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The scattering length A characterizes the zero-energy scattering of one system by another. It was

shown some time ago that a variational upper bound on A could be obtained using methods, of the

Rayleigh-Ritz type, which are commonly employed to obtain upper bounds on energy eigenvalues. Here
we formulate a method for obtaining a variational lower bound on A. Once again the essential idea is

to express the scattering length as a variational estimate plus an error term and then to reduce the

problem of bounding the error term to one involving bounds on energy eigenvalues. In particular, the
variational lower bound on A is rigorously established provided a certain modified Hamiltonian can be
shown to have no discrete states lying below the level of the continuum threshold. It is unfortunately

true that necessary conditions for the existence of bound states are not available for multiparticle sys-

tems in general. However, in the case of positron-atom scattering the adiabatic approximation can be

introduced as an (essentially) solvable comparison problem to rigorously establish the nonexistence of
bound states of the modified Hamiltonian. It has recently been shown how the validity of the varia-

tional upper bound on A can be maintained when the target ground-state wave function is imprecise-

ly known. Similar methods can be used to maintain the variational lower bound on A. Since the

bound is variational, the error in the calculated scattering length will be of second order in the er-
ror in the wave function. The use of the adiabatic approximation in the present context places no

limitation in principle on the accuracy achievable.

I. INTRODUCTION

A. Variational upper bounds

The techniques involved in the determination of
a variational lower bound on the scattering length
which we here seek to establish bear many
analogies to those involved in the simpler and
better known variational upper bound on the scat-
tering length, and we will therefore begin with
some discussion of the latter.

A variational uPpe~ bound on the scattering
length A. which characterizes the scattering at
zero incident kinetic energy of one system by
another was obtained some time ago. ' From some
points of view, the results are applicable to a very
wide class of problems —the interaction can in-
clude tensor forces or long-ranged repulsive Cou-
lomb interactions, the two scattering systems can
form composite bound states, ' the relative orbital
angular momentum of the two systems is unre-
stricted, and the various particles of the two sys-
tems can be distinguishable or indistinguishable.
On the other hand, the original result was valid
only under the very severe restriction that the
ground-state wave functions and energies of the
isolated systems had to be known exactly. The re-
sults could therefore be applied only to relatively
simple but still quite interesting cases, including
the (singlet or triplet) scattering of electrons and
the scattering of positrons by H, He, Li', . . . ,
and, for an assumed nucleon-nucleon potential,
with the deuteron ground-state wave function and

energy taken to be calculable, numerically if nec-
essary, to doublet and quartet neutron-deuteron
and proton-deuteron scattering. A number of ap-
plications were made. The calculations are really
no more difficult than, and are often identical to,
variational principle calculations, "but the varia-
tional bound results are, of course, much more
incisive; we know not only that the error in our
estimate of A is of second order in some weighted
average of the error in the trial scattering wave
function 4 „but of well. -defined sign.

After a hiatus of some fifteen years, the upper
variational bound on A was recently extended to
include the very much broader class of problems
for which the ground-state target functions and en-
ergies are only imprecisely known. " Unfortunate-
ly if not unexpectedly, the extension is at the price
of requiring more elaborate calculations. (We
note that slightly different treatments must be
used for a positron' and for an electron' incident
on an atom, the difference arising from the indis-
tinguishability of the incident electron and the sub-
sequent need to bound the associated exchange in-
tegrals that have no counterpart for an incident
positron. ) The approach for imprecisely known

target ground-state wave functions has as its start-
ing point the variational bound for precisely known

target ground-state wave functions. These are of
the form A & K(4', ), with K(4&) a specified function-
al of the trial scattering function 0, . The target
ground-state wave function gr, appears in K(4, ) in
the specification of the appropriate boundary con-
ditions to be satisfied by O', . For gr, imprecisely
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known, we express 4', formally in terms of g»,
effectively integrate over the coordinates of the
incident particle, and thereby reduce A ~ K(4', ) to
A ~ L(gr, ), where L is again a specified functional.
At this stage, the calculation no longer retains any
scattering problem aspects; the determination of
a variational upper bound on the scattering length
A has been reduced to the determination of a varia-
tional upper bound on L(gr, ), which requires a
variational bound on bound-state matrix elements
involving the well-defined but imprecisely known

gr„and its associated energy Er, But. this is a
problem that has been solved. " The variational
upper bound on L(gr, ) involves matrix elements of
H~ as well as of H~, where H~ is the target Hamil-
tonian, and thus far only a few very preliminary
results have been obtained. There is every reason
to assume, however, that not merely useful but
definitive results could be obtained at least for
relatively simple cases such as the scattering of
positrons and electrons by helium atoms.

B. Lower bounds and variational lower bounds

We now turn to the problem at hand, the develop-
ment of a variational lower bound on A. The de-
velopment of the upper variational bound on A. pro-
ceeds along the lines of the Rayleigh-Ritz princi-
ple, being based on the fact -that A. characterizes
the state of lowest energy (or at least the continuum
state of lowest energy), and it is to be expected
that a lower variational bound on A. will be much
more difficult to develop than an upper one. We
will temporarily assume that pro and E» are
known, and begin with a brief review of earlier
work touching on this problem. (Though of no con-
cern to us here, we note that xebec afPlicable the
methods reviewed in the following two paragraphs
provide bounds not only on A. but on the phase
shift as well. )

It was shown' that a lower (nonvariational) bound
on A. can sometimes be obtained by the replace-
ment of the energy denominator of the exact, if
only formally known, optical potential by an appro-
priately chosen energy value; the "sometimes"
relates to the fact that it is not always possible to
find an energy value satisfying the necessary re-
quirements. The result was extended somewhat by
Hahn. ' Sugar and Blankenbecler went further. "
They also started with the optical potential but ob-
tained a variational lower bound on A; again, how-
ever, a lower bound on an energy eigenvalue had to
be obtained, and this can sometimes be very diffi-
cult. Additional results, largely forrnal and along
much the same lines, were obtained by Hahn and
Spruch, " and some numerical applications have
been reported. " Very recently, a modification of
this approach has been developed for positron-atom

scattering which preserves the variational lower
bound on A. when the target wave function is not
known precisely. " It is well known" that for po-
tential scattering by a non-negative potential V, it
is trivial to obtain a separable potential V„„which
satisfies the operator inequality V& V„,()t) & 0,
where the y in the functional V„,(y) can be inter-
preted as a trial scattering function 4, . The merit
of the inequality lies in the fact that a potential
scattering problem with a separable potential is
easily solvable. Let A„~ be the scattering length
associated with V„,. The monotonicity theorem
and the inequality V~ V,,„then guarantee that
A. ~ A„~. Since V —V„„is of second order in
5% —= 4, -4, where 4 is the exact scattering wave
function, A„, is a variational lower bound on A
for this very special case. The A„ that follows
from V,„,also follows on using the Schwinger in-
tegral variational principle with 4, =y, and the
variational lower bound is therefore sometimes
referred to as the Schwinger bound. The validity
of the Schwinger bound was first recognized by
Kato" who showed that it followed from a varia-
tional bound procedure" based on the introduction
of an "associated potential-strength eigenvalue
problem. "

Clearly, the methods referred to above for ob-
taining lower bounds on A are of limited applicabil-
ity. Results valid only for potential scattering,
particularly if the potentials are required to be of
well-defined sign, are of themselves of little in-
terest. The results based on the optical potential,
a potential specifically constructed to account for
the effects of internal degrees of freedom, can be
limited by the requirement that one find a bound on
an energy eigenvalue. The Kato method is useful
only if one can obtain some appropriate bounds on
the potential-strength eigenvalues. This method,
originally introduced in the study of potential scat-
tering problems, was straightforwardly extended
to a number of problems involving the scattering
of electromagnetic waves by obstacles in wave
guides, with simple geometries"; these problems
are the analogs of one-dimensional quantum-me-
chanical scattering by targets with very simple in-
ternal degrees of freedom. We note, incidentally,
that essentially all of the quantum-mechanical
methods noted above can be rather easily carried
over to many wave-guide problems. " Some further
remarks on the Kato approach are contained in
Appendix A.

Of particular interest to us for the purposes of
the present paper is the fact that one can use the
adiabatic approximation to obtain a (nonvariational)
lower bound on A. for the scattering of a positron
by an atom if the adiabatic potential, V,~(r), is
known and if the one-body Hamiltonian T(R) + V,„(r)
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cannot support a bound state." (V,d is the potential
obtained on fixing the atomic nucleus and the posi-
tron, allowing only the electrons to move. ) The
lower bound on A for e'-He scattering that was ob-
tained using the adiabatic approximation wa, s sur-
prisingly good. While unpublished work by Hahn
and Spruch suggests that it should be possible to
extend the method to e -atom scattering, and to
promote the lower bound to a variational lower
bound, the results can be expected to be very dif-
ficult to apply. The approach of this paper, which
is restricted to e+-atom scattering, will be to
start with a. forma. l identity of the form A =A„„
—(m/2v jP)Swhere'„ is afunctional of 4, and can
be calculated, while S is a, second-order term
which can be bounded by using the adiabatic ap-
proximation as a comparison problem. As 4, be-
comes better and better, $ becomes smaller and
smaller, and the use of the adiabatic approxima-
tion to bound S-~zot to obtain a, direct bound on
A —therefore places no limitation whatever on the

accuracy achievable.

II. A FORMAL BOUND ON THE SECOND-ORDER

TERM, S

A. Preliminaries

We consider the scattering of a distinguishable
particle incident with zero kinetic energy on a ta,r-
get with internal degrees of freedom. Though the
analysis is applicable to a somewhat wider class
of problems, we will, for clarity of presentation
and because it is the most obvious application,
give the analysis in the context of e'-atom scat-
tering. To further simplify the discussion, we
will make a number of assumptions, some of which
will later be shown to be unnecessary. The as-
sumptions are the following.

(i) The target is infinitely massive and electri-
cally neutral, and is initially in its ground state
which we take to be spherically symmetric.

(ii) The interaction between the incident positron
and the target is spin independent.

(iii) The lowest energy of the system e'+ atom
is E~„ the ground-state energy of the isolated
atom. (More precisely, we assume that the posi-
tron and atom cannot form a composite bound state
with energy less than E~, or equal to E~„and that,
at zero incident kinetic energy, pickup is ener-
getically impossible. ) Ignoring the small possi-
bility of e'-e annihilation, it follows that for zero
incident kinetic energy, elastic scattering of the
positron is the only possible scattering process.

(iv) The incident particle has an initial relative
orbital angular momentum l = 0. (The case l &0 is
not of comparable interest, since for sufficiently
low energy the scattering is then completely de-

termined by the electric-dipole polarizability. )

(v) The (normalized) fully antisymmetrized tar-
get ground-state wave function, g»(r), where r
represents the totality of target space and spin co-
ordinates, and the target ground-state energy E»,
are known.

The starting point for the derivation of a varia-
tional lower bound on A is the easily derived for-
mal identity'

(m—/2~a')S,

where m is the positron mass, and where

(2.1a,)

A„„=A,+(m/2wd'( Jd, (H —d )d, drdR

is the explicit and calculable variational estimate,
and

(2.1b)

S =-(M, (H —Er,)M) (2.1c)

(H-z„)e =o, (2 3)

and the boundary conditions that it be finite every-
where and that

4(r, R)-0, r-~,
4(r, R) -gr, (r)(R -A)/R, R -~ .

(2 4)

The trial function 4, is everywhere finite and sat-
isfies the boundary conditions

4, (r, R)-0, r-~,
(2.5)

y, (r, R)-q„(r)(R -4, )/R, R-
but is otherwise arbitrary;A, is the trial scattering
length. The error function M, which is forma1. ly
of first order, is defined by

54'(r, R) =4', (r, R) -4(r, R) . (2 5)

It follows that M is everywhere finite and that

M(r, R)-0, r-~, (2.7)
M (r, R)-const&&()»(r)R ', R -~,

where the constant is A -A, . The target wave
functions g~(r) are orthonormal and satisfy

(H, -Z,„)y,„(r)=O. (2.8)

g~ is the ground-state wave function. By assump-
tion (iii), we have

is a, purely formal expression, which cannot be
evaluated, proportional to the second-order error
difference between the exact scattering length A
and A„„. R is the positron coordinate,

H =H(r, R) =Hr(r)+ T„+V(r, R) (2.2)

is the full Hamiltonian, Hr(R) is the target Hamil-
tonian, T~ is the kinetic-energy operator of the
incident positron, and V(r, R) is the positron-atom
interaction. The exact scattering wave function
+(r, R) satisfies



1300 LEONARD ROSENBERG AND LARRY SPRUCH 12

a -S„-0 (2 9) have the variational lower bound

B. A formal bound one

We consider some Hermitian operator C which
has a left and right inverse, that is,

CC '=C 'C=1, (2.10)

and such that the various expressions below in
which it appears are finite, but which is otherwise
arbitrary. It is then trivial to check that S as
given by Eq. (2.1c) can be rewritten as

in the space of functions which are quadratically
integrable ox' approach const&& gr, (r)R ' as R -~.
We will refer to the latter class of functions as
asymptotically constant functions, and note that
M is such a function. It follows immediately that
$ & 0 and therefore that A & A„„; this is the original
upper variational bound. ' To obtain the lower vari-
ational bound on A that is our present interest, it
will be necessary to bound S from above by an ex-
pression that is itself of second order. (Since we
are seeking a variational bound on A and since S
is already of second order, we do not need a varia-
tional bound on S; we merely need a "simple"
bound on S, that is, one which is of the same order
as S.)

A ~ A„„—(m/2~@) ((H-E»)4„C '(H E-r, )4', ) .
(2.17)

The validity of the replacement of the definition
(2.1c) of S by (2.11) is trivially verified, but the
step is scarcely well motivated. A more obvious
if more circuitous route can be based on the dis-
cussion in Appendix B, where $ will be expressed
in terms of the full Green's function G of the sys-
tem. Since we can bound S from above, it is not
therefore surprising that we can bound G from
above.

III. ADIABATIC APPROXIMATION AND A CHOICE OF C

We seek a lower bound C on H -E»(~0) in the
space of asymptotically constant functions, where
C must itself be non-negative. The procedure we
will follow is based on the realization" that the
adiabatic approximation provides a lower bound on

H, and the fact that the adiabatic potential can
actually be calculated nowadays for at least some
light atoms. Thus, fix the positron at the distance
R, and let g,(R) be the lowest of the eigenvalues
$„(R) of H r + V, defined by

[H r (r) + V(r; R) —8„(R)jP„(r;R)= 0, (3.1)

S =((H Er, )M, -C '(H Er,)M)—
—(M, (Jf Er, —C)M)-

—((H E —C)M,—C '(H-E —C)54). (2.11)

Let us now make the further assumption that

where R is treated as a parameter,

) P„(r;R))2dr =1, for all R,

and

{3.2)

8-Eqo-C & 0 (2.12) y„(r; R) - yr „(r), R -~ . (3.3)

and

C&0, (2.13)

By construction, we then have

R,(r)+ V(r; R) & h, (R) (3.4)

where both inequalities are in the space of asymp-
totically constant functions. Including the minus
signs in front, the second and third terms in Eq.
(2.11) are therefore nonpositive and we have

S &((H —Er, )M, C '(FI-Er, )54'). (2.14)

(H —Era)54 = (H Ero)+g-
We can therefore rewrite (2.14) as

S ~((H —E,)@„C '(H —E,)4', ) .

(2.15)

(2.16)

In this form, the unknown function M no longer
appears, and we will be able to bound S from above
if we can find a C which satisfies (2.10), (2.12),
and (2.13). If we can produce such a C, we will

Note that each of the 54's in (2.14) is preceded by
H -E». That is the point of obtaining the inequality
in the form (2.14), for it is an immediate conse-
quence of Eqs. (2.6) and (2.3) that

in the space of asymptotica11y constant functions.
Introducing the adiabatic potential V,~ defined by

V,~(R) —= h, (R) Er, , -
we then have

H(r, R) -E»o- ZR+V„(R).

(3.5)

(3 6)

Since V,~(R)-0 asR ~, the lower bound onH-E»
provided by (3.6) represents a simple one-body
Hamiltonian. Furthermore, as noted above,
V,~(R) can often be calculated quite easily. Thus,
molecular chemists and molecular physicists can
calculate the ground-state energy h, {R) of a fixed
proton and a light atom, and a fixed positron gives
exactly the same energy as a fixed proton. The
V,~(R) thereby arrived at will not be exact, but the
error could be at least roughly estimated and one
could choose a V,~(R) more or less guaranteed to
satisfy (3.6); we are concerned with a second-
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order term $, and a considerable safety margin
could be tolerated in the choice of V,„without a
serious effect on the accuracy of our variational
lower bound on A.

Hy assumption (iii), we have H-E»~ 0. It
clearly does not follow that T+ V,d (which is
bounded from above byH-E») is non-negative,
but T+ V,„ is a one-body Hamiltonian, and it is a
simple matter to determine whether or not it is
non-negative. For positrons on helium atoms, for
example, the use of the rather accurately known
adiabatic interaction for protons a,nd helium
atoms" enables one to show" rather simply that
there is no composite bound state of e'+ He in the
adiabatic approximation (nor, therefore, for the
true problem). If T+ V,~ can support one or more
bound states, the adiabatic approximation will not
as it stands serve our purpose. [One can consider
an improved adiabatic approximation. Thus, a
positron and a hydrogen atom can form a composite
bound state in the usual adiabatic approximation in
which one fixes the R value of the positron; if,
however, one first projects onto the subspace of
zero total orbital angular momentum and then
freezes the R value of the positron, so that the
position is not fixed but has the (restricted) free-
dom to move on the surface of a sphere of radius
A, one can show" that a positron cannot be bound
to a hydrogen atom. Calculations in the improved
adiabatic approximation are, of course, more
difficult than those in the usual adiabatic approxi-
mation. ) If T+ V„cannot support any bound
states, as we will assume from now on, we have

H(r, R) —Era~ Tp+V d(R) &0. (3.7)

We are now within one step of our goal. Since
T+ V,d cannot support a bound state, it will be pos-
sible by choosing A. positive but sufficiently small
to introduce an artificial non-negative potential

(3.8)

such that

S ~ V,,', (R)[[H(r, R) -Er,]4,(r, R)['drd R.

We turn now to the choice of V.„,(R).

(3.13)

V„,(R)-A./R', R-~ . (4.1)

If the integral in (3.13) is to exist, we must then
choose 4, sufficiently accurately such that

R'~'(H-Er, )4, (r, R)-0, R-~ . (4.2)

We know that

4(r, It) /ra(R A)/R+—O(1/R2), R-~ .

(4.3 }
Unless one builds in the term of order 1/R' cor-
rectly in 4 „one finds

(H —E»)4, -$»(r)[V„(R —A, )/R+ O(R ')],
where V„, the asymptotic form of V, is given,
with Z the nuclear charge, by

V„=—e' Q (r, R)/R', (4.4)

with r; the position of the ith electron and with
R =R/R. Equation (4.2) is therefore not satisfied.
Let us therefore write, for all R,

(4.5)4', = g»(r) f(R)+M(r, R),
where f(R) and M(r, R} are to be chosen such that
(4.2) is satisfied, and where

IVo THE CHOICE OF Vaf I(R )

We must choose V„, such that the inequality (3.9)
is valid and such that the integral in (3.13) exists.
The first condition demands that V„, not fall off
too slowly, while the second condition demands
that V„, not fall off too rapidly. We are thereby
very limited in our possible choices of V„,.

We choose the slowest falloff allowed by (3.9),

T-+V, (R) —V„,(R) 0. (3.9) f(II)-(R —A, )/R, R-~ . (4.6}

We then have

H(r, R) Era~ V„,(R) . - (3.11)

H(r, R) Era —V„,(R)~ T-„+V,d(R) —V„,(R)~ 0,
(3.10)

or, equivalently, but much more to the point,

Since it is a long-range effect which must be ac-
counted for, it is natural to use pseudostates. "
We write

M = g~,(r; RQ(R) + N(r, H), (4.'t )

where g(5) —1 is a short-range function, N is a
short-range correlation term, and the pseudostate
wave function is defined by

It follows that one possible choice for C is

C=V„,(R).
Equation (2.16) then becomes

(3.12)

[Hr(r) -Er,] g~,(r; R) = -V(r, R)/ra(r) . (4.8)

For our purposes, it will suffice to replace V(r, R)
by V„ for large R; to avoid difficulties at small R,
we write, for all R, as an approximation to (4.~'
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(H E-)P,=e'P(R) g (R r, )g, ,
4=1

(4.9)

where p(R) -1/R' as R-~. We could, for example,
chooseP(R) =(R'+d ) '. We then have

(H —Era)M - —V„pz,o,

and, therefore, since —(A. ,/R)P»V„= O(R '),

(H —Era)4, -0(R '),

(4.10)

so that (4.2) is now satisfied.
In practice, of course, neither g» nor g~, is

known exactly. Since some of the integrals which

appear in the expression for the variational bound

fail to exist if inexact functions are used, we must
adopt a modified procedure similar to that dis-
cussed in Ref. 5. That is, we initially assume
that both g» and g~, are known exactly and per-
form all of the integrals over B. To do this we
first make the R dependence explicit by writing

merely change the boundary conditions on 4 and

0, to those appropriate to zero-energy Coulomb
wave functions. We can also drop assumption (ii)
and allow the positron to have spin-dependent in-
teractions. If the total angular momentum of the

target J~ is zero, no change in the formalism is
required. For 4~4 0, one must study separately
scattering in states with total angular momentum
J = Jr+ —,'. (We are considering l=0.) We can also
eliminate the assumption that the target ground
state be spherically symmetric; formally, this
would simply entail the replacement of V,~(R) by
V,d (R).
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y„, = e2p(R) gY,"—(R)D„(r), (4.11)
APPENDIX A: COMPARISON WITH SOME

PREVIOUS RESULTS

where B satisfies

(Hr —E»)D (r) = P r,. YP(r~)pro(r),
i=a

(4.12)

and is orthogonal to Pr, . After integrating over
B we are left with integrations involving known
functions of r and the unknown target functions
g»(r) and D„(r). If at this stage the target func-
tions are approximated by trial functions the in-
tegrals remain finite. The accuracy of these trial
functions can be systematically improved with the
aid of subsidiary minimum principles of the Bay-
leigh-Ritz type. To preserve the rigor of the
bound on the scattering length, rigorous error
bounds are required for the integrals over the
target functions (and for the target energy Ez,, as
well). Methods for obtaining such error bounds
have been described previously. ' ' However, we

would expect that in practice one would prefer, at
the expense of complete rigor, to invest one' s
effort in the improvement of the trial target func-
tions. It seems very likely that; for scattering
by light atoms at least, the errors introduced by
the use of inexact target functions could be made
sufficiently small so that the additional effort re-
quired to obtain bounds on these errors would
not be necessary.

We close with some brief comments on the as-
sumptions listed near the beginning of Sec. II.
The assumption (v) that Pr, and Ero are known has
just been discussed. With regard to (i), we not'e

that for a positron incident on a positive ion with
which it cannot form a composite bound state, the
entire discussion goes through as above; one need

Some time ago"" the problem of determining
upper and lower variational bounds on scattering
lengths was studied within the framework of the
method originally introduced by Kato for potential-
scattering problems. " The Kato method is based
on the use of an auxiliary potential-strength eigen-
value problem, and requires for its application a
knowledge of (or rather appropriate bounds on)
the positive and negative eigenvalues of smallest
absolute magnitude. We pointed out that for the
zero-energy potential-scattering problem the Kato
method, which was applicable at all energies, as-
sumed a particularly useful form; at zero incident
energy it could be implemented by invoking Levin-
@on's theorem" which states that the phase shift
at zero energy is m where n is the number of
bound states supported by the scattering potential.
With regard to the upper bound on A, this method
was completely superseded by that" based di-
rectly on the spectrum of the Hamiltonian; the
latter method is very much more practical since
it does not involve matrix elements of IP, and it
has a wider domain of applicability. On the other
hand, a new and useful lower bound on the scat-
tering length was obtained'" by applying neces-
sary conditions for the existence of bound states"
to obtain the required lower bound on the smallest
positive potential-strength eigenvalue. The formal
result has recently been independently rediscov-
ered by Arthurs. " [Actually, Arthurs's discus-
sion is incomplete since it provides no method for
obtaining the potential-strength eigenvalues. Fur-
ther, in our language, Arthurs allows himself no

freedom in his choice of V„„choosing V„, =' V for
scattering potential V(r) ~ 0 for all r and V„, = —V
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for V(r) & 0 for all v; his approach is therefore
restricted unnecessarily to scattering potentials
which are of definite sign and which, in addition,
cannot support bound states. ]

In attempting to generalize the lower variational
bound result to the problem of zero-energy scat-
tering by a compound system, one runs into the
difficulty that an extension of Levinson's theorem
to this problem in a form which would be useful
for our purposes is not available. One way of de-
scribing the accomplishment of the present paper
is to say that it bypasses the need to generalize
Levinson's theorem. At the same time, the deri-
vation leading to the basic inequality (2.1'I) has
been simplified enormously by the elimination of
the formal machinery required in the Kato ap-
proach. (We note again that we are restricting
ourselves to zero incident kinetic energy. ) In
addition, and perhaps most importantly, we have
recognized the suitability of the adiabatic approxi-
mation as an (essentially) solvable comparison
problem from which a bound on 8 -E~, can be
obtained which is of a form that makes it possible
to bound the second-order error term S. The re-
sult, Eq. (2.1I), is precisely that which would be
obtained from the Kato method along with the as-
sumption of the validity of Levinson's theorem, in
the form stated above, for scattering by compound
targets.

APPENDIX B: UPPER BOUND ON THE GREEN'8

FUNCTION

Under our assumption (iii) that the incident par-
ticle and the target cannot form a composite
bound state, it follows that

(Bl)

with respect to asymptotically constant functions,
and therefore that the full Green's function G for
the energy E~„which is, roughly speaking, the
reciprocal of H —E~„satisfies

(B2)

with respect to asymptotically constant functions.
Using a separable form, we can replace the lower

S =(64, (H —Er~)G(H —Era)54) .

Application of Green's theorem gives

S =((H —Era)64', G(H —Era)54) .

(B4)

(B5)

The absence of a surface term is a consequence
of the fact that 54 and G both fall off as R ' for
large R. Finally we may use Eq. (2.15) to write

S =((H E„)4„G(H-E„)C,) .- (B6)

[This expression for S was obtained and studied
in some unpublished work by M. Kelly and one of
us'" (I .S.), and perhaps by others. ] The form
(B6) for S has the merit of being formally exact,
the only unknown being the well-defined G. Thus
Eq. (2.16) represents an upper bound not only on
S but also on the expectation value of G with re-
spect to (H —E~)%„where C, must satisfy the
boundary conditions given by (2.5).

One often finds that the Green's function forma-
lism is suggestive of approximation procedures
through the use of simple operator algebra. This
is a virtue of the formalism, even though the final
result can usually be rederived without introduc-
ing Green's functions. In fact we first arrived at
the identity (2.11)by starting with Eq. (B6) and
then using the standard identity

1 1 1 1—=-+-(C —H)- .B C 8 C

bound 0 by a lower variational bound. These re-
sults are well known. We point out here that the
basic inequality, (2.16), represents the other
bound on G, at the energy E», for a class of di-
agonal matrix elements. Thus, G is defined as
the solution of

(H —Era)G(r, R; r', R') = 5(r —r')5(r —R') (B2)

which falls off as A ' for large R. The second-
order error term S, defined by Eq. (2.lc), can be
expressed in terms of the Green's function, as we
now show. Let us first insert a factor unity in the
form (H —Er, )G in the integrand on the right-hand
side of Eq. (2.1c). The expression for S then be-
comes
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