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Using simple scaling laws based on the adiabatic approximation, Meyerhof and co-workers have compared
experimental data on K-vacancy production cross sections for symmetric collisions of heavy atoms
and ions, with ab initio calculations of cross sections for direct impact ionization of hydrogen atoms

by slow protons, done in this laboratory. It is shown here that the relative magnitudes and energy
dependences of such cross sections can be understood using a simplified model theory; dominant fea-
tures are determined by the oscillatory exponential factors associated with momentum and energy loss

by the heavy particles, rather than the electronic-coupling matrix elements.

I. INTRODUCTION

In recent papers Meyerhof and co-workers' '
have compared experimental data for K-vacancy
production in symmetric and near -symmetric hea-
vy-ion collisions with ab initio calculations, done
in this laboratory, 4 ' of cross sections for direct
impact ionization of hydrogen atoms by slow pro-
tons. A simple Z-scaling law based on the adia-
batic approximation (neglecting electron-electron
interactions) is used. ' The experimental vacancy-
production cross sections are about an order of
magnitude larger than the calculated ionization
cross sections; however, the most important re-
sult of the H, ' calculations, viz. , that the ioniza-
tion cross section for the 2Pcr„electron is about
500 times larger than that for the 1scr, electron,
is confirmed by the experimental data. For sym-
metric collisions (Z, =Z, ), Meyerhof et sl. ' found

that an empirical scaling law can account for both
the 2Po„and 1scr, direct ejection processes with a
single form, i.e. ,

Z'o =F(Z,m/G1VI, ),
where Z is the (mean) nuclear charge, E, and Ki,
the projectile lab energy and mass, and G the elec-
tronic binding energy of the apposite molecular or-
bital at the distance of closest approach. They
noted, however, that Eq. (1) lacked a theoretical
basis.

According to Eq. (1) any difference between 2po„
and 1so, cross sections is due to the greater rela-
tive binding energy of the 1', electron. This sug-
gests that a theoretical explanation of Eq. (1) will
be found in the rapidly oscillating factor represent-
ing effects of momentum and energy loss by the
heavy particles, rather than in any details asso-
ciated with electronic matrix elements, radial or
angular coupling, etc. We show here that this is
indeed the case. In our paper' reporting the exact
calculations for H, ' it was suggested that angular

coupling specifically is the dominant contributor
to direct impact ionization from the 2Po„orbital;
this suggestion is misleading and incorrect. As
a result of the model calculations done here we
conclude that K-vacancy-production cross sections
associated with direct impact ionization by heavy
particles contain little information about the char-
acter of electronic-coupling matrix elements, and
are mainly determined by the factors associated
with the heavy-particle energy loss.

More recent studies' on K-vacancy production in
asymmetric heavy-ion collisions do not fit Eq. (1)
without modification, and different scaling laws
seem to result for the 1so, and 2Po„excitation pro-
cesses. In this model study we restrict ourselves
entirely to the symmetric case, and we do not con-
sider relativistic effects, as is appropriate for
H, '. By making a number of simplifying assump-
tions, we can deduce Eq. (1), including approxi-
mately the quantitative form of F, from the ab
initio theory of Hefs. 4-6; however, it appears
that the success of Eq. (1) in fitting the magnitudes
of both 2Po„and 1sg, cross sections may be fortui-
tous.

It is a bit surprising from a theoretical view-
point that the data for heavy-ion systems can be
compared even semiquantitatively with Z -scaled
H, ' results. While the bound 1so, and 2Po„orbi-
tals of the heavy-ion systems are much like those
of a Z-scaled H, ', the continuum states are quite
different due to screening by other electrons, so
electronic matrix elements for ionization in the
two systems need not be comparable. Also, the
total K-vacancy production rate includes transi-
tions to vacant excited bound orbitals, in addition
to ionization. The behavior of the cloud of outer
electrons cannot be adiabatic, 4 and this further
complicates the dynamics of the system. If there
is an initial L,-shell vacancy in one of the ions, the
strong 2Po„-2P7t„angular coupling is the dominant
contributor to K-vacancy production, ' and the di-
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rect-impact processes are only of interest because
this route is assumed to be closed by the Pauli ex-
clusion principle, the L-shell levels being filled.
Since (as we will show here) the ionization energy
of an electron has a dominant effect on the effi-
ciency of a direct ionization process, it is possi-
ble in a single collision that second-order process-
es, initial L-vacancy creation followed by 2po„-
2P~„strong coupling, can significantly enhance the
2Po„vacancy production"; the data of Meyerhof'
show such an enhancement of 2po„over 1so, when
compared to the 2t)o„/Iso ionization cross-section
ratio computed for scaled H, '. In a pessimistic
view, one can say that the only real agreement be-
tween the observations of Meyerhof and co-work-
ers on K-vacancy production in heavy ions, and
our calculated ionization cross sections for scaled
H, ' orbitals, is the a„/oE cross section ratio of
about 500 and (less accurately) the approximate
E dependence. Since it is shown here that these
features do not reflect electronic matrix-element
structure but are effects of nonresonant momen-
tum and energy transfer from heavy particles to
electron, it could be argued that there is no a
priori reason to expect good agreement on absolute
magnitudes; principles governing relative magni-
tudes and energy dependence are the same in the
two cases but the electronic matrix elements may
be quite different. But even if the 8,' system is
a model for K-vacancy production only in this
limited sense, the results still have useful bearing
on the interpretation of experimental data. Vfe

present them in that conservative context, rather
than the more speculative one of a direct congru-
ence.

II. MODEL THEORY

The direct-impact ionization cross section for
relative collision energy E and ejected electron
energy e is given by' '

t

h(t) = [e —e;(t')] dt',
0

(6)

where e, (t') is the adiabatic electronic energy of
the initial state i which is coupled to the continuum
via the elements T. The rapid oscillation of the
exponential represents the effect of energy/mo-
mentum transfer on the heavy-particle motion and
has a strong influence on the ionization probability.

To obtain a simple model we make several ap-
proximations.

Drop 2)Tt„ terms. In H'-H collisions, strong-
coupled excitation of the 2Pr„state is an impor-
tant process, "and the contribution to di~ect ioni-
zation from the level so excited is significant.
However, we neglect it here. (It is worth noting
that in spite of this our resulting predictions for
the u ionization agree well with the exact H, ' cal-
culations. ) As pointed out in the Introduction, the
2P7t„ level is occupied in the many-electron heavy-
ion systems, so (in zero order) ignoring all cou-
pling to the 2P7t„ level may be even more appro-
priate there than for H, '.

2. Neglect all but the largest coupling matrix
elements. The dominant matrix elements between
molecular bound levels and molecular continuum
states are as follows:

T» = (es(T, t(HR ~ 1so,): "s-wave" radial

vg Gg coupling '

T»=(ePo„~H„'~2Po„): "P-wave" radial

0„-0 „coupling;

ous expressions for the amplitudes a(&LMz). In

general these are composed of terms of the form

a = (RT„+eTs)e'~("

where 8, 0 are radial and angular nuclear veloci-
ties and T„, T~ the associated radial and angular
"nonadiabatic" coupling matrix elements. The ex-
ponent tE(t) is given by

(E, }=2 ttfb tdb Pt(tE, t; b)
0

(2)
T„=(cpm„)H e ~ 2po„): "t)-wave" angular

o„-v„coupling;

and the ionization probability per collision of im-
pact parameter 5 can be divided into electronic
partial-wave components,

(4)

P(E, e;b) = g iC'(eLMi; E, b) i' (3)
L,NI

where the trajectory integrals C'( LMe; E, b),

C"(tdt)d;E, b)-f dttt(tEM;E, b;t),

are evaluated along the appropriate classical tra-
jectory for E, 5, L. For symmetric systems, pkr-
ity separation into g and u parts (parity of L) can
be made. Equations (12)-(17) of Ref. 6 give rigor-

T„=(efv„~H„'
~ 2@a„): "f wave" radial-

0„-o „coupling .
Although T30 is not really negligible compared to
Tj0 or Tjj we have also neglected it for simplici-
ty. The three matrix elements retained are de-
scribed by simple analytical approximations:

T»(R) =Ac(e)R exp[- o.,(e)R],

T„(R)=A, (e)R[a, (e) —R] exp[ —n', (e)R'],

T„(R)=A, (e)R'exp[-o. ',(e)R'];
while it is the case that Gaussian forms fit the M
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where
(8a)

t

a, (t) = dt'(c —e„, [B(t')]j= [e —e„,]t; (8b)
0

elements best, and an exponential form fits the
g element best, no special significance should be
given to that fact." Table I gives approximate E,

dependences of the parameters in (t), but the ef-
fect of replacing them by suitable constant values
is not great.

8. Ignore mixing and interference effects due to
nonsPheri cal molecular symmetry. This means
that the waves designated s and P above are treated
as if they were angular-momentum eigenstates,
and also the variation of electronic-scattering
phase shifts with 8 is neglected. However, the
quantum numbers A = 1, 0 in T~A above refer to the
molecular axis, and to obtain amplitudes asso-
ciated with lab axes (L, M~), the factors d~~u (8) ap-
pearing in the exact expressions' ' must be re-
tained.

4. Coulomb A ajectoxi es. A simpler assumption,
of course, would be to use constant-velocity
straight-line paths. However, for angular coupling
certain singularities arise in the integrals, and it
is well known that in the 2PO„-2Pm„strong-coupling
problem the results for Coulomb trajectories dif-
fer greatly from those for straight lines. " More
surprising, we also find here that even for the o.,
case (where only radial coupling occurs), the
straight-line path gives a different F. dependence to
the total cross section from that obtained using
Coulomb trajectories (see Sec. IIIB below).

5. Compute td(t) assuming essentially constant
enexl, y gaPs, c —e, This is certainly not valid for
the o~ case, as the results show, but it permits
analytical evaluation of integrals.

With these assumptions we can obtain analytical
expressions for trajectory integrals C'(ELM~),
which are nonzero only for L=0, M =0 (o, case)
and L=1, M~ =0, a1 (o„case). They are given by

C'[e00) d„[e;)),0)= —J d)R=J))T,„[)e[ll]e'

TABLE I. Energy dependence of matrix-element par-
ameters (e is continuum energy in a.u.).

Ap(e) = 0.50 (const)
cx

p
(E') = 2.890 2.222/(E' + 1.5)

A j (e) = 0.0208+ 0.062/(E + 0.5)
a&(e) = 1.633+0040/(e +0.5)
o

g (e ) = 0.50 —0.070/{& + 0.5)

A~ (E) = 0.033+ 0.073/(e + 0.5)
n (e) = 0.30+ 0018/(e + 0.5)

J'" =-2 ' ' gdte'~&' sing t T„gt, 10b

J"'"&= 2~2 g dt /~~It{ ~ sing t T (10c)

dt ~'~"{~)co (10d)

and

t „(t)= (e —e20, [R(t')]) dt' = (e e„)t—. (10e)

where c =b(1 + @')' ', u = II —qb, u(0) = c. We can
approximate (11) by its first term alone, since the
approximation that ~e is constant is even less ac-
curate.

The trajectory integrals (10a)-(10d) and (8a) are
evaluated by changing the independent variable
from t to z = (u' —c')' '/c, where the branch cut is
chosen so that z changes sign on the real axis. It
is convenient to define parameters

[In (10e) and (8b) t' =0 corresponds to the turning
point. ]

Define the Coulomb parameter q =Z'/2Eb
=Z'/Mv'b, where M is the heavy-particle reduced
mass and v the incident relative velocity (all in
a.u. ). Assuming constant energy gape, ae = (e —e;),
i) (t) can be evaluated exactly,

a(t) = (+)(ae/v)((u' —c')'t'

+ qb ln[(u/c) + (u' —c')'t'/c]i,

C( 1 e)=0JP~ (e.; E, b) + Jd","(e;E, b),
C'( l, +@I) = JP, (e; E, b) +J;P(c;E, b),

where

J 0 P dt e' ~'"cos 8 t T» R t

(9a)

(9b)

(10a)

P = (b,e/v), D= qb/c, t = Pc,

7= nc g= ($'+7 )~' &d= 7D= nZ'/2E,

x = (5/~) = (tl/c[),

and a= n„u„or a, as required. Then the tra-
jectory integrals are as follows:

L=O, hi=0 (og case)

„, , d)=[e- ,0' e)feed [)+eel[)+ ')' 'Je 0['0* — J)+ ) JI.
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L=l, %=0, +1 (o„case)

g'Ed = -A c'e " ' i(1 —D )[(a, —cD)G,„—cG,„]+D[(a,—cD)G,„+D(a, —cD)G,„—cG,„—cDG,„]t)

[A,c (1 D3)'t2/2't2]e ~ ' (D[(a, —cD)G „—cG,„] [(al —cD)G,„+D(a, —cD)Gd„—cGd„cD—G,„]t,
4'"2= —2' 'A (1 —D')c'e " '([G „+DG ]+DG g
J;"2("=A, (1 —D')' 'c'e '

tlD[G, „+DG, „]—G,„t,

(13)

where the basic integrals G„„(&u,x, T) are defined by

G„„(rd, x, 7) = f dz ((+z') ' 'exp()(z —v'z' —2ruv(1+z')' ']f„„(z), (14a)

with

f 1 f ~ f ~2 f (1+g2)1/2

f,„=z(1+@')'t', f,„=z'(1+@')2~', f,„=&(1+&').

(14b)

The 0, integrals can be done in closed form":

ZOO(e, v, fl) = -8iA, e "[nP/(n'+ P')']

x[K,(g) +(v/2)(1+x~)K, (g)), (1~)

where K„(p) = (,'t)"K„(g—),and K„(p) is the modified
Bessel function of second kind.

The basic o„ integrals G„„are not quite so easy
to evaluate. The stationary-phase result is valid
if T»2x, giving the result

G,„=(&/T(7 + (2))[1 x'/4(T +(v—)']) ~'

o, (E)= J derr, (E;a)
0

(17)

and similarly for o„(E).
Since K„(g)-e t for large g, and g is dominated

by $ when p» n, decreasing the wavelength of the
oscillatory factor in (5) has a strongly damping ef-
fect. As p= (ae/V) increases, the contribution for
a given impact parameter decreases exponentially,
not with n, as might have been expected, but with

A. Z-scaling laws

corresponding differential cross sections o,(E; e),
o„(E; e) can be calculated by Eqs. (2) and (3). Total
cross sections are given by

x exp[-($'/4 r(r+ (u)) —2(d T], (16a)

X

(16b)

this is an asymptotic expansion. ' For x~ 10 and

7~4x the integrals G„„are again relatively negligi-
ble; and for x &10 a method of numerical Fourier
quadrature is most efficient. (For the energies
E of interest, E ~500 eV, and values of e for which
cross sections are significant, x & 4.0.) G„„are
obtained from (16b) by differentiations with respect
to m and x.

III. RESULTS OF CALCULATIONS

From the trajectory integrals C'(elM~; E, b) the
ionization probabilities P, (e, E; tl), P„(e,E; b) and

but this is valid only when the relative magnitudes
of the G„„integrals are negligible (large tl). For
x&10 and 7 +4x,

F ((-1) (2m+2n)!)
n!2m! (n +m)!

nt=0 n=0

Scaling laws which permit data for different Z
values to be placed on a common curve can be de-
duced on quite general grounds (from the formal
theory of the adiabatic approximation), ' but it is
useful to see how they emerge here.

For H, '-like (one-electron) systems with nu-
clear charges Z, the parameters of Eq. (7) scale
as follows A0~ Q0~ A 7f ~ Qff ~ Q~ Z ~ A~ Z
a, -Z '. All characteristic distances are scaled
as Z ', all velocities (including collision velocity)
as Z", energies as Z". The reduced mass M,
which appears in co, scales approximately as
Z"." Then the parameters T, (, p, u, D, x, etc. ,
a.re scale invariant, and the scaling properties of
P(E, e; t)), o(E; e), and o(E) can be deduced im-
mediately from Eqs. (12) and (13). In particular,
P(E, e;b) scales as Z ', o(E, e) as Z ', and cr(E)
as Z '. The probability P(E; fl) of ionization per
collision (of scaled E, b) is invariant. This invari-
ance results quite generally from the fact that the
system Hamiltonian is homogeneous of degree 2
in Z and that its time dependence is scaled com-
mensurately with its eigenfrequencies (by scaling
collision velocity as Z"). For asymmetric colli-
sions (Z, &Z, ) this homogeneity is destroyed.
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B. Approximate energy dependence

1. For straight-line trajectories

The result for G'(F00) is given by Eq. (15), pro-
vided we write c =5 everywhere and set co =0.
Then we have

P, (E, e; b) = 64A', [u'P'/(n'+ P')'][K,(g)]' (18a)

and the differential cross section is

o (E; e) =(256mA~J5)[o) P2/(o) +P )5]

since

(18b)

p K2 g df=5

(see below). Assuming o., independent of e, and

keeping only the lowest-order term in (n'/P') in

(18b), the total cross section is

o~(E) = (4096m/35) [A20oa/(b, e,)'](mE/Mba, )', (18c)

where Ac, is the "average" ionization potential of
the 1so, MO. As we shall see, however, this re-
sult is incorrect.

2. For Coulomb trajectories

P (E, e; b) = 64A20e '~[o.'P'/(u' + P')']S(&a&, x; i),
(19a)

Using Eq. (15), a rough derivation of the depen-
derice of the 0 cross section on collision energy
and ionization energy can be given. In this connec-
tion it is of interest to obtain first the result using
straight-line trajectories, and then for Coulomb
trajectories; we shall see that they are qualitative-
ly different.

o, (E; e) =128 A))P, (&u)e
'

P
' (19d)

o~(E) = [-',(2"wl,') je ' (Ao/Aeoa)(mE/MbG, )'. (19e)

With I' taken about 0.04, and 6, =1.5 a.u. , 0

agrees well with the value 5.3 &10 ' a.u. obtained
from data in Ref. 6 for E=500 eV. As E increas-
es, of course, the straight-line trajectory result
will eventually be recovered; this corresponds to
the domain near the origin in Fig. 1 where I,(v, x)
is flat and equal to -', . The surprisingly large ef-
fect of the Coulomb trajectory can be rationalized
if we note that due to exponential damping of K„(g),
important contributions to o(E; e) all come from
small impact parameters, b &P ' «n '= a, .

While it is not clear how the more complicated
expressions for the o„case will behave in detail,
a power law similar to (19e) also emerges. How-

ever, both in such a result and in (19e), depen-
dence on Ae, appears not only in (mZ/MLe, )' but al-
so in the coefficient in front of it. Empirically [as
represented in Eq. (1)],' both the 1so, and 2po„ ion-
ization cross sections are a common function of
(mE/Mb, e,). From the derivations given here, we

can conclude that the slope (E dependence) of both

Figure 1 shows I,(&v, x) versus x for representative
values of e. The exponential decay of the Bessel
functions dominates for large g, = ~(1+x')'I', but
for the region of E, e of interest to us, relevant
values of x lie between 4 and 10. (For g, -0, K, 1,
K, and Z, -0.5.) A moderate &u dependence is found
in this region, but the important qualitative result
is that I,(e, x) is roughly linear in x . Taking then

I~ =I~o(e)x' and keeping only the lowest-order terms
in o.'/P', we have

S(&a, x; g) = [K,(g) + (
—', &u)(l +x')K, (&)]'.

This gives the differential cross section

o,(E; e) =128mA'e ' [n'Pm/(n'+P')']I, (~, x), (19b)

where

),(&, &)= f s(»&;K) &4 ))=~ )+)&' ')'.
00

18

14—

12—

J 10

Now, "
K„g K p gdg= 1 2 m+n+1 4K„„f,K „g,

—g K„(g,)K (g,)]

and hence I, (&u, x) can be evaluated in closed form

I,(u&, x) =(5)TP(g, )

+ (1 +x') [(u —,u)'+ (o'(1 +x')/6]K2(g, )

-[(u'(1 +x') '/24]EP (g,) . (19c)

0 I

0
I I I I I I I I

15 20

FIG. 1. Function I~(cv, x) vs x for representative val-
ues of ( [cf. Eq. (19c)].
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cross sections is the same, i.e. , both depend on
(mE/MAe, )'; but we cannot show that the respective
fore-coefficients (which in each case depend on
he„amplitudes A, etc. ) need be equal. The fact
that they are so (within an order of magnitude)'
appears to be fortuitous.

The quantity P(E; b) [integral of P(E, e; b) over
all electron energies for given impact parameter]
is of some interest in connection with frequency
distribution of MO x-ray emission. Figure 2 shows
log„P(E, b) vs b for the o~ case, using no = const
=1.5, Ae, =1.5. Note how strongly this quantity
depends on the collision energy. Provided 5 is
scaled as Z ' and V as Z", the above function is
Z invariant.

10

10 2

10
3L

b 1O4

C. More accurate calculations
1O'

For comparison with the results computed in

Ref. 6, we have computed total cross sections
&x(E) and differential cross sections g(E; e), using

Eqs. (12)-(16).
In the evaluation of the trajectory integrals,

b, e = e —e,.(R) is assumed to have a constant "aver-
age" value. This is certainly not valid in the

geode case, since the MO ionization potential

-e„,(8) varies from 2.0 a.u. at R = 0 to 0.5 a.u. at

10-6

0 o 4 0.6 0.8
E', a.u.

1.0 1.2 1.4

FIG. 3. Differential ungerade cross sections 0„(E,e) vs
ejected electron energy e, at E =500 and 200 eV. Solid
curves, model calculation (correction factor Co =1);
open circles, "exact" calculations of Ref. 6.

1O4

10 4

1O'

1O'

1O'

107

10

1O'
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

b (a.u. ) 10-8,
0 01

I I I I I

0.2 0.3 0.4 0.5 0.6 0.7

FIG. 2. Ionization probability function I'~(E, b) vs b

for various values of E. Note the pronounced velocity
dependence of the profile. JX b is scaled as Z ~ and U
as Z+~, P~ is Z invariant (note that c.m. energies E are
those for H2, not D2+). Above curves based on Eq.
(19a), with +0 =const =1.5; 6 eo = const =1.5.

6, a.u.

FIG, 4. Diffexential gerade cross sections u~(E, c)
vs e, at E=500 and 200 eV. Solid curves, model calcu-
lations with Co =0.75; open circles, "exact" calculations
of Ref. 6.
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0.75

0.80

103 0.90

20
I—

10

0
- 10z0

'U

EA

10'
100

I

200

E, eV

300 400 500
10

100 200 300 500

E, eV

1000

FIG. 5. Total ungerade cross sections o.„(E)vs E.
Open circles, "exact" calculations; solid curve, pres-
ent model o„(E); dashed curve, comparison "0~(E)"ob-
tained using 2po„ ionization potential but 1so~ matrix
elements.

FIG. 6. Total gerade cross sections o~(E) vs E. Open
circles, calculations from Hef. 6; solid curves, model
calculations for various values of correction factor Cp.

R —~; in the 2Po„case it is more nearly valid, the
ionization potential being close to 0.5 a.u. at all R.
Since the magnitude of the trajectory integral at a
given impact parameter depends exponentially on
he, we must take an appropriate choice for the
"average" value used. If we wish, this can be
considered a function of b (even though constant in
the trajectory integral), though in fact we find that
such variation has little effect on the results,
since most of the cross section comes from colli-
sions with small b ~ (v/b, c,). We used

(E, e;b) = e —C, e. I[R,(E, b)j, (20)

where R, is the closest approach distance for that
b, E, e.;(R) is the exact H,

' MO energy, and C, is
an adjustable "correction factor. " For the 1so,
case, where -e.„,(R) decreases with increasing
R, C, should be less than 1. However, even in-
troducing this correction cannot compensate for
the error introduced by assuming ~c constant in
the integrals.

This expectation is borne out by the comparisons
shown in Figs. 3 and 4 between the calculations of
o(E, e) given by Ref. 6 and those of the model used
here. For the o„case we took C, =1.0 and the gen-
eral agreement with the slopes for the exact cal-
culations is quite good (in view of other approxi-
mations made in calculating the u model cross sec-

tions we did not consider adjustment of C, to get
agreement of magnitudes to be relevant). On the
other hand, in the a, case it is clear that the model
curves have slopes much less than those for the
exact calculations.

Figures 5 and 6 compare model calculations of
v„(E) and o,(E) versus E, with those of Ref. 6

[o,(E) was not reported in Ref. 6; the values are
1x10 ', 1.0&10 ', 2.6x10 ', and 5.3x10 'a.u.
at 100, 200, 350, and 500 eV, respectively].
Considering the approximations made in the model,
agreement in magnitude and especially in slope be-
tween exact and model results is extremely good
for the o„case; indeed, the model curve -E'",
while the "exact" curve -E'", both in good agree-
ment with the crude law (19e). In order to indi-
cate how closely the o, cross-section magnitude
would compare with that of o„ if their ionization
potentials were comparable, we ran a model cal-
culation for iso~ using Ae values taken from the
2Pa„MO but integrals fox the 1so, case; the result
is shown by the dashed line in Fig. 5. For the
1so, case agreement between model and "exact"
calculations is less satisfactory. Model curves
for various choices of C, are shown, with values
for C, between 0.70 and 0.80 best approximating
the data. We believe that precision errors in the
calculations of o,(E) based on Ref. 6 are too large
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to decide whether or not the slopes are in reason-
able agreement with the model or not. The pecu-
liar reversing curvature of the model curves in
I'ig. 6 shows the trend to the fourth-power law
(18c) at higher energies (E &600 eV), and to an ex-
ponential decay due to the Bessel function cutoff
in (19c) as E decreases (~, x increase).

The scaled experimental data presented by Me-
yerhof and co-workers' ' have a persistently
greater slope [lno(E) versus lnE] than the value of
3 predicted by this model. While we cannot say
with certainty that the Ref. 6 calculations for o,(E)
do or do not agree with the model, it seems evi-
dent that in the 2Pv„case the model has accounted
essentially quantitatively for the results for H,

'
from Ref. 6. Differences observed for the heavy
ions for 2Pcr„should therefore presumably be at-
tributed to effects of the other electrons on the
ionization process. Since there is a large remain-
ing uncertainty in the 1' case, both as to the
true slope of the Ref. 6 cross section and as to
the effect of assuming e„, (R) constant, as the
model does, we cannot decide whether the steeper
slope observed for 1so~ vacancy production in hea-
vy ions does or does not agree well with the H, '-
system behavior.

In any case, however, it is evident that the en-
ergy dependence of these ionization cross sections
is essentially completely determined by the oscil-
latory factor arising from transfer of momentum/
energy from the heavy particles to the electron,
and is independent of the type of electronic coupling
matrix elements; furthermore, the large differ-
ence in magnitude between 1so~ and 2Pa„cross sec-
tions is also due to the effect of changes in A~ on
the frequency of the oscillatory factor; within

about an order of magnitude the variations in
shape and size of the various radial and rotational
coupling elements have little effect on the cross
sections.

D. Precision errors in the results of Ref. 6

There are evidently significant precision errors
in the calculations of Ref. 6. Experience gained
in the model calculations suggests that the source
of these errors lies in our inability to economically
and accurately fit the matrix elements to smooth
analytical forms

All trajectory integrals and associated ioniza-
tion probabilities P(E, e, b) obtained in model cal-
culations are found to be smooth nonoscillatory
functions of b, but typical plots of P(E, e, b) ob-
tained in Ref. 6 always had rapid fluctuations. We
conclude this is "noise" generated by very small
but nonzero discontinuities between successive
overlapping rational polynomial "fits" to the ma-
trix elements. Unfortunately, to use elaborate
smooth analytical fits to the matrix elements valid
over the whole range of quadrature would have been
prohibitively expensive.
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