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Recently developed analytic methods, which reduce the Glauber amplitude for charged-particle-neutral-atom
collisions to a one-dimensional integral representation involving modified Lommel functions, are used to
evaluate the cross sections for the direct excitation of 3'D and 4 'D states of helium by electron impact with
incident energies from 40 to 1000 eV. It is shown that the Glauber amplitudes can be written in terms of
three generating functions: One of these has already been derived by Thomas and Chan; the detailed reduction
of the other two is given in this paper. Comparison is made with the Born, Ochkur, and Woollings-McDowell
approximations. The polarization fraction of the 6678-A helium line emitted in e~ + He collisions is also
calculated in the Glauber approximation. The agreement between theory and experiment is less than satis-

factory in the entire energy region.

I. INTRODUCTION

Recently, collisional excitation of the n!D levels
of helium has attracted considerable experimental
interest since the subsequent radiation lines fall
in the visible region of the spectrum and allow to-
tal-cross-section measurements. In the last de-
cade, such electron-impact measurements have
been made by several groups! ™ with results which
are inconsistant both qualitatively and quantitative-
ly. For example, the results from Ref. 1 are larg-
er than those from Refs. 2 and 3 by ~30-50% in the
common energy range of measurements. More-
over, the energy dependences of the experimental
cross sections do not agree among themselves.

On the theoretical side, calculations have been
performed with the Born approximation,®’ ¢ the
Ochkur approximation,” and the Woollings-Mc-
Dowell approximation.? But all these calculations
give results which are in fairly large discrepancy
with experimental values in the entire energy range
(40-1000 eV). For example, the total cross sec-
tion predicted from the Born approximation is
smaller than data of Refs. 2 and 3 by ~55% for 3D
excitation and by ~26% for 4'D excitation even at
1000 eV. The situation is surprising since the
Born approximation and the related approximations
are expected to be valid in the high-energy region
(incident energies =200 eV).

In this paper, we report results obtained from
the Glauber approximation (GA),® which has re-
cently been applied with partial success to elastic
and inelastic scattering of electrons by atomic hy-
drogen'®~!% and helium'®~* (the GA is reliable in
predicting the magnitude but is incapable of finding
the relative phase for the e -He 1S-nP excitation
amplitude in the intermediate- and high-energy
ranges). Furthermore, the present study is in-
teresting in itself since it provides a nontrivial

example in which the troublesome (q) function
can and should be removed even for q+0 (inelastic
collision).

We have organized this paper as follows: In
Sec. II, we derive the Glauber scattering ampli-
tudes in terms of three generating functions. One
of these is given by Thomas and Chan'"; the de-
tailed derivation of the other two is deferred to an
appendix. In Sec. III we derive the expression for
the polarization fraction of the 6678-A helium line
in the Glauber approximation; in Sec. IV, we pre-
sent and discuss the results of numerical calcula-
tions of the expressions obtained in Secs. II and
II1.

II. EXCITATION CROSS SECTIONS

The Glauber scattering amplitudes F{%,,  15(q)
describing the excitation of the He from the ground
state \I’lls(;l’ Fz) to the final state ¥, 1D(;1, fz) by an
incident charged particle Z ;e with velocity v; is
given by

F o) - [ w20 ETsF, B
X W, 15(F1, Tp)et & B a2b dr av, , (1)
where
L(b;T,,T,) =1~ (Ib=5,| /B "(|B - §,| /b
(2)
and
n=-Z;/v; (in a.u.).

In Egs. (1) and (2), b, S,, and S, are the respective
projections of the position vectors of the incident
particle and the bound electrons (FI and Fz) onto
the plane perpendicular to the direction of the
Glauber path integration. The superscript (£) rep-
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resents the q-dependent coordinate system C*#(¢), ¥, 15(F, ) = (1.6966/7)(e 241714 0.799¢ 2-61r1)
\_thse z .axis lies along ¢ andlls perpt(egr)xdlculaf to ><(e“"‘"2+0,799e‘2-6172) . (3)
q, in which the Glauber amplitudes F;1p ;15(q,my)
are readily computable. The approximate ground- For the n'D state of He, we adopt Heisenberg’s
state wave function chosen (in a.u.) is the one de- choice,? i.e., we consider the screening of the inner
scribed by Byron and Joachain,?° on the outer electron as “complete” so we have
J
> > 1 -> > - >
Yy 1p(ry, Ty) :\/,_5 [¢ls(2 | T )Pgq(l |r,)+ ¥15(2] r3)954(1 I rl)]
=[8/81(30m) 2][e 2212~ "1/3Y,,(6,, ) + e 2 2e "2/ 3y, (6, 9,)] (4)
and
> - 1 > - - -
¥, 1D(ru 1‘2) :ﬁ[lpls(z ‘ rl)d)4d(1 I 1‘2) 'les(z I r2)¢4¢(1 I rl)]
=[1/32(57)2][e *"2(1 — 7,/ 12)e "V 4Y,,(6,, ) + e ¥ 192(1 = 7,/12)e "2/ %Y, (6,, @,)] (5)

where Y,,(6, ¢) is the standard spherical harmonic.?®

A. 115-31D excitation

Substituting Egs. (3), (4), and Y,, into (1), we obtain the transition amplitude to the n, =0 state,
Fg;)lp'l 15(§,m,=0), in terms of two generating functions 7,(x;,X,; ¢) and I,(x;, X,; q),

2x1.6966 < 3 L0 05 9) 8410(A1,A2;q)>
N0, N,

Ffip s (@ my = 0) =K, =22 5 cln)

n=1

M= A31(n)
2= Aga(n)

=holq), (6)
with
c(n)=1, 0.799, 0.799, (0.799)*; A;,(n)=1.743, 2.943, 1.743, 2.943; A,,(n)=3.41, 3.41, 4.61, 4.61.

In Eq. (6), I,(x,,,;q) is defined and given in Eq. (19) of Ref. 17,

“Ary g =Aer2 > - N < - -
L0 =5 [T (B, ([ - 8| /op et F aodF, dF,
1 2

= =2*(A X)) 2(2e)* TEn) T(1 —in)g® M2, F (1 = in, 1 —in; 1; =N3g™3)
+0 L F (1 —dn, 1 —im; 1; =23q 2)]

_25(2z’n)4f b2dbdo(gb)En,d) 2L, (iR B)EN0) TR ITTR R, (i2,h), (7
0
and Z,(x,, ),; q) is defined by

A7y e->‘272

1 e
Iz()\u)‘z;q)EF fT ”

2[1= (15 -3, /62'"(|B -8, /0F "]et 4P a2bdf, dF, . 8)
The detailed reduction of Eq. (8) is given in Appendix A, where we show that the first term (independent of
n) under the integral in Eq. (8), which leads to a 6 function in §, is exactly canceled by a similar factor
stemming from the second term (dependent on 7). Therefore the 6(§) function is explicitly removed both
in Z,(A;, 255 ) and 1,(x, 2,5 q) even for § #0 (inelastic collision). I,(),,),;q) is given by Eq. (A19) of Ap-
pendix A,
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LA, Xg5 @) = =290 A2 (in)* D(m) D(1 = in)[(1+ in)g® " 2A7 2", Fy(1 - dm, 1 = im; 1; =23q ™)
+(1- in)zngn-th-zimzzFl(z ~1in, 2 —in; 2; =A3q¢ ?)
F@TI P (1 —in, 1 - in; 15 -X3g )]

;@i [ bdb JolgB)[(L+im)EnD) ™ 8yiy oid,D)
[

+(1=im)(En, D) ™2 18, 0 o (IX,B) ] (80 0) 218, L) o(60,D) (9)

For excitation to the m, =+1 states, one sees that by introducing the cylindrical coordinates for ¥, and T,,
F(§) vanishes from Eq. (1) since the mtegrand under the integral is an odd function of z.

Substltutmg Egs. (3), (4), and Y, ., into (1), we obtain the transition amplitudes to s, =+2 states,
F® 1p,115(@,m;=%2), in terms of the third generating function I,(x,, A;; ),

© - _ = 2B, 1.6966 927 (}\ ,)\z;q)
F, (aq,my=42)=¢ iK; E c(n)
31p, 115105 M7y, 81 810X,

A= hgy(m) = € 2%y (q), (10)
Ag= Agz(n)

where ¢, is the azimuthal angle of q in C?(£). In Eq. (10) I ()\1, Xz q) is defined by

-\ir =Xa7a b-8 2in . 2in - .
Is(hl,hz;q)=e*‘2‘”°%fE——ig—si[l—<l 5 ‘|> (Ibb52|> ]e’q'be*‘z‘“dzbdrldrz. (11)

81 V2

The detailed reduction of Eq. (11) is again given in Appendix B, where I,(A,2p;9) is given by Eq. (B11),
I\, Ay @) =227 0222 [TEn)T (L —in) (1 —in) (@2 - 2T el W
x[2,F,3=in, 1=in; 1; —A2q"2) =4 (1+ in) ,F,(3—in, 1—in; 2; — A\2q™?)
+(1+in)@2+in) ,F,(3=in, 1-in; 3; =A2q7?)]
+2507 20 2(2m)° ( “b2db J,(@b)[2in(NB) H 1Ly (N D) ~4(1+ iM)EXD)ETIL,, L (N,D)

+2(2+ i) (EA0) 72728, LEND)]EAD)THIL,, L (iAgD) . (12)

B. 1!5-4'D excitation

Substituting Egs. (3), (5), and ¥,,, into Eq. (1), we obtain the corresponding transition amplitudes for
the 1 'S-4 'D excitation,

o L. 1.6966 >< %, __ 8%, J
F&, 1@ m,=0)=iK, == A%33 Z c(n) 12 o 33)\13)\2 SYOW ;if:ﬂinz, (13)
2% Ag2ln
FiggD,xls(q’mL=i1)=0’ (14)
and
€3] 26 1.6966 _9__ ﬁ_} .
F 4lp, 1ls(q’mL_i2) e qK 4%x32 ‘/’3—2:1 (") 3)\1 37\187\2 X1=2gqy(n) s (15)
n= X2=Aga(n)

with d . . . v .
d—;£u‘y(tx)=z(u+ v—1)£"_1,,,_1(zx)—;.,G“,,,(zx),
A,(n)=1.66, 2.86, 1.66, 2.86, (16)
A,(n)=3.41, 3.41, 4.61, 4.61.
and?®s
In Egs. (7), (9), and (12), T, J, ,F,, and £, are
the usual gamma, Bessel, hypergeometric, and _sz @,b c~x)=a—sz (@a+1, b+1; c+1;x)
modified Lommel function,!” respectively. From dx ¢

Eq. (A10) of Ref. 17, am
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one can easily obtain the expressions of various
derivatives of IO, I,, and I and hence the Glauber
amplitudes F sip 1 15(d, ;) and F&, s, my).

We would like to point out that we need to calculate
explicitly only two of the modified Lommel func-
tions via Eq. (A6) of Ref. 17 [for example, (ix)~2"
X &1, 0(ix) and (Ex)72*1L,, . (@x)]; all others
in Egs. (6), (10), (13), and (15) may be obtained
from these two using the recurrence relations.'”
The procedures for numerical computation of Egs.
(6), (10), (13), and (15) are the same as those of
I, (A, x,; @), and are described in detail in Ref. 17.

1. POLARIZATION OF THE 6678-A HELIUM LINE

For the 6678-A line (31D-2'P) emitted by the
helium atom following electron excitation to the
31D state, the polarization fraction

Iy -1,

18
I"+Il (18)

according to the theory of Percival and Seaton,?*
is given by

3(Q,+9,-2Q,)
P 50,790,766, 19)

In Eq. (18), I, and I, are the intensities, observed
at 90° to the incident-electron-beam direction, of
the respective 6678 -A line having electric vectors
parallel and perpendicular to the incident-electron-

electron energy, the quantities @, m =0, 1, and
2, are the total cross sections for exciting the
helium atom from the ground state to the 3D, sub-
levels. It was pointed out by Gerjuoy, Thomas,
and Sheorey (GTS)!* that the total cross sections
@,, Which appear in Eq. (19) for P(E;), are com-
puted from the Glauber scattering amplitudes
F8, |15@ m;), quantized along the direction K,
of the incident electron [which we denote by the
superscript ()]. The connection between these
two sets of Glauber amplitudes, according to the
theory of GTS, is found by the following transfor -
mation:

(i)
F3 ip, 115

my)= Z DY) i (0, 8,7)

XFa 1p, 115, ML) . (20)

In Eq. (20), D(Z)L ; is the usual representation of

R, [R,=R,(a, B,7)] on the space spanned by eigen-
vectors of L? with angular momentum quantum
number L=2. The representation D@ (a,B,v) is
related to the matrix d2_(8) by

D@, (a,B8,7)=e"™7d2 (Be'™, @1)

where the Euler angles' a=¢,, B=(6, =7/2) and
y=- ¢q_[60 and ¢, are the angular coordinates of
din C (K;)]. Using Eq. (4.1.15) of Ref. 22, one can
easily find the matrix d@_(B). Substituting Egs.
(6), (10), (21), and d2),,(8) into (20), we find that
the 1'S-3'D Glauber amplitudes, quantized along

beam direction. In Eq. (19), E; is the incident- -IE,-, are
J
F4, 5@ My =0) =33 8in?6, — L)y +VFcos®6,h,,
F(;)lp (@, my = £1) =e™% (=3 sinb, cosb,h, + sinf, cosf, ,), (22)
Fg‘)ln L@, my = £2) =e2%[3VF cos6,h, +3 (1 +8in%8,)h,]

where 2, and h2 are defined in Eqgs. (6) and (10). From Eq. (22), one immediately sees

do \ @ ® .
<L7S—Z> =|F31, 1@,
1

1s-31p

= |ho P +2 |,
IFalp 113(q7

do\®
(), s

Equation (23) indicates that the Glauber cross sec-
tions are independent of whether the quantization
axis is chosen along K, or along an axis 1d.'* The
cross sections @, are constructed from the cor-
responding amplitudes F %}, | 14(d,m,) in the usual
way, and hence the polarization fraction is easily
found.

my=0)2+2|FE ) 1 (@§m

"1)|2+2lF 1p, 1l(q) :2)]2

=0 P+2|F&, 1§ m, =2)P

(23)

IV. RESULTS AND DISCUSSION

We have calculated the differential cross sec-
tions do/dS for excitation to 3!D and 4 'D states
by means of Egs. (6), (10), (13), and (15) and the
expressions for various derivatives of the gener-
ating functions for various incident-electron en-
ergies, as a function of scattering angles. The



12 CROSS SECTIONS FOR EXCITATION OF THE n '!D STATES... 1387

differential cross sections for the 3'Dand 4'D
excitation are shown in Figs. 1 and 2, respectively,
and need not be discussed in detail. For compari-
son, we also present in Figs. 1 and 2 the results
from the Born approximation®'® and from the Wool -
lings-McDowell approximation.®

We have also integrated the differential cross
sections and therefore obtained the corresponding
total cross sections as a function of the incident-
electron energy. The total-cross-section results
for 31D excitation are shown in Fig. 3 (see also
Table I), where they are compared with the re-
sults obtained from the other theoretical models,
and experimental results of St. John et al.! and
Moustafa Moussa et al.? We note from Fig. 3 that
the Glauber predictions lie between the Born and
Ochkur data; for energies greater than 150 eV,
the Glauber values are very close to those from
the Born approximation. But all the theoretical
predictions lie below experimental data even at
energies greater than 200 eV (for example, o,
< Oexpt by ~36% at 1000 eV), where we expect all
these high-energy approximations should be valid.
The total cross sections for 4 !D excitation are
shown in Fig. 4 and the patterns follow that of the
31D excitation; for energies greater than 150 eV,
the Glauber values become slightly larger than

x lo-z 3.0 T T ‘1 T [ T T L} T T T T T l T T T T
(b) 100 eV |

n
o
T
l
T
I

srh)

2
0
1 N

Differential Cross Section (a.

Angle of Scattering (deg.)
FIG. 1. Differential cross sections for 31D excitation
of helium by electrons at (a) 50, (b) 100, (c) 200, and
(d) 400 eV. Solid curve, Glauber approximation; dot-
dashed curve, Born approximation; dashed curve, Wool-
lings-McDowell approximation.
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L (a)50 ev | (b) 100 eV |

20+ + .

K ]
Lot + .

n
o
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o

o

0. | I '
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Angle of Scattering (deg.)

FIG. 2. Differential cross sections for 4 1D excitation
of helium by electrons at (a) 50, (b) 100, (c) 200, and
(d) 400 eV. Solid curve, Glauber approximation; dot-
dashed curve, Born approximation; dashed curve, Wool-
lings-McDowell approximation,

those obtained from the other models.

We have calculated the polarization fraction P(E;)
at incident energies from 50 to 1000 eV for the
6678-A helium line via Egs. (19) and (22). The re-
sults are shown in Fig. 5. Although the shape of
the Glauber curve resembles the experimental val-
ues of Moustafa Moussa et al., we see that the
agreement with experiment is also poor.

The poor agreement between the theory and the
experimental data is rather disappointing. How-
ever, the experimental situation is far from clear.
As pointed out by Moustafa Moussa et al.,? the
strong rise of the o,E; values of Ref. 1 for 3'D
and 4'D excitation above 200 eV is in contradiction
with the Bethe equation. The measurements of
van Raan et al.® (not shown in Fig. 4) on the 4'D
excitation lie below the Ref. 2 values at E; =200
eV. Therefore, the energy dependences of the total
cross sections do not agree among themselves.
Furthermore, when the proton-impact data for
41D excitation of helium is scaled to the same elec-
tron velocity, one finds that all the theoretical re-
sults lie between the experimental values of Thom-
as and Bent?® and Hasselkamp et al.,?” which differ
among themselves by 60% at 200 eV. On the theo-
retical side, Eq. (3) used in this paper for the he-
lium ground state is probably reliable (we have
calculated the 3 D excitation total cross section of
helium by electron impact at 1000 eV using the
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FIG. 3. Total cross sections for 115-31D excitation of
helium by electron impact. Solid curve, this work (GA);
dot-dashed curve, Born approximation; dashed curve,
Ochkur approximation; solid-dashed, Woollings-Mc-
Dowell approximation; dots, St. John ef al.; crosses,
Moustafa Moussa et al.

Hartree-Fock wave function of Lowdin, 2% the result
is about 7% smaller than the value in Table I); but
the simple Heisenberg choice, i.e., Egs. (4) and
(5), probably does not adequately represent the
shape of the excited He electron, and a better wave
function such as a Hartree-Fock wave function or
a variationally determined wave function may im-
prove the theoretical results. However, as shown
by Byron and Joachain? that the GA gives only two

30 —————— :
. .
20t -
o .
.
GA

Polarization Fraction (%)
[e)

-20 - —
0 100 1000

Electron Impact Energy (eV)
FIG. 5. Polarization fraction of the 6678-A helium
line excited by electron impact. Solid curve, this work
(GA); dots, Moustafa Moussa et al.
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X.
* .
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1
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FIG. 4. Total cross sections for 118-41D excitation of
helium by electron impact. Solid curve, this work (GA);
dot-dashed curve, Born approximation; dashed curve,
Ochkur approximation; solid-dashed curve, Woollings-
McDowell approximation; dots, St. John et al.; crosses,
Moustafa Moussa et al.; closed circles, Thomas and
Bent (Ref. 26).

of the four relevant correction terms to the Born
approximation, the poor agreement between the
theory (GA, BA,...) and the experimental finding
may not be surprising. We therefore conclude that
the agreement between experiment and theory in
this area is less than satisfactory and further ex-
perimental and theoretical investigation seems de-
sirable.

After completion of this paper, related works of
Bransden and Issa,® and Flannery®! have been
brought to our attention.

APPENDIX A: REDUCTION OF THE GENERATING
FUNCTION I, (A{ Az q)

The generating function I,(,, A,; q) is defined by
Eq. (8),
1 e M1 g7 T2

LA, A q) = e z2
1 2
m_al\em/|1H_= |\2in
X[l"(lbbsll) <Ibbszl> J
X ' ¥ 2 df, dr,. (A1)

We shall show that the first term (independent of

1) under the integral in Eq. (A1), which leads to
8(d), is exactly canceled by a similar factor stem-
ming from the second term (dependent on 7) in the
amplitude integral. Therefore, the 5(J) is explicit-
ly removed. By introducing cylindrical coordinates
for ¥, and ¥, and employing the standard formulas®
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TABLE I. Total cross sections (10720 cm?) for 31D and 41D excitation of helium by electron

impact (eV).
Energy (eV)
Excited
state 40 50 80 100 200 300 400 500 600 800 1000

3'p 9.325 10.006 9.045 8.046 4.890 3.450 2.657 2.157 1.814 1.376 1.107
4'p 5.253 5.705 5.235 4.691 2.893 2.060 1.596 1.302 1.099 0.837 0.075

for K, and J,, and

A(s2+22)1/2

oo 2m
J e e(——-r- 2K,01s), (A2) Jagerre=ansa), (a4)

o /
e Ms2+e D72 35 and then changing variables (s;= 8,0, 5, ~ s,0), we

22dz 22172 K1(7\S) ’ (A3) A

- (s +2?) find that I,(A,, X,; ) can be written as

J

L, Ay q) = % fo “bdbd (qb) <(21r)23—1 fo “(b5,2K, (Vb s,)d(bs, )2 fo “(bs)Ky(\bs,)d(bs,)

2 o 2m N
-2 fo (bs,)?K, (\,bs,)d(bs,) _{ dg, (1 +8% —25,c089,)""

hed 2m
xzf (bsz)Ko()\zbsz)d(bsz)f do,(1 + s - 2s, cos<p2)""> . (A5)
) )
r
We now utilize the result®® that integral representation of Thomas and Gerjuoy!?
w _ [Eq. (A6) of Ref. 13] to replace the integral over ¢
fo SK,(Abs)ds=(\b)"2 (46) in Eq. (A10) by an equivalent integral involving
Bessel functions; namely,
and
© T'(1+in)
f S?K,(A\bs)ds=2(Ab)73, (A7) M, (x) = — 227 —__I"El-iZ)
0
We obtain 1 f 2
x=| s?dsK dtt™?n —
3 ¥) Sas (xs)f tt” [J(t o(st)].
L0, Ay q)=25f b7db J,(gh)[2(1,5) ()2
0
= M,(00) M (0,0)] (412)
. I 34
(A8) The integral over s is simply
Where f 2 (tS)K, (xs) ds = 2x/ (1 +x?)2. (A13)
% 2m 0
M, () Ef sds Ky(xs) i—f dg (1 + s2—2scosg)™
0 2mJ, Hence,
(A9)
and T(1+in) PAGE
M =_92n 2 I f 2in 2
L e 20 =2 FTg? ), A s ((tz ) >
M,(x)== [ s?
5 (%) x,£ s2dsK,(xs) (A14)
2m .
X 2—11-1—/ dp (1+s%-2scose)™. (A10) Since
0
Equation (A9) for M, (x) was derived by Thomas 2 (%) -1 a_izx% + 1_38_ %
and Chan'? [Eq. (14b) of Ref. 17] and was given in @ +x%?2)  xox tP+x®  xP0x 12 4x
terms of the modified Lommel functions,!” 107 tJ.(1)
o2 N2 ()20 ; o b s (A15)
M, (x)=x"2[1= (2in)2(@x) " 2"Ly-1, o(ix)].  (Al11) x%ox? t2+x

In deriving Eq. (A10) for M,(x), we introduce the one has
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o)== FEEB L [Pl (L2 -5 5) [ iG] @19)
By using Egs. (A7), (A8), and (A10)-(A12) in Ref. 17, we find
M, (x) = 2%~ 41— im)2((L+ i) (%) 2Ly y, o@¥) + (1= M) () 721" L4105, GX))] (A17)
Substituting Egs. (A11) and (A17) into Eq. (A8), one gets
L0, Ay 4) = 25@im)A 42 [(1”7, f b dbJ (ab) (A D) "L im0 (iM0)
+ (=in) [ Db I @) A0 H N Ly, (10)
0
. fo b db Jo(ab) 60 h) TNy o(iD )]
—25(2in) AT ;2 fo “bab Jo(gd) [+ i) GAD) B8y, o(iN,D)
+ (L= GAD) 2L, L GND)] - GAD)THNL, o (ENgD) (A18)

With help from Eq. (A7) of Ref. 13 and Eqs. (B3) and (B5) of Ref. 17, the integrals in Eq. (A18) which in-
volve only one modified Lommel function £, , may be evaluated in close form. We therefore obtain

I, (A, Mg @) = =207 2(2in) 2T En) T A —in)[(1+ in)qu"_ZAI‘Z‘” 2 (1=in, 1-in; 1; —=22/q?)
+(1=in)2g¥ " \J2*2 F (2~ in, 2- ia;kVZ;ﬁ:)\f/qz)
+ @¥N G2 F(1-in, 1-in; 1; = 22/q%)]
— 290 2(2in)* fo b db Iy (gb)[(L+ i) A D) MLy oEAD) + (1 im) (IAD)20HL,  GAb)]
X (Ah) B8y 1 o(iAD) . (A19)
APPENDIX B: REDUCTION OF THE GENERATING FUNCTION Z,(A, A, : q)

In cylindrical coordinates, the generating function I (X, A,; 9) [see Eq. (11)] can be written as

1 ©o 2m ﬁ ( _ )+.~>.l-)> 2m i ( - ) 2m °0 oo
I (Alv z,q) ET?’[ bdbf d(pbe 2(¢p —9q) +iq f d¢1€ i2(¢1- % f d(pzf S?dslf szdsz
0 o 0 V] 0 0

+o0 )‘1(91‘!' zf) 1/2 +oo ")\z(s +22)1/2
X d —7— -——7—-
/:w z (s 42212 (sZ+22)172

x [1—<b2 + 57— 2bs, cos (¢, ~ <0b)> "'< b2 + 85 — 2bs, cos (¢, — <Pb)>i":l
b? 2 :

(B1)

We note that the first term (independent of n) glves zero contribution. Following the procedure in Appendix
A and employing®?

2m i
f d(pe¥12¢+mb cosq?=_2,”J2(qb)’ (BZ)
o
we find that I (A,, X,; g) can be written as

L, 25 0) =2 [ 57 db T,(a0)M, (0,00 M, (00) (B3)
o
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where

Nl,_.

2m . .
Ma(x)=f s3ds K,(xs) f dpe™??(1+s? - 2scosg). (B4)
0 (4]

Again, by introducing the integral representation of Thomas and Gerjuoy, we have

T'(1l+in)

My = 220 ol | “s? ds K, (xs) f artan 2 [J J,(s1)]. (B5)

The integral over s may be done immediately via3*

fo " (tS)K () ds = BE3(2 +x2)7° , 56)
Since
i(%%> (fe i“@% (5:7‘9%:; *%%)%g_) (BT)
one has
(B8)

By using Egs. (A7), (A8), (A10)-(A12) in Ref. 17, we obtain
M, (x) = = 2(2in)2@x) #1728, o(ix) +4in(L+in) (x)”H#173L,,, | (ix) — 4in(l—in)Gx)"271L,, . | (ix)
+8in(L—in) (2 —in)|[ 24inQ —in) @—-in) Ex) T 28,5, o(Ex)+24in(l —in) (1+ in) (E%)7B73L,, . 1 (X)
+ 8(1—in)@—in)B=in)(x)"#171IL,. o (%)
+8in(1+ in) @+in) @x) 24,5 ,6%)]. (B9)

By applying the recurrence relation for the Lommel function £, , [i.e., Eq. (Al11) in Ref. 17], Eq. (B9) can
be further simplified,

My (x) = Qim)2(ix) 31728, o (ix) = 8in(L+im) (x)"H173L,, 1 (ix) +4in@+ in) () F1 4 Lyn.,, (). (B10)

Substituting Eqs. (A11) and (B10) into Eq. (B3) and carrying out the integrals involving only one modified
Lommel function £, , we finally obtain

I (A, A @) =28 (A 2,) 2QRin)?[T(En)T (1 —in)](1 —in) (2 —in)g¥n 2T
X[2,F,(3-in,d=in;1; =A2q™%) =41+ in) , F,(3-in, 1-in; 2; -A3q"?)
+(1+in)@+in) , F(8—in, 1—in; 3; —A2q7?)]
+25(0,,)72(2in)® f b%db J,(qb)[2in(AD0) H 1 Lo o(AD) =4 (L+ i) (IN,0)7ZTTIL,,  (GX,D)
[}
+2(2+ i) D)L, LN D)]EAD)TENL, o (ND) .
(B11)
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