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The Fresnel reflectivity and transmissivity coefficients for a semi-infinite medium are derived for
normal and oblique incidence using a particle approach and a probabilistic condition at the boundary.
The method depends in part on the behavior of the momentum of light in ordinary refractive media,
and this subject is discussed. The method clarifies why the Schrodinger equation for the comparable
problem (potential-step) and Maxwell’s equations yield the same coefficients for normal incidence. The
use of the phase velocity rather than the group velocity in formulating the probabilistic condition is
interpreted from a quantum viewpoint, although the absence of Planck’s constant in the analysis
suggests one is dealing with a kind of nonclassical but prequantal indeterminacy. An analysis and
review of the momentum, inertia, and energy-momentum tensor of )ight in ordinary refractive media

is also given.

I. INTRODUCTION

In a reexamination of the particle approach to
refraction, it was remarked that we need the wave
theory to obtain the probability of transmission of
light into a medium.! Now while this is certainly
true in general, there are special cases when a
particle picture suffices. Thus, the main purpose
of this work is to derive the Fresnel reflectivity
and transmissivity coefficients at a plane bound-
ary for normal and oblique incidence using the
particle picture.

The treatment will be restricted to a homogen-
eous, isotropic, semi-infinite medium, since the
interference effects that would arise from the
other face of the medium obviously vanish in this
idealized situation. Even with the above restric-
tions, one of the assumptions we have made is
most curious: It involves the introduction at the
boundary of a probabilistic condition on the motion
at the boundary which is to be contrasted with the
“classical” utilization of a limiting condition to
provide a deterministic description. The relation
to quantum mechanics is discussed.

In Sec. II the momentum of light in an ordinary
refractive medium will be reviewed, since this
is needed for the formulation of the condition which
utilizes the phase velocity rather than the group
velocity. The detailed formulation of the condition
is given in Sec. III. Effects due to polarization will
be taken up in Sec. IV, where oblique incidence is
considered. In Sec. V a further analysis of the
probabilistic condition is given. In Sec. VI some
further remarks are made about the momentum of
light in refractive media and its bearing on the
derivation of the Fresnel coefficients. Also the
quantum significance of the use of the phase velo-
city in formulating the probabilistic condition is
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discussed. In an appendix, arguments are given in
favor of the Newton-Minkowski momentum rather
than the Abraham momentum.

II. PHOTON MOMENTUM IN AN ORDINARY REFRACTIVE

MEDIUM, AND THE MOMENTUM RULE

We suppose that light is normally incident on a
plane, semi-infinite, homogeneous, isotropic,
nonabsorbing medium. (An entirely similar prob-
lem in quantum mechanics is the case of a par-
ticle incident on an attractive, semi-infinite po-
tential well.) I the photon is transmitted, the
magnitude of its momentum p’ in the medium is
related to the magnitude of its momentum p in
free space by the equation

p'=np, )

where 7 is the index of refraction. This equation
is readily derived from the Cartesian-Newtonian
assumption of a normally directed, short-ranged,
attractive force between the medium and the par-
ticle, conservation of momentum in the trans-
verse direction, and the definition of # through the
law of refraction.! In this model, the relation
holds, independent of the angle of incidence, and
hence it holds for normal incidence as a special
case. For simplicity, we consider the case of a
boundary between free space and the medium, but
more generally the argument below holds if # is
only the relative index. There is no restriction
that the medium be nondispersive; however,
double refraction is excluded.

Although the momentum increase predicted by
Eq. (1) is a basic consequence of the attractive
force in the classical corpuscular theory of re-
fraction, theresultis implicit inthe writings of J.J.
Thomson? on the wave theory of light, and it was
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also discussed in the electromagnetic theory of
light by Goldhammer.® In his classic 1905 paper,
Poynting? gave a more general argument based on
the momentum of light in a wave train as discussed
by Larmor, and he showed that Eq. (1) follows
“without any further appeal to the theory of wave
motion.” In this remarkable paper, Poynting de-
scribes a mechanical-optical experiment he per-
formed with Barlow on unpolarized light in which
they verified the momentum increase predicted by
Eq. (1) to about 15% accuracy. More explicitly,
they verified that there is an attractive force be-
tween the light and the medium (glass prisms) as
demanded by the Newtonian model. After an ex-
traordinary gap of nearly half a century, one finds
more recent and more accurate experiments under
different conditions by Jones,® and with greater ac-
curacy by Jones and Richards,® who verified the
increase in pressure on a vane immersed in a flu-
id medium of index n. Quite recently, this attrac-
tive force predicted by Newton was verified in a
rather dramatic way with the aid of a laser beam
incident on the surface of a liquid by Ashkin and
Dziedzic.” The paper of Jones and Richards con-
tains a useful bibliography of the earlier classical
experimental and theoretical work on the pressure
of light. Some later references are to be found in
the paper of Ashkin and Dziedzic. Theoretical sup-
port for an increase in momentum of a light beam
in an optically denser medium is to be found ina
footnote in Whittaker® which seems to be making
an oblique reference to Jones’ preliminary re-
sults.®

The momentum relation also follows from Min-
kowski’s energy-momentum tensor in electro-
magnetic media,® but it disagrees with the straight-
forward predictions using Abraham’s tensor,° or
that of similar theories.!* A useful, recent review
up to 1970 is to be found in a work by Brevick.'?
Additional discussion in the relativistic literature
is to be found in works by Mgller,*® von Laue,*
and Pauli.!®

Equation (1) also underlies the quantum theory
of the Cerenkov effect as developed by Ginzburg.'®
A useful bibliography is given by Jelley.!” In an
earlier analysis of the momentum question from
the standpoint of quantum theory and special
relativity, it was pointed out by March'® and later
by Jordan,!® that Eq. (1) follows directly from the
de Broglie relation and the reduction of wave-
length in a refractive medium,

A=x/n. (2)

A cautious recognition that Eq. (1) follows from
quantum theory is in Jones and Richards. Re-
cently, an alternate interpretation of the Jones
experiment has been given by Burt and Peierls.?°

Their analysis is based on the Abraham viewpoint
and that expressed in Landau.?® Similar view-
points are to be found in the works of Schockley,??
Penfield and Haus,?® Costa de Beauregard,?* Gor-
don,?® Skobel’tsyn,?® Ginzburg,?” and Arnaud.?® A
systematic criticism of the Abraham viewpoint is
given in the Appendix.

In support of the Newton-Minkowski momentum,
we emphasize (as in previous work?!), that the de
Broglie relation for light follows directly from
Egs. (1) and (2), since one has p’A’= pX =constant,
under refraction, although additional arguments
are needed to establish the universality of the con-
stant. This will be taken up elsewhere since the
de Broglie relation does not actually enter the
derivation. But we believe it desirable to empha-
size the internal consistency of our approach with
the de Broglie relation and with complementarity.

III. FURTHER ASSUMPTIONS; THE STATISTICAL
CONDITION

Since we have assumed a sharp boundary, the
force on the photon at the boundary becomes
singular because of the abrupt change in the index
of refraction. Now it is possible to give a defini-
tion of the force with the aid of a smoothly vary-
ing index which yields a unique, finite impulse
upon the passage to the limit of a sharp boundary.
A typical technique would be to introduce a 6-func-
tion attractive force at the boundary. However,
such an approach is deterministic: Every particle
incident on the medium would be transmitted. On
the other hand, we know from experience that one
does not have a unique result: Some of the par-
ticles will be found in a transmitted mode and the
other particles will be found in a reflected mode.
In macroscopic language, there is a reflected and
a transmitted beam. To handle this peculiar sit-
uation, we shall therefore introduce a statistical
method. We shall assume that the probability for
a photon to be found in a reflected or a transmitted
mode can be calculated from an ensemble average.
The ensemble consists of a large number of plane,
semi-infinite media of index #. There is one en-
semble representative for each incident photon.
The probability of reflection will be the fraction
of the total number of particles that are observed
to have been reflected, and likewise for the pro-
bability of transmission. Provided the system is
linear, which we shall verify, this is a legitimate
way to define the coefficients, although in prac-
tice one works with a large number of photons in-
cident on one medium and compares intensities in
the respective modes. We shall undertake to re-
examine the linearity in Sec. VI, where it will be
shown that as a result of a remarkable cancella-
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tion, which we might call the independence of col-
lisions, the coefficients are the same for one
photon as for N photons. Well-known nonlinear
behavior is outside the scope of this work, which
has the more modest goal of deducing the standard
coefficients.

Let I denote the incident particle flux, let Iy be
the flux of reflected particles, and let I, be the
flux of transmitted particles. Under the assump-
tion that the recoil energy transmitted to the me-
dia is negligibly small, the energy of each photon
E, will be conserved independently of whether it
is reflected or transmitted. Hence from total
energy conservation we have

IzE, +I;E,=IE,. 3)

As is well known, the energy conservation law
expressed by this equation can also be deduced in
electromagnetic theory (Poynting’s theorem).
However, Eq. (3) is more general than electro-
magnetic theory and also it contains more infor-
mation. Indeed, since E, is a common factor,
we can deduce from it the conservation of photon
flux,

Ig+Ip=1. (4)

An entirely similar equation also follows from
quantum mechanics and the surface integral of
the conserved probability current. However, as
is well known, an equation such as Eq. (4) does
not hold in general for light because of emission
and absorption phenomena. Ordinary refraction
is a remarkable special case for which the above
equation holds. Thus, as is well known, the prob-
lem of light normally incident on a plane, refrac-
tive medium has features entirely similar to that
of a nonrelativistic particle incident on a potential
well in quantum mechanics as expressed in Eqs.
(1) and (4). Nevertheless, as we shall see below,
the quantum of action is not involved in the deriva-
tion of the Fresnel coefficients.

In accordance with standard notation, we now
introduce the ratios R=1Iy/I and T=1I,/I, which
are taken to define the probabilities of reflection
and transmission, respectively. These probabili-
ties satisfy the so-called conservation of proba-
bility condition

R+T=1, (5)

Since Eq. (5) (or its equivalent) is fundamental
to any derivation, the problem becomes one of
finding another condition on R and 7. The follow-
ing considerations are necessary to the formula-
tion of this condition.

From the conservation of over-all momentum
and Eq. (1), the momentum transferred to an
ensemble member if the photon is transmitted is

APp=-@m-1)p, (6)

and the corresponding kinetic energy taken up by
the ensemble member is

ETz(n_l)zpz/ZM, (7)

where M is the mass of the ensemble member. If
E, is the energy of the incident photon, it is as-
sumed that E; < E,. This is to ensure that the
recoil of the medium does not significantly alter
the frequency of the photon, a condition which is
certainly fulfilled in ordinary refraction. Thus,
higher-order corrections to Eq. (7) are neglected.
Similarly, if the photon is reflected, the momen-
tum transferred is AP,=-2p, and the kinetic
energy taken up by the ensemble member is

Ep=2p*/M. 8)

The rate at which energy is transmitted to the
ensemble media for these two modes will be as-
sumed to be proportional to the phrase velocity of
classical Hamiltonian mechanics. We introduce
the phase velocity Uy in the reflected mode,

Up=E,/p, (9)

and likewise for the phase velocity in the trans-
mitted mode we have

Up=E,/np . (10)

We write for the average rate of energy delivered
to the ensemble member in the reflected mode,
the quantity

RULE,, (11)

and for the average rate of energy delivered in
the transmitted mode, the quantity

TUE;. (12)

Now in the limit of infinite mass of the refracting
medium, both E, and E, vanish, and hence it is
trivially true that

RURE,=TUzE,. (13)

Let us suppose, however, that this relation also
holds for M merely very large, so that we have
from Egs. (7), (8), and (10),

E 2p® ,_E, (n-1)%2
juh i SNy Ll QA ALY <
Rp i Tnp o, . (14)

This equation yields the following additional rela-
tion on the intensities

4n

Tz(n—l)z

R. (15)
This result, in conjunction with the conservation
of probability condition [ Eq. (5)], yields the stand-
ard Fresnel coefficients for normal incidence:
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-1y 4n

R_(n+1)2’ Tl

(16)

It is a consequence of the above derivation that
the Fresnel coefficients hold independently of
whether the incident particle is relativistic or
nonrelativistic. Also, because of the isotropic
assumption, they are independent of polarization.
Hence, the Fresnel coefficients are of the same
form whether one derives them from Maxwell’s
equations or from Schrodinger’s equation; a re-
sult which is not immediately evident from the
equations themselves. A further discussion of the
statistical condition is given in Secs. V and VI.

IV. OBLIQUE INCIDENCE

The Fresnel coefficients for oblique incidence
can be derived in a manner similar to that in which
we derived them for normal incidence, although
the effects of polarization of light requires addi-
tional assumptions. We denote the angle of inci-
dence by 6 and the angle of refraction by 6’. For
the component of momentum transferred to the
medium in the normal direction we have

AP =—(p'cosb’ - p cosh), amn

when the photon is transmitted. When the photon
is reflected we have

APp=2pcosf. (18)

For the phase velocity of the reflected beam in
the direction normal to the surface, we have

UR=E7/1> cosf. (19)

Likewise, the phase velocity of the transmitted
beam in the direction of the normal is

Up=E,/p'cosb’ . (20)

Therefore, upon generalizing the equations for
normal incidence, for the component polarized
perpendicular to the plane of incidence, we have

R, +T,=1, (21)
and also

Ey (@pcostP ., _Ey
*p cosb 2M Lp’cosd’

X(p’cos@' — p cosH)?

2M (22)

After some simplification, and the use of the New-
tonian mechanical form of the Snell-Descartes law
(transverse-momentum conservation condition)

p’sinb’ = p sinb, (23)

we find

T, sin26sin28’

R, sin?(6-6") ° (24)

Hence, upon substitution in Eq. (21), we obtain
the standard Fresnel coefficients for 7, and R,:
_sin®(6 - 6')
* sin?(6 +6) °

_sin26sin26’
L7 sin?(6 +6) ’

(25)

In order to obtain the transmission and reflection
coefficients for the radiation polarized parallel to
the plane of incidence, we use an equation entirely
analogous to Eq. (22), but in which the polarization
vectors €, &’ have been introduced to describe the
polarization of the reflected and transmitted beams,
respectively. We write the following generaliza-
tion of Eq. (22), which allows for both perpendi-
cular and parallel polarization:

E, (2pcosbyf E, (p’cosf’—pcoshy
pcos8 2M " p’cosé’ 2M
x (& &')2. (26)

For the case that & and &’ are both perpendicular
to the plane of incidence, the factor (& +8&’) is unity
and Eq. (26) reduces to Eq. (22). However, for
the case of the polarization vector parallel to the
plane of incidence, one finds

(&8 =cos?(6+6"). 27)

This extra factor yields zero reflection at the
Brewster angle. More generally, one has from
Eq. (26),

R, sin®(6 -6’
7]: B sin2(9 sinZZ)' cos*(9 +67), (28)

which in conjunction with the conservation of prob-
ability condition yields the standard Fresnel co-
efficients for the parallel component,

B sin26 sin26’
1~ sin%(8 +6')cos?(6 — 6°)’

R =cot?(6 +6’)tan?(6 — 6').

(29)

It should be pointed out that one can treat the
comparable case of light emerging from a semi-
infinite medium into free space by the above me-
thods. For simplicity, let us consider the radia-
tion to be polarized perpendicular to the plane of
incidence so that Eq. (22) is the appropriate one.
As one approaches the critical angle, the angle of
refraction 6’ tends to 7/2, and hence cos6’ —~0;
consequently the denominator in Eq. (22) vanishes.
However, one can multiply both sides of the equa-
tion by p’cos6’ and then pass to the limit. One
finds 7, =0, which agrees with the limit obtained
from the Fresnel relations and experience.

Just as in the wave treatment of metallic reflec-
tion and evanescent states, so too in the method
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developed here, one can formally extend the index
of refraction into the complex plane and likewise
the momentum rule. On the other hand, the ex-
periments of Poynting, Jones, and Ashkin verified
the momentum rule only for real » with »>1, and it
would of course be mathematically and physically
desirable to have a mechanical verification for
cases with n complex (e.g., a plasma) with the
real part of n<1.

V. INDEPENDENCE OF COLLISIONS

It will be observed that it is basic to the above
ensemble approach that the collisions of the par-
ticles with the physical medium may be treated
as independent. However, it is not clear why the
form of the energy transferred to the physical
medium should be the same for one particle as
for a “rain” of particles. Indeed, on the basis of
the above derivation, it might at first appear that
the Fresnel coefficients would hold only for very
low intensities, in conflict with experience. Ac-
tually, we have found that due to the structure of
the coefficients themselves a very remarkable
simplification takes place which justifies the in-
dependent collision result.

The total momentum AP transferred to the me-
dium for N photons normally incident on the phy-
sical medium is

AP =[R2p - T(n -1)p]N, (30)
where the direction of the incident beam has been

taken to be positive. Hence the energy transferred
to the physical medium of mass M is given by

AP® [R2p - T(n-1)p]
2M 2M

2
NZ, (31)

Upon introducing the Fresnel values for R and 7,
we can obtain

2 2
ﬂ:zi.RNz_ (32)

Since RN is the number of reflected photons, the
energy transferred per reflected photon is
(2p%/M)N and has the same form as our treatment
based on individual collisions, except for a multi-
plicative factor N associated with the number of
photons. One can also reduce Eq. (31) to an ex-
pression which involves the transmissivity. One
finds

AP? (n -1y pz

- x 2
2M  n 2M TN, (33)

where TN/n is proportional to the phase velocity

flux of the transmitted photons and N(n — 1)*2%/2M
represents the energy transferred to the medium
by the transmitted photons and has the same form

as for the individual photon case enhanced by the
factor N. Upon equating Egs. (32) and (33), we
obtain the equivalent of Eq. (16), which confirms
the consistency of the method based on individual
collisions. An interesting relation between 7 and
R results if instead of using the Fresnel values
we require that Eq. (31) reduce to Eq. (32). Upon
solving for T we obtain

2

Tzn-—l

RY/2(RY/2 4 1), (34)

Similarly, if we require Eq. (31) to reduce to Eq.
(33), we obtain

1
T1/2<T1/2—W§>. (35)

From Eqgs. (34) and (35) the Fresnel values of R
and T can be deduced. It is rather curious to see
appear in Eqs. (34) and (35) the square roots of
probability, that is, the terms R'/2 and T'/2. It
is therefore conceivable that a deeper study of
the independence of collisions assumption may
help to clarify the probability amplitude concept
in quantum mechanics. Another use for Eqs. (34)
and (35) would be to see how well they hold in the
case of nonideal boundary conditions.

n-1

R=

VI. CONCLUDING REMARKS

Let us first consider the bearing that the deriva-
tion of the Fresnel coefficients has on the momen-
tum rule. It will be noted that we would still ob-
tain the same coefficients for normal incidence if
in the probabilistic energy transfer equation we
assumed that the momentum of light had diminished
in the optically denser medium, instead of increas-
ing, since the right-hand side of Eq. (14) is inva-
riant under n—1/n. However, this would lead to
an inconsistency with the standard identification
of the phase velocity with the wave velocity and
the fact that the latter is known to diminish in the
optically denser medium by the Huygens’ construc-
tion. For oblique incidence, the derivation of the
coefficients uses the conservation of transverse
momentum and this obviously requires p’/p=n.
Further discussion is given in the Appendix.

Perhaps even more fundamental in our deriva-
tion of the Fresnel coefficients is the utilization
of the phase velocity rather than the particle velo-
city. This is somewhat surprising from a purely
classical particle viewpoint even if one allows a
probabilistic condition instead of a deterministic
one at the boundary. Nevertheless, as we have
seen in Sec. V, the equation follows from the form
of the Fresnel coefficients and the equation ex-
pressing the independence of the collisions. A pos-
sible explanation (suggested by quantum mechan-
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ics) is that the energy transfer equation is not as-
sociated with a physical flow of energy but a sta-
tistical flow associated with each particle. In-
deed, in the determination of R and T we have
imagined an arrangement in which individual pho-
tons could be incident on widely separated samples
at random intervals of time. As a consequence,
one cannot regard the equation as describing a
true physical current of particles. Rather, it is
appropriate to interpret the equation as a proba-
bilistic statement about the interaction of each
individual photon (or quantum) with the medium.
Also by introducing this condition which does not
involve Planck’s constant, we have introduced a
kind of prequantum indeterminacy that leaves the
motion of individual particles undetermined. It
should be emphasized that the condition can of
course be deduced from Schrddinger’s equation and
Maxwell’s equation to within multiplicative factors
such as M1, the reciprocal of the mass of the
medium, which vanishes in the case of a semi-
infinite medium. The method has the advantage
over strictly classical treatments of scattering in
that it gives a reflected beam as well as a trans-
mitted one. The approach should be of value in
further clarifying questions about the foundations
of quantum mechanics as well as fundamental ques-
tions about the interaction of light and matter.
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APPENDIX

Several additional arguments in favor of the
Minkowski momentum are presented here. The
Abraham momentum emerges as a kind of “total
momentum” for light plus medium, but not for
light itself.

1. Dynamics of internal reflection

Consider oblique incidence with the radiation
incident on the boundary at angles greater than the
critical angle. This case is not considered, for
example, by Burt and Peierls or by Gordon. How
can the total internal reflection that results be

understood unless the momentum of light is great-
er in the medium with the greater index? From
the standpoint of the classical Newtonian picture,
the behavior of the momentum at the boundary can
be obtained from the consideration of a block slid-
ing up a finite inclined plane or step at an angle.

If the initial angle of incidence is too large, the
component of momentum up the plane will not be
sufficient to take the block over the top or out of
the potential well and one has a turning point. In
this familiar elementary analogy, the block ex-
periences no transverse change in its momentum
but an attractive impulse down the plane, which is
consistent with the behavior of the Minkowski mo-
mentum.

From a dynamical standpoint, the treatment of
the photon may be based in the ray approximation
on the following Hamiltonian, for negligible dis-
persion:

H= s 0303 +p), (A1)
where we have set n=n(z) for a medium oriented
so that the boundary is in the x-y plane. The ad-
vantage of working in the region of total internal
reflection is that (neglecting wave-mechanical pe-
netration) the problem can be treated classically,
the Fresnel coefficients are T=0, R=1, and one
can legitimately work with z(z) slowly varying and
then pass to the limit of a step function. However,
one is led to a totally absurd result if in place of
(A1), one attempts to relate the photon’s Hamil-
tonian to the Abraham momentum, since 8H/8p=v,
and for the Abraham energy-momentum relation
one would have v >c even with negligible disper-
sion, which is of course in conflict with experi-
ence. Hence the Minkowski momentum is the
“canonical momentum.” It is therefore the mo-
mentum to be used in quantizing the radiation field
in a background refractive medium.?’

2. Photon inertia in a medium

An argument that is used in favor of the Abraham
momentum is based on the recoil of the medium
and the requirement that the center of mass of a
free system at rest must not move. The idea for
the case of a nonrefractive medium originates with
Einstein, but it has been applied to this problem by
Costa de Beauregard® and Burt and Peierls,? al-
though Skobel’tsyn?® mentions earlier Russian work
along these lines. For simplicity, we consider a
nondispersive medium. If m is the mass of the
photon emitted by the substance imbedded in the
refractive material, L is the length through
which the photon travels between emission and re-
absorption, T is the travel time which equals
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L/(c/n), and M is the mass of the medium, one
finds with 7 <M for the recoil momentum p, of
the photon

=m(L/T)=m(c/n). (A2)

Both groups of authors assume without discussion
that in the medium, m (photon)=hv/c?, in accor-
dance with special relativity, and of course the
Abraham momentum follows. However, hv/c?is
not the correct expression for the mass of a pho-
ton in an ordinary refractive medium. As we dis-
cussed in great detail elsewhere,! and, as may be
readily inferred from the above Hamiltonian (Al),
the correct expression for the mass of a photon
in an ordinary, nondispersive medium of index »n
is

m =n*hv/c?. (A3)

Despite its appearance, (A3) does not represent
any violation of special relativity or the principle
of equivalence. For although the bound photon has
greater inertia and would weigh more than in vacu-
um, the medium would weigh less, and since both
photon and medium are bound together, the total
weight and hence inertia is unchanged and is given
by hv/c?®. We have given an application of (A3) to
the derivation of the Schwarzschild line element in
a novel way.! For historical completeness, we note
that Preston?® seems to have been the first to hint
at a variable mass for the corpuscle in the older
Newtonian theory as a solution to the disagree-
ment with the Foucault experiment. This disagree-
ment of course does not effect our approach based
on using the Newtonian momentum, since in the
text we worked with the phase velocity E/p’ and,
of course, the phase velocity in Newtonian theory
diminishes in the optically denser medium in the
same way that the wave velocity does. Subsequent
work after Preston (whose footnote seems to have
been ignored) was carried out by March,!® using
special relativistic considerations. Later in the
present form (A3), the result seems to have been
first explicitly obtained by Michels and Patter-
son,* albeit by unsatisfactory arguments which
were afterwards improved,** and which appeared
about the same time as our own independent work,
which was stimulated by the problem of Huygens’
principle in general relativity,®? and the Hamil-
tonian method for treating rays in radio propaga-
tion in the ionosphere.®®

For completeness, we note that in the case of an
ordinary dispersive medium, one obtains the mass
from p=mv, and dE=vdp; or from

1 dp?

" 3 aE (a4)

and hence with the above Hamiltonian, but with

n =n(E) we have

En dlnn
(1 dInE (45)
The fact that the Fresnel coefficients do not con-
tain the derivative of », which also shows up in
the group velocity is an indication that the Fres-
nel coefficients depend only on the phase velocity.

3. Symmetry of energy-momentum tensor

The third question that must be dealt with is the
fact that the Minkowski energy-momentum tensor
T%" is not symmetric in contrast with the Abraham
tensor T4”. If we choose a frame at rest in the
medium, both tensors agree as to energy density,
energy flux, momentum flux or stress, but dis-
agree with respect to momentum density. We have
for a nonmagnetic medium with € =%, p =1,

G, =ExH/c=(1/)8,
Gy=DxB/c=r?ExH/c=n/c*)§

(A6)

and of course the lack of symmetry is that cG,
#8/c, whereas cG, =8 /c, where S is the Poynting
vector, or T'°#T% . However, we regard this
departure from symmetry as needed to ensure
conservation of energy when the matter tensor of
the medium K*"”is taken into account. Since pro-
ponents of the Abraham tensor agree that the Min-
kowski momentum is needed to explain the various
experiments, such as the Jones experiment, they
propose (cf. Gordon) to write

P,=P,+P,, (A7)

where P, is the Abraham momentum and this is
supposed to be the momentum of the photon. To
it they add Py, the momentum of the medium
which is in the same direction. However, since
T4" is symmetric, and since the total energy-mo-
mentum tensor must be symmetric, the energy
tensor of the medium K*” would have to be sym-
metric. But since in this picture one needs a
momentum density (#? - 1)ExH/c, the correspon-
ding energy flux that would have to be carried by
the medium would be

K% &8, =2 - 1)cExH. (A8)

However in the case of negligible frequency shift,
this is not possible because the energy flux is
measurable and given by the Poynting vector. In
the limit of an infinitely massive medium, there
is no energy transferred to the medium, and more
generally we can always choose M so that T% is
much smaller than the value in (A8). The vanish-
ing of T® for an analogous case* has been pointed
out by Balazs.%® The problem was later discussed
by Haus.’® Thus, one must abandon (A7). On the



146 FRANK R. TANGHERLINI 12

other hand, if GM is the momentum density of the
light, and T%” is the energy-momentum tensor
one can now postulate that the matter tensor for
the medium also has an asymmetric part due to
the interaction with the electromagnetic field
K'%= Gpeg=— (0% = 1)ExH/c,
. ed (A9)
KO‘ =$§med =0 .
One can then combine the two asymmetric tensors
to form the symmetric tensor

THY = THY LK1V (A10)

with 707+ KI#1 =0, where 7t*"! means asymmetric
part. In this view the medium carries momentum
in a direction opposite to which the photon is tra-
velling. Furthermore, one should regard this
momentum as having been generated during the
boundary interaction. So one has in the present
case

P,=P,-|Pg|. (A11)

Although the change between (A7) and (Al1) is very
slight mathematically, it provides a simple way
to understand the experimental results which
demonstrate an attractive force between the light
and the boundary of the medium.

For the case of a dielectric-magnetic medium
€ =1 =1, we point out that the Minkowski momen-
tum density satisfies G, = el/zul/ZW/c, where W is
the energy density as one would expect from the de
Broglie relation and from the wave equation dis-

persion relation w?=c%k2/eu. Nevertheless for
the case € =u, there is a suppression of the re-
flected wave, as discussed in Sommerfeld®* and
Balazs,® which might seem to disagree with our
Eq. (14). However, we have found that we can
obtain the correct expression for the coefficients
while retaining the Minkowski momentum under
the assumption that the momentum transferred to
the medium as used in Eq. (6) becomes

AP =—(e'/2u1/%p —pp); (A12)

this would imply a momentum enhancement of the
photon by the magnetic interaction with the elec-
trons at the boundary prior to the interaction with
the lattice. A similar assumption is needed for
the momentum transfer used for reflection. Thus
in Egs. (8) and (9) one must also setp —up. The
over-all mathematical effect in Eq. (14) is the
same as if we had set p—p, p’—~(€/2/u'/?)p, but
the physical effects are different. In the latter
case, one would have a “mixed theory,” in which
the effective momentum density would be G=D
xH/c, but this is far from settled and we definitely
need the Minkowski momentum to maintain the
Snell-Descartes law, Eq. (23).

We note some very recent work dealing with the
Fresnel coefficients and the “suppression of re-
flection” by Agudin and Platzeck® from the com-
plementary wave approach. We also call attention
to other references®®~** that have bearing on the
momentum rule.
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