp(=iEy ut /W) by, (51)

where ¢, , and E, , are the nth energy eigenstate
and the corresponding eigenvalue of the #th mode.
The general solution is a linear superposition of
the pure states (51). ¢,,, and E, , are given by

Hy, bpn=Epp Opn=1lwy ¢y . (62)

It is easy to show that the annihilation and the
creation operators a, and a} have the following
effects on the energy eigenstates if ¢, , are nor-
malized to unity:

@, D 1n "_'\/z-d)k.n-l, (53a)
4 Prn =Vn+1 Prnty- (53b)
The nonvanishing matrix elements are thus
Gyt = Pron-1@e Pan =V, (54a)
@F v = D@ G = VA1 . (54b)

We next consider the density of modes p(w)dw
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which will become necessary in later calculations.
At first we note that we have no degeneracy in that
two different modes have the same frequency, as

is easily seen by Egs. (23) and (29). We remember

that the angular frequencies of the eigenmodes are

given by Eq. (29). If Aw is the frequency difference

_J

AwL w, L
tan—; {];tanz < ke > +1] tan w"ld
c c c

Provided that
L/co>d/ct, (57)
terms of tan(Awd/c') may be ignored, thus
tan(AwL /c®) =0,
and we have
Aw = (c°/L)m. (58)
Therefore, the inequality (57) is equivalent to
Aw<<cl/d, (67"

That is, we require that Aw is much smaller than

the separation of the resonant modes of the cavity

defined by (15). If L is finite, we may add correc-
tions to (58) in powers of d/L. To the first order

in d/L, we obtain, by repeated use of (29),

cOr coskOL\? d ’
Aw_T{l— (cosk1d> fi\ (58")
Thus we have
p@)=L/c1, L~=, (59a)
L cosk®L\? d -
p(w)= W[l + (m) f}’ L finite. (59D)

We note that the factor before d/L in (58’) and
(59b) is always finite as is easily seen by (29’).
The density of modes (59a) will be used in later
calculations rather than (59b).

Now that we have quantized the field and ob-
tained the density of modes, we prove here a very
useful and important equation concerning the nor-
malization factor in (41).

Since the coefficient of L in this factor is never
zero as is easily verified by (29’), we can ignore
d compared to the term of L if L is large. Thus
the square of the normalization factor, which
appears in various calculations, has the quantity
(cosk®L /cosk!d)?, which can be rewritten as

w, L
+ {tan2< Cko )—tan2<

of two neighboring modes at w,, then

(wk +Aw)L

c%tan 0 +cltan 0. (55)

(w, +Aw)d
ct -

Using (29), (29’), and (55) we have

w,d Awd
ck‘ )]tan S }

w w, L w,d
—tan—A—l—‘Ztan b [l +tan2( £ )]:0.
c c c

(56)

r

cosk"L)2 ~ 2(R12/1(R P + (k)]
(coskld T 1+ {[(RN ) - (RO/(R + ()]} cos2k'd

(60a)

2k 1 kl— RO\" .
=% Eo 1490, . (“W) cos2nk’d,

(60b)

where 8, , is the Kronecker delta. The first equal-
ity is easily verified by (29). To prove the second
is rather tedious but not difficult. We shall only
outline the proof.

Consider an expansion of the form

1/[1 +Bcos(y)=b,+b, cos(y)+b, cos(2y)
+b cos(3y) ++ -,

Multiply both sides by 1 +Bcos(y) and compare
the coefficient of cos(ny). Then we have

b,+3Bb, =1, Bb,+b, +3Bb,=0,

2Bb,+b,4, +3Bb,,, =0, n>1,
Rewrite the last equation as

By = Opay = EB ey — 6D,),
where

0+£==-2/B, 6&=1.

Let 6,, &, and 6,, §, be two alternative solutions
to this. Then we have

- (EL)"(bz - elbl)ez— (&2)"(b2 - szl)el

e 92 - 61

b

If | B| is smaller than unity, |£|>1 and | £,|<1,
say. To obtain a mathematically tractable series,
b, should converge to zero. Thus the coefficient
of & must vanish. This requirement determines
b, when applied to the first two equations for b’s.
Hence all the b, are determined uniquely. Sub-
stitution of B by [(B')? = (R°)?]/[(k*)? + (k°)?] com-
pletes the proof.
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Here we briefly discuss the meanings of the
squared normalization factor (60). The first form
(60a) gives some insight into the nature of the
resonant and antiresonant modes defined in Sec.
III. This factor has maximum values at the fre-
quencies of the resonant modes, whereas minimum
values are at the antiresonant modes. Because
this factor appears in the interaction Hamiltonian
with electrons, it may be said that the resonant
modes are most active when coupled to electrons.
The antiresonant modes are the reverse.® The
second meaning of the factor is revealed in (60b).
For each mode, the vector potential is in fact made
up of an infinite number of terms with phase dif-
ferences equal to that occurring during the time of
a round trip in the cavity and with decaying ampli-
tudes with increasing phase. This is not surpris-
ing, but can be expected by inspection of the wave
nature of the radiation field and the finite size and
the coupling loss of the cavity. For example, if an
atom emits in the cavity and if the coherence length
of the emitted light is larger than the size of the
cavity, reaction of the emitted light onto the atom
occurs many times during the emission process,
which causes the atomic decay time to vary as a
function of the relative separation of the atomic
frequency and cavity resonances, as will be shown
in a future paper.

Before closing this section, a remark should be
in order with regard to the completeness of our
mode functions in (42). Inorder thatwe can include
in our theory an arbitrary function in our one-
dimensional space, —d<z <L, the basis functions
must be complete. Or, equivalently, they must
satisfy the closure relation

2 € (2 ) (2 Wh(2) = f:(Z')Uk(Z’)Uk(Z)P(wk)dwk

R

The proof can be easily obtained using the density
of modes (59a), the expansion (60b), and the de-
finition of the 6 function (68’) in Sec. VI, as well as
the relation (37). The calculation is similar to
that for the commutator for the electric field
carried out in Sec. VI. The exception of 2 =2"=0
is reasonable, since at z =0 the dielectric constant
cannot be specified. Also, the boundary condi-
tions (4b) and (4c) demand that the fields should

be continuous across this boundary, so that a 0
function at z =0 is not permissible.

Thus we are surely including in our discussion
an arbitrary field in the one-dimensional space,
-d<z <L, except for discontinuities of the field at
z =0,

V1. COMMUTATION RELATION FOR THE ELECTRIC
FIELD

Finally, we derive the commutation relation for
the electric fields at two different space-time
points. Since we are interested in the relations
between the fields inside and outside the cavity,
we take one of the space point z, from inside of
the cavity and the other zz from outside. The
corresponding time variables will be written as
t, and tz, respectively. In order to include the
time variables in the commutation relation, we
go to the Heisenberg picture. It can easily be
verified that the nonvanishing matrix elements are
related to those in (54) in the Schridinger picture
as

= - iwpt
Aptt ;n-1,n =% ,n-1,n € k ’ (623)
* —_nXk iWwpt
Ap n+1,n _ak.n+1 g etk ’ (62b)

where the subscript H indicates the operators in
the Heisenberg picture. The commutator for the
annihilation and the creation operators is un-

=0(z'=
(z'-2), changed. Regarding the vector potential (41) as an
—-d<z<L, -d<z'<L, exceptz=2'=0. (61) operator and substituting (48a) and (62), we have
-
9 ) iiw, [ coskOL\21V2 -
Ey(z, t)=—§AH(Z,t)=l; Llf <m) :] sink'(z +d)(a,e” %! — aFel®t), -d<z<0 (63a)

. Aw, [ coskOL\*71Y2 klcoskld . - ;
:lzk: [?f(cmkld)i! B ooshoL Sk (z = L)(@,e™ s —affe’ '), 0<z<L,

(63b)

where we ignored d in the normalizing factors assuming that L is much larger than d. This assumption
is natural since we are interested only in the effects of the cavity on the radiation field and not of the math-

ematical boundary, as stated earlier.

After minor algebra, using Eqgs. (29’), (47), and (63), we get

) nw, [ coskL
[EH(ZAatA);EH(‘E'B’tB)]:ZZZ 1 ; (
2

€L \ coskld

2 kl
) sink!(z 4 +d) (—k—o coskd sink%z ; + sink'd cosk°za> sinw, (tg—t,).

(64)
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We replace the sum by an integration using the density of modes (59a). Also, we use the series expansion
(60b):

o [T_w, 2k1[°° 1 <k1_k°" IJ
[EH(ZA, tA)yEH(zB; ta)]—zlj; 7TC°€1 K0 "z:::o 1+60,n - k1+k°) cos2nk d

kl
x sink!(z 4 +d)<—-—— coskld sink% , + sink'd cosk"za) sinw,(ty —t,)dw,,

(65)

where Eq. (23) should be taken into account, that is, k' =w,/c? (i =1,0). After a rather exhaustive manipu-
lation of the sinusoidal functions and rearrangement of terms, we have

R kO
[Ey(za,ta), Ey(2p, ta)] 7%t ko(kl %9) f £ < m)
XI:smw (zf,’ - —i—_%+%d—+ta—t > sinw <;ﬁ +—ZJ;1—2d + 22? +tg —tA>
. z F4 2nd . z Z,+2d 2nd
- smwk<?§ - C—f + = - tB+tA> + smwk<—c—§ + Ac‘ + = ~tg +tA>] dw, .
(66)
Here we resort to some mathematical tools.®? Evidently,
1 2 32
sinw,(const +tg = £t,)= | ——) ———— sinw,(const +t5 - £,), etc. 67)
w,/ 08t,dt,
Consequently, we are left with integrals of the form
“ sinw, X
1(X)= [ S do,, (68)
1) Wy
which is a step function, an integral of the Dirac & function:
X 1, x>0
ﬁ(t) (1/11) lim coswtdw, I(X)=m 6(t)dt=%rre(X), e(x)= *h . 68")
Ko () -1, x<0
The second derivative of this function is
2N ex) == 6(x) =26'(x) (68")
ax) ¢V =%y - :

Using Eqgs. (67), (68), (68’), (68”), and (23), we finally obtain

uc Ocl & c® - ct\"
(Eq(zasta), Ey(2p, ta)l= ’ﬁ s ;’ (‘ 01 ol
4 z 2nd z Z2,+2d 2nd
X [—5'<?§' - c—f + +lg —tA> +5’<—c—5‘3 + Acl = +tB-tA>
z z 2nd z Z,+2d 2nd
+5'<—E§- - ?14 + sl tg +tA> -0/ (ﬁ + Acl + sl tp +tA>] ’
-d<z,<0, 0<zg. (69)
r
Thus the resultant expression of the commutator of terms. All the terms are in the form of deriva-
for the electric field at (z,,¢,) and that at (zp,tp), tives of Dirac 0 functions, so that they have non-
where 2z, lies inside the one-dimensional cavity zero values only when their arguments are zero.

and z; is outside, consists of an infinite number The physical meanings of these terms are ob-
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vious. For example, the third class of terms in
the infinite sum gives the intensity and the time of
arrival at z ; of the disturbances when a flash of
light is emitted instantaneously at z, at time £,.
The first of these terms (2 =0) is obviously the
directly transmitted disturbance from z, to z g,
and the subsequent terms are those reflected at
the output interface, at z =0, » times, made to
undergo # round trips in the cavity, and then prop-
agated to zz. The coefficients of these terms
correctly give the relative intensities of succes-
sive disturbances, because they are in powers of
the well-known reflectivity for the electric vector?
at the output surface. The minus sign in the co-
efficients is representative of the phase shift at

z =—d. The fourth class of terms corresponds to
those disturbances emitted at z, which at the out-
set started toward the coated end of the cavity,
that is, toward the negative z direction. The first
and the second classes of terms represent the in-
verse situation, where light is emitted at zz and
transmitted to z,, Thus we must discard the sim-
ple light-cone concept applicable in a free space.®
Instead, we are left with infinite number of light
cones fading monotonically with increasing order.
The measurements of the electric fields at two
space-time points belonging to any of these cones
have uncertainties. The degree of the uncertainty
depends on the order of the cone.

It is interesting to rewrite the coefficients in
(69) using the property of the 0 function. The
power index # in (69) is given, for instance, for
the third and the first classes of terms as

c! z z
"=ﬁ(ta"a-75+‘f>’ (702)
ct z z
n:—ﬁ<t8-t,,+?f-—c—f>, (70b)

so that, respectively, for the thirdandfirst classes
of terms

(— iz: : >n =(-1) exp{w[(% —14) - <—i§—%>]} ,

(T1a)
(_ Z‘Z : S)n =(=1) exp{?’[(ts —t,)+ (%—ECAH}’
where

G Rt X
Y=3a "\ o= )

which is exactly the same as that appeared in the
classical resonant modes, (17) and (18). The re-
semblance of the commutator (69) to the classical
waves (17) and (18) is noticeable when (71) is sub-

stituted into it.

In this paper, we have developed a theory of a
one-dimensional optical cavity having output cou-
pling and have shown that the consequences of the
structure of the cavity are mathematically rep-
resented in terms of the normalization factor for
the mode functions. Basic radiation processes in
the one-dimensional space including the cavity
with output coupling will be considered in a future
paper. A laser theory based on the present for-
malism will be published later. The unique fea-
ture of such a theory is that it gives a direct ex-
pression for the field coupled outside the cavity
and that it does not necessarily require the pres-
ence of loss oscillators because the cavity loss is
automatically included in the theory and no diffi-
culty will arise as to conservation of the uncer-
tainty in the radiation field, so long as the laser-
active atoms are treated fully quantum mechan-
ically. Also, various problems concerning spatial
variation of the field, such as mode-locked os-
cillation or build up of the laser oscillation from
arbitrary spatial distribution, can be treated sys-
tematically without any assumption on the spatial
mode.

Although the present discussion is limited to one
dimension, we hope that the present consideration
can be extended to two or three dimensions in the
near future. In this respect, we should like to
point out here that we can prove the orthogonality
of three-dimensional mode functions in a space
including a cavity. Consider a block of dielectric,
which we will regard as an optical cavity, and a
boundary of a perfectly conducting medium at
some distance from the surface of the cavity. The
latter is a mathematical boundary. Assuming the
presence of the solutions to the wave equation for
the vector potential inside the boundary, we de-
compose the field into modes which are labeled
by the frequency of oscillation. Then, it is easy
to show that the volume integral, within the larger
boundary, of the cross terms like €(F)A4, (F) 'K,-(i")
and (l/u)curlx,- @) curlK, (T) vanishes for different
w; and w;. Here K,- (T) is the spatial portion of the
tth-mode function. The proof requires only a few
vector identities and the Green’s theorem as well
as the boundary conditions at the cavity surface
and at the conducting wall. The calculation is
similar to that presented in the Appendix for the
one-dimensional case. Thus we can obtain the
Hamiltonian of the field in the form of that of un-
coupled harmonic oscillators. However, we can-
not in general obtain the equivalents to their mass-
es unless explicit expressions for the mode func-
tions are given, As in the present calculation,
this factor will contain all the consequences of the
structure of the cavity. Therefore, to proceed
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to three dimensions, the first task is to find cor-
rect mode functions for a given model.

APPENDIX

In this appendix, we prove Eqs. (35) and (43) of
the text. Although we can prove them by direct
integrations and repeated use of (29') and (23), we
will give the proof by a more general method which

may be applicable to more complicated models
and be extended to two or three dimensions.

Since the mode functions appearing in (35) are
the same as those in (41) and (42), we may use the
latter in proving Eq. (35). At first, we show that
the electric part of the cross term H; ; vanishes.
Using the property of the mode functions that they
obey equations like (22), we have

L 0 L
f e(z)U,(z)U,(z)dz:f elzf,.(z)u,(z)dz+f €O, (2)U,(2) da
-d

-d

=f061< (k{)2>[< )U(zi'U(z)dz+fLe°< (kf,)z)[( )u(z)]u(z,)dz (A1)

where P, P; is omitted for simplicity. Integrating by parts twice and using Eq. (22) again, we have

J: €(2)U;(2)U;(2)dz = (kl)Z%K U(z))U,(z)] .

-z u)

- a:eoﬁ{K: w@)ue)

{(Zue)ue]
(Ui(z) U’(Z)> -a}
ol

-@e5 ue) (e ). }

*(:i)f IU(Z)U(Z)”’“@’)U €Uy (2)Uj (=) dz. (a2)

The second, fourth, fifth, and seventh terms vanish by the boundary conditions (4a) and (20). The first
and the sixth terms and the third and the eighth terms cancel by boundary conditions (4b) and (4c) by virtue

of (23). Adding the last two terms yields

L 2 AL
/. e(z)tf,(z)uj(z>dz=(—:’—:) [ @, (=),

also by (23). Since we have no degenerate modes,

fL €(2)U;(2)U;(2)dz =0, i#].

-d

(A3)

(A4)

For the magnetic part of the cross term H; ;, we have, omitting @;Q;,

jL 1 8 Ui(2) 5~ U,(z)dz=%[<(@(z)a_i'U’(z)>z=

¢ B0z

- (o ne)

The second and the third terms vanish and the
first and the fourth terms cancel by the boundary
conditions (4a), (4b), (4c), and (20). The last two
terms are rewritten, by (22), as

1 0 L
T @ [ v ()ds +%;(k3)2f0 Ui(2)Uy(2) dz

L
=w? f €(2)U;(2)U,(2)dz,

-d

(A6)

- (U u@) s (woZ @)

fU‘(z)( )U,(z)dz fU z)( )U,(z)dz]

(A5)

which vanishes by (A4). The last expression is
allowed by (23). Thus we have proved Eq. (35).

The orthogonality of U’s in (43) is proved in (A4).
The normality of U’s is easily seen by substituting
(41) into (31) and following the procedure to obtain
(38). Thus (43) can be considered to be proved.
The above calculation shows that the vanishing of
the cross term (35) is the consequence of the or-
thogonality of U’s, the normalized mode functions.
Thus the orthonormality relation (43) is a basic
equation in our formulation,
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