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The interaction in the (p+, H) collision system is examined in terms of the exact H2+ and H electronic
states. The nonadiabatic interactions between the H2+ electronic states which asymptotically go to the
n = 1 or n = 2 atomic states are calculated together with the corresponding translational contributions.
The question concerning the choice of the space-fixed and rotating atomic bases is investigated in relation

to the long-range interactions. The adiabatic-diabatic question is discussed in connection with the noncros-

sing rule and dynamic correlations between the separated and united atomic states. With the aid of the
calculated interactions, the "coupling hypothesis, " which states that the nonadiabatic transitions are direct-

ly correlated with the closest approach of the electronic state energies, is examined. The characteristic
features of the radial and rotational couplings are discussed in a phase-interference model.

I ~ INTRODUCTION

Current treatments of electronic transitions in
heavy-particle atomic collisions utilize the Born-
Qppenheimer separation in which a basis set of
electronic states is adopted. ' The interaction of
the collision system is then visualized in terms of
the adopted basis set of electronic states. The
electronic basis sets which may be adopted are
the atomic states, pseudostates, adiabatic molec-
ular states, diabatic molecular states, etc. Formal-
ly all these basis sets are equivalent as long as
the completeness properties of these sets are fully
utilized. In practice where truncation is neces-
sary, the suitability of a basis set depends criti-
cally on the collision system, the collisional pro-
cess, the collisions energy, and numerical con-
siderations. For this rea.son it is sometimes de-
sirable to make use of more than one basis set to
extend the suitability of the treatment.

A formulation which makes use of both the
molecular and atomic electronic basis states has
been developed by Chen and Watson. '

The formulation for heavy-particle collisions,
regardless of the electronic basis set adopted,
yields a set of second-order differential-integral
equations for the nuclear motion. The use of the
eikonal approximation permits the equations to
be reduced, independent of trajectory considera-
tions, to a set of first-order differential equations
for the eikonal amplitudes Q„.

"'-,' "=gA.,(,B)e,(., B)
8&n

+ (boundary conditions),

where u and P are channel labels and the functions

A„B are expressed in terms of the nondiagonal
coupling interactions and eikonal phases coming
from the diagonal interactions. Thus all the dy-
namics of the collision system are in A„8. For
straight-line trajectories, we have simply

A, z(z, ei)=izz„z(z, B)eze(i (z„—z$)dz')

with the local momenta given by

~ =(y' 2~g )»2

where the diagonal interactions '0 and the nondi-
agonal coupling interactions '0

8 depend on the
electronic basis states adopted and on the details
of the formulation.

The importance of molecular electronic states
(defined in the Born-Qppenheimer separation ap-
proximation) in heavy-particle collisions is clearly
demonstrated by the qualitative success' of the
promotion model of Fano and Lichten. ' In using
such molecular electronic states for a quantitative
description of the collisions, one often chooses to
express the electronic states in a, set of coordinates
which is moving with the molecular axis. Such a
choice greatly simplifies the determination of the
molecular electronic states. This simplification,
however, gives rise to several peculiarities. (i)
The asymptotic scattering and rearrangement
channels can be rigorously defined only in terms
of an infinite number of states. (ii.) The interac-
tions which come primarily from the coupling of
the electronic and nuclear motions (i.e., the non-
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adiabatic interactions) have unphysical long-range
behaviors. These peculiarities have caused some
difficulties in the "perturbed stationary-state"
method' and lead to the introduction of ad hoc
translation factors' in the description-of the as-
ymptotic states.

These peculiarities, due to the choice of coor-
dinates used in describing the molecular electronic
states, are removed by proper coordinate trans-
formations in the formulation of Chen and Watson. '
The unphysical long-range interactions are elimi-
nated by the coordinate transformation of the ki-
netic-ener gy operators. The coordinate transfor-
mation of the channel wave functions give rise to
the translational factors. An attractive feature of
this formulation is that the translational factors
are naturally defined and are separable from the
matrix elements involving the molecular electronic
states. This separability which is accomplished
by the combined use of molecular and atomic basis
states is not unexpected since the translational
factors belong to the asymptotic behavior where
the molecular electronic states essentially merge
into atomic states.

The purpose of the present work is to investigate
the interactions in heavy-particle collisions as ex-
pressed in terms of molecular and atomic elec--
tronic states. The questions of interest »e: (1)
What are the important features of the nonadiabatic
interactions; (2) To what extent is the hypothesis
that nonadiabatic transitions are directly correlated
to the distance of closest approach of the electron-
ic state energies correct; and (3) What is the role
of the translational factor in the interactions of
the system. A study of the interactions can be
carried out unambiguously for the proton-hydrogen
collision system since for this system exact solu-
tions are available for the asymptotic atomic states
and for the adiabatic H,

' molecular electronic
states. In addition, the translational factor con-
tributions for the (p', H) system can be evaluated
in closed forms —a consequence of the separability
of the translational factor from the molecular
electronic matrix elements.

The plan of the paper is the following. In the
next section, the notations and coordinate systems
to be used are defined as the explicit expression
for the interactions 'U„e are presented and analyzed.
These interactions consist primarily of nonadiabat-
ic interactions expressed in terms of the adiabatic &

molecular electronic states and of translational-
factor contributions expressed in terms of the as-
ymptotic atomic states.

The evaluation of the nonadiabatic interactions
is considered in Sec. III. The evaluation was per-
formed in three steps: (1) the generation of the
adiabatic H,

' electronic states, (2) the calculation

of the nonadiabatic electronic matrix elements
and (3) the analytic evaluation of the asymptotic
nonadiabatic interactions. A discussion on the
choice of the space-fixed or the rotating asymptotic
atomic basis is given in connection with the long-
range behavior of the nonadiabatic interactions.
The results are presented in graphic form.

In Sec. III the translational-factor contributions
are evaluated. The closed expressions for the ma-
trix elements of the translational factor are given
in terms of the space-fixed atomic basis set. The
detailed relationship between the space-fixed and
the rotating molecular-axis atomic basis sets is
then examined. The transformation of the coupled
equations from the space-fixed atomic basis to the
rotating atomic basis is given in the Appendix.
The effect of the translational-factor contributions
on the nonadiabatic interactions is investigated as
a function of the relative nuclear velocity. The
residual zero-velocity contribution of the transla-
tional factors is pointed out.

In Sec. IV, we discuss with the aid of the calcu-
lated interactions the current coupling hypothesis,
the question of noncrossing rules, and the adiabatic
and diabatic representations. Based on the qua1ita-
tive features of the radial and rotational couplings,
a simple phase-interference model is presented.

II. INTERACTIONS IN THE {p',H) COLLISION SYSTEM

In this section we summarize the formulation of
Chen and Watson' for the (P', H) collision involving
the processes [(e,p') ~ H]

(2.1a)

(2.1b)

An appropriate coordinate system for the scatter-
ing channel (2.1a) is defined by the center-of-mass
variables (R„r,), where R, is the vector from the
center of mass of the target to the incident proton,
and r, is the vector from the target proton to the
electron. For the rearrangement; channel (2.lb),
the appropriate coordinate system is defined by
the center-of-mass variables (R„r,), where R, is
the vector from the target proton to the center of
mass of the incident proton and the transferred
electron, and r, is the vector from the incident
proton to the electron. The molecular states for
the (P', H) system are most easily calculated in
the coordinate system defined by the center-of-
mass variables (R„r,), where R, is the vector
from the target proton to the incident proton, and
ro is the vector from the center of mass of the two
protons to the electron. The relations between
these coordinate systems which are shown in Fig.
1 are
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m ~ ~ m
R = R1 +

M r1 = R2-
m+M rn+M (2.2a)

m +2M I~ m +234r, = —2R, +2( ~r, =~R +2( ~r, . (2.2b)

The Hamiltonian for the (p+, H) system is

II=T+V, +V, + y„ (2.3)

where T is the center-of-mass kinetic-energy op-
erator, V, and V, are, respectively, the interac-
tion potentials of the electron with target and inci-
dent protons, and V» is the interaction between
the protons. The kinetic-energy operator may be
expressed in each of the three coordinates

h, (r,)f.(r, ) =W„f„(r,) . (2 9)

The molecular electronic states for the (P', H)
system are usually expressed in terms of the
center-of-mass variable (Ro, ro). We have for the
Hamiltonian

a =x, +h,

with

(2.10a)

Z, = —(I/2M, )Vy, (2.8b)

h = —(1/2p, ,)V, +V (r ) . (2.8c)

The asymptotic atomic states of the product hydro-
gen are eigenstates f„ofh,

1 2 1
V — — V

RMO 0 2p 0 'o

1 1

2M, ~1 2P1

X, = —(I/2M, )+, ,

h 0
= —(I/2 p 0)V, + V, + V, + V 2 .

(2.10b)

(2.10c)

1 1
2M 2 2p, , '2

M(m +M)
0 ~ & 1 2 2~

(2.4)

(2.5)

The eigenstates y of the electronic Hamiltonian
h, are the adiabatic H,

' electronic states

h,y (r„R,) =au (R,)y„(r„R,). (2.11)

These adiabatic electronic states in the R,
limit go over to a linear combination of atomic
states centered at the protons. A linear combina-
tion of y may be constructed,

with

(2.6a)

(2.6b)Z, =-(I/2M, )V;,
h, = —(1/2i11)V-, + V, (r, ) .

The asymptotic atomic states of the target hydro-
gen are eigenstates g of h,

(2.6c)

h„(r,)g. (r, ) =W~. (r, ) . (2.7)

Similarly, the channel Hamiltonian for the rear-
rangement channel is

(2.8a)

with

2m JI/I mM
"'=m+3M' "'="'=m+I'

where m is the mass of the electron and M is the
mass of the proton.

The channel Hamiltonian for the scattering chan-
nel is

V„'(r„R,) = g c„sys{r„R,)
8

{2.12)

so that asymptotically y' goes over to atomic
states centered at the appropriate proton. We have

lim y„'(ro, Ro) =g~(r,') =R«(r, )Y,„(r,'), (2.13a)
~ oo

lim y&(r„Ro) =f 8(r,') =R„,(r, )Y, (r,'), (2.13b)
g -+ oo

where R„,(r, ) are the radial hydrogenic wave func-
tions and Y,„(rf) are the spherical harmonics. The
prime on r; in the spherical harmonics is to re-
mind us that r,' depends on Ro Thus atomic states
g'(r,') and f„'(r,') differ fromg„(r, ) and f„(r,) of
Eqs. (2.7) and (2.9) by the R, dependence. (We ne-
glect the small mass difference between p, , and
i11=i1, ) In other words, the atomic states g' and

f '8 just like the adiabatic states cp„(hence y') are
defined with reference to the rotating molecular
axis .

By utilizing the completeness properties of (y'}
basis set, the state function g+ of the (P', H) sys-
tem may be written as

= Q pg(ro, Ro)T((RO) + Q pg {ro, Ro)Ty(RO),

FIG. 1. Scattering, rearrangement, and adiabatic co-
ordinate systems. (2.14)
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where the t sum is over the states in which qt'
asymptotically goes over to the atomic states gt'

centered at the target proton and the t ' sum sums
over the states in which yt' asymptotically goes
over to the atomic states f,', centered at the inci-
dent proton. The use of the completeness prop-
erties of atomic states jg„j and [f„]gives the
equations

1 Yt Rp = Ys 8t rj. +t Ry (2.15a)

gf'(r')T (R.)-=T,=+f (r.)+ (R.), (2.»b)
t t'

for the transformations (T,'(R,)]-[+,(R, )] and

The coupled second-order differential equations

obtained for I4'„j take the familiar form

[E —W„+i q -Ks —Q„(R)]4'„(R) —Q 'U„s(R)4' s(R)

= iq6„,Z» (R),
(2.16)

where gR = —V»z/2M„A» =(2s) ' »exp(k~ R), R
representing R, or 5, is the dummy variable, and
the indices o. and p sum over states in both the
scattering and rearrangement channels. The dia-
gonal and coupling interactions are defined in
terms of the molecular and atomic electronic
states.

Let the unprimed indices refer to states in the
scattering channel and primed indices to states in
the rearrangement channel, then we have for the
interactions"

u„s(R, ) = Q&g„(r,)lg.'(r,')&„(R,)&g»(r,')I e '&'s""'~gs(r, )&
e'""s"~"&&-„,

s, t 0
(2.17a)

v„s.(R, ) = Q( ~g(r, )l,g(r,')g, ~~( R)o(f,
'

(Ir,')le'""s' o'"f s.(r, )&- e' "s' "'i&-,
s t' 0

(2.1Vb)

u„,s(R2) = g&f„,(r, )lf,' (r,'@,, , ( R)( 'g(r,')le '""s o"gs»(r, )&- es'""s "» 's&s,
s't 0

(2.17c)

g„,s, (R ) = p(f„(r,)lf,' (r,')8,
& (R,)(f,' (r,')le'""s'~"o)'sf s, (r, ))-„e 'I'"s'&"»~'Ts&R,

s't' 0
(2.17d)

with ~„s= (y„', [K„ys]), &~'& = lim 4~ s, (2.20)

8
= &at 8

—~~ g +w~ 8
—5 ~5~ 8,

Bl +(y BP +gpss( 8 I g (y '5~ Bp

&n g=+n 6+n 8
—~n &~ 8,

(2.18a)

(2.18b)

(2.18c)

g& e st = 6+ t st &+r s& +w& i st 8+ e5& e st i (2 ~ 18d)

where p, =m/(m+M). Now returning to the conven-
tion of Eq. (2.16) where indices n and P denote
states in both scattering and rearrangement chan-
nel, then we have

Tc s(R;) = &R S s(R )I R, , (2.19)

w„s =(y„',koy's), W„'6„s= limge~ s,R~ oo
(2.21)

PRp
S s(R, ) = ' [k's —2M, %) s(RDI)]'~s ds (2.22)

in terms of the diagonal potential 'Us(R, ).
The coupling interactions of (2.17) can be ap-

proximated by a simpler form,

where Sa are the eikonals defined by the path in-
tegrals'

V„s(R,) -=g(g le'"" '"lg'&R 8»~(R, )(g,'Ie '""&'~lgs&%,
s, t

(2.23a)

&„s (R, ) = g&g le'""»'~lg'& R,&.~ (R|)(fl Ie ""'""lfsi&R, ~

st'
(2.23b)

s(R.) —= g(f. Ie *""""If!&- &. (R.)(glle '"" ' lgs&-, ,
s't

(2.23c)

'U~ s (R ) = Q&f Ie '"" "'&lf.'&R 8. & (R, )&f& le'""&"'»if s&R,s't '
(2.23d)
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The separation of the translational contribution
from the nonadiabatic interaction involving molec-
ular states greatly simplifies the evaluation of
these coupling interactions.

The form of Eqs. (2.17) and (2.23) allows a sim-
ple physical interpretation of the interactions to
be given. Through the translational factors the
asymptotic atomic state expressed in a space-
fixed coordinate is transformed into a set of atomic
states expressed in the rotating coordinates.
These rotating atomic states are then merged into
molecular states. Through the nonadiabatic inter-
actions, transitions between the molecular states
can take place both on their way into the united-
atom states and on their way out to the separated-
atom states. These final atomic states are then
transferred into space-fixed atomic states through
the translational factors.

where 8 is the impact parameter and we have made
use of the relation r, =(x,y,z,) = (r,80$,) for the
electron. The first term [ on the right-hand side
of (3.3)] which gives rise to the radial coupling is
an odd function of z and the second term which
gives rise to the rotational coupling is an even
function of z. A similar expression for &~'& can
be obtained in terms of the atomic states.

The evaluation of the nonadiabatic interactions
is carried out in three steps: (1) generation of the
adiabatic H,

' electronic states, (2) numerical cal-
culation of the matrix elements &„8, and (3) ana-
lytic determination of &~').

B. Adiabatic H2
' electronic states

The adiabatic H,
' electron wave functions can,

in principle, be generated exactly, since the Ham-
iltonian [Eq. (2.10c)] is separable in confocal ellip-
tic (prolate spheroidal) coordinates (», q, Q):

III. EVALUATION OF THE NONADIABATIC

INTERACTIONS
» =(r, +r,)/R„q =(r, -r, )/R, . (3.5)

A. Reduction in eikonal approximation

(3.1)
If the gradient operators are allowed to act on the
nuclear wave functions 4~(R) and 4 8(R) in the
eikonal approximation, the nonadiabatie interac-
tions take the form

1 . K~ +Kg
B0~ B~R

0

where the F~ terms in (3.1) are neglected. In the
0

straight-line approximation with z taken to be the
incident direction, Eq. (3.2) reduces to the form

(3.2)

1 . K~+KB

0

B
v'8 -i 2(v.', ~,,v'8)—

0 0

with
i&„=cosQ, —cot8, sing, (3.4)

The evaluation of the nonadiabatic interactions
8 and 4~') are simplified by the eikonal and

straight-line approximations. To exhibit the
Hermitian form of the interaction, the nonadiabatie
interaction [Eq. (2.20)] can be written as

ho( 8= —(1/2MO)[V ~ (yo(, VR,y'(() a

+ (9 o(, MRO9 s)RO
~ VRo]

—(1/4M )[(((v„', VR y ~)+ ((P HR, 9"s)]

This leads to three ordinary uncoupled differential
equations:

(3.6a)

p' = -R', w/2, A' =A -p', (3.7)

where A. and nz are separation constants, se is the
electronic energy of H2' molecule, and R0 is the
internuclear separation.

The wave functions of these equations have been
published by Bates et al. ' for internuclear separa-
tions R, =O to R, =9.0 a.u. We have extended the
solution to R0 =150 a.u." In Fig. 2, the corre-
sponding total electronic energies of these H,

'
adiabatic electronic states are shown as functions
of the internuclear separation.

C. Calculation of Ae p

To evaluate & 8, it is convenient to express the
radial and rotational coupling matrix elements in
terms of the prolate spheroidal coordinates. We
have (in terms of adiabatic electronic states)

(3.6 b)

(—(»' —1)—+A'-p'(»' —1) — +2R, »
- =0,

d» d»»' —1

(3.6c)
with

c
a 4 1 1 1, s 1 1,s

o(( 'ps (( ~ ~ p (* o
p ~ (7 p, ((( — )o(o'8 (( 0' ( o( -'o

o ps)'
0 0 g n (} p c g 8 0
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[(8—1)(1—n')]'" k3}(s, ~J. s8)=l&s„, coss
&, , n —,

&

—( —, ss» — p, »4
~~&. &~a ~~I i. ,&so), (3.9)

1
(%2s}2 2(9 2s ad 9 3d as 0 3@a 0 4f a

(V l&,), = -'(y.d., V...,-+ V .~.

(922 } 2(93da V2sa V4fa +93pa }i

(3.10a)

(3.10b)

(3.11a)

(S.lib)

(md ) =(1/&2)(y, d„, +q„„), (3.13a)

(y2&,~), = (1/~2)(y, d„-y„, ), (S.l.sb}

where the subscripts 1 and 2 denote the asymptotic
atomic centers [see Eqs. (2.13)], for example,

(y22 },-g2'2 (r,') ={32m) '~23, cose,'e "i~2,

(y» ) -f2'2 (r,') =(322) ' 2r2cose2'cosy2e "2'.

4f

-0.5—

where the radial matrix elements (3.8) satisfy the
selection rule &m =m —m

&
=0 and the rotational

coupling matrix elements (3.9) satisfy the selection
rule ~ m =m„- m& = + 1.

It is appropriate to recall that the states cp' are
linear combinations of the adiabatic electronic
states y . We have, for example,

These combinations are based on the coordinates of
Fig. 3 in which the z axes of the electron centered
at the two protons are pointing in the opposite di-
rection along the rotating molecular axis. Thus in
general the radial coupling matrix elements
(y„', (S/SRa)qr&} and the rotational coupling matrix
elements (qr', i J, y 8) can be expressed as a linearSo
combination of those matrix elements of (3.8) and
(3.9) .

The nonadiabatic electronic matrix elements be-
tween the adiabatic H,

' electronic state [Eqs. (3.8)
and {3.9)] which asymptotically go to the n =1 or
n =2 atomic states have been calculated for inter-
nuclear separations R, =O toRo 150 a u In Fig.
4, the nonadiabatic radial couplings (multiplied by
a factor of Ra/2) are given as functions of inter-
nuclear separation R, . It is seen that some of the
radial couplings approach constant values. A com-
parison of the nonadiabatic rotational couplings
(multiplied by a factor of Ra/B) is given in Fig. 5.
It is apparent that the nonadiabatic rotational cou-
plings have spurious long-range interactions.
These long-range interactions in both the radial
and rotational coupling are coming from our choice
of the (r„Ra) coordinates for the adiabatic H, '
electronic states." To remove these long-range
interactions we need to evaluate &~'z. Our results
agree with those calculated by Rosenthal. "

D. Analytic determination of hap
(o)

By definition [Eq. (2.20)], 4~3&~ are the asymptotic
forms of the nonadiabatic interaction & 8. They
are needed only between atomic states which are
centered either at the target proton or at the inci-

gled
~a
CQ

CK

-I.0-
2m

C'
Lal

CP

C

2sl

I

x2

2

t

/
2

I

/
Zg ~V 122- —~———

-2.0
200 5 IO I5 25

Internuclear Separation (a,)

FIG. 2. Electronic energies as a function of internu-
clear separation of the adiabatic molecular states which
go to n=1 or n=2 atomic states, asymptotically.

I

/i - x'

/'3)

Z
I

FIG. 3. Space-fixed and rotating coordinate systems
for the electron centered at the two protons with the y
axes pointing upwards from the x-~ planes.
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)

O. l-

C7

C3

C3

'la

I

dent proton [see E(ls. (2.18a) and (2.18d)j. From
the symmetry consideration (see Fig. 3) we have

(g', vR g s) (f ', vR &IP) . (3.14)

2pa -3po
i u U

/ ~3po. -4fo
U U

/

0

2so -3da

'I

, y 2 pa„- 4 fa„

-0. 1
-"

/'

I sag-3dag

.2-0.
I

' ' ' '
I

' ' ' '
I

0 5 IO I5 20 25
Internuclear Separation (aoj

FIG. 4. Nonadiabatic radial matrix elements
+' ('Pn 7 R P )RsRpp/z=(P' (8/SRp)Pas)Rp Am=0, as a
function oi internuclear separation between states which
go to n=1 or n=2 atomic states, asymptotically.

E
cpp

UJ

5
a

C7
C

CI
lX

0.5-

cu

-0,5 I s & s & I i & I I I

I
' ' ' '

I

0 5 IO I5

Inter nucl e a r Separation

I » & a

20

(a,)

25

FIG. 5. Nonadiabatic rotational matrix elements
z ~ (yf)f, 'p Rpp&)@pR()/B=-(cp, s J&p+8 ~p' A m =+1 as a
function of internuclear separation between states which
go to n= 1 or n=2 atomic states, asymptotically.

Thus, we need only evaluate one set of these ma-
trix elements. The matrix elements (3.14) are
expressed in terms of atomic states which are de-
fined, just as the adiabatic electronic states, with
reference to the rotating molecular axis.

With the exact atomic states available, the ma-
trix elements are evaluated in closed forms. We
have

~(p) () ~(p) . s 8W2
1s,ps r lsppp

~(p) . B 8&2 (p)
lS2P~O3g g 8] & 2S2p0 p

0

O. I

0

UJ

-O. I

Cl
CL

~ Is(T 2s0
g g

, -~3pa -4fo'

'I /I'

2p(T 4fo
/'

U u

,
' Iso -3do

+p po„.„& O +popo„, = —s &&/Rg(0) (0) ~ 2 (3.15) ~ 2pou 3p(ru

where v is the magnitude of the relative colliding
velocity.

According to the linear relations given by (3.10)
to (3.13) the asymptote forms of (4tr„, (0/&Rp)9) s)
and (qr„, iJ, ys) are linear combinations of & 's.
By utilizing these expressions for &~ 8~, the long-
range interaction in Figs. 4 and 5 can be removed.
The results are shown in Figs. 6 and 7. It is clear
that all the long-range interactions are removed.

We emphasize that the complete removal of
the spurious long-range interaction by the subtrac-
tion of &~'8~ from &„8 is a consequence of two fac-

I

o 0.2

I I I i I

I

5 IO I5 20
Internuclear Separation (a, j

25

FIG. 6. Nonadiabatic radial matrix elements minus
their asymptotic limits (Rp/~) [~ ~ (y~, V R p8) zp no Rp 8 Rp-z ~ (f~, '7

R f&)R ], as a function of internuclear
separation between states which go to n = 1 or n = 2
atomic states, asymptotically.
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FIG. 7. Nonadiabatic rotational matrix elements
minus their asymptotic limits (Bo/8) [Z' ~ |'p„,rj' R p8)R

z . (fz & Rpf8 )Ra], as a function of internuclear sepa-
ration between states which go to n=1 or n=2 atomic
states, asymptotically.
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tors: (1) the transformation of kinetic-energy op-
erator in the (R„r,) coordinate system to the
proper coordinate systems (R„r,) and (R2, r, ) for
scattering and rearrangement channels, respec-
tively, and (2) the use of space-fixed atomic basis
sets (g„(r,)) and (f„(r,)). If we choose not to use
these space-fixed atomic basis sta, tes a,nd use in-
stead the atomic basis sets (g„'(r,')} and (f„'(r,'))
defined with reference to the rotating molecular
axis, then not all the long-range interactions can
be removed. This is because the rotating atomic
states do not in general commute with the nuclear
kinetic-energy operator and give rise to terms
which cancel 6 8 obtained from coordinate trans-
formation of the kinetic energy operator.

In Fig. 8, the rotational coupling interactions ob-
tained by the use of the rotating atomic basis states
are shown. From the comparison with Fig. 7, it is
apparent that long-range interactions are present

(9 ada r i~y 0 sdy )r (9 4fa I ~y P2Py )t (02sa
0 g, g O 8,iJ, rp, d, ), and (y», iJ, «p», ) matrix elements.

These long-range interactions are generated by
the asymptotic rotational coupling between the

g,'y and g,'p (or f2', and f,'y ) atomic states.
We have

(g2g0 W ' )1.
Physically it is expected that a.ll states are uncou-
pled asymptotically. This long-range interaction
is due entirely to the choice of the basis set and

3p 2p
U u

s s s s I a» a I a a a a l t s i s I-0.5 I I I I
/

I 1 I I
J

I I I
/

I I I I
/

I I

0 5 IO I5 20 25

Internuclear Separation (a, )

FIG. 8. Internuclear-separation dependence of the non-
adiabatic rotational matrix elements minus their asymp-
totic limits for the case with rotating atomic basis,
( O/ ) d ~ ((P~, '7 ~pCPS)~p-Z ~ (f~, Ro fp)fp+ (f~(d/de)f8)],
where the last term [see Eq. (A6) in the Appendix], comes
from the fact that the rotating atomic states do not com-
mute with the kinetic-energy operator K2 [see Eq. (2.8b)],
between states which go to n=1 or n=2 atomic states,
asymptotically.

can be removed only by the use of space-fixed
atomic basis states. It should, however, be noted
that due to the 2s and 2P, degeneracy of the hydro-
gen atom, a dipole interaction (-ft 2) is generated
by the interaction with the proton at large distan-
ces. This long-range dipole interaction is not
coming from the choice of coordinate systems and
is accounted for by the molecular electronic states,
2so, , 3do„2pa„, and 4fo„which go to linear com-
binations of the 2s and 2p, atomic states.

IV. TRANSLATIONAL —FACTOR CONTRIBUTION

A. Calculation of translational matrix elements

The translational matrix elements [see Eqs.
(2.23a)-(2.23d)] are defined in terms of atomic
states of mixed bases centered on one of the pro-
tons. From Fig. 3, it is seen that

(g„(r, )[e"p'~'~ga(r, ')) =(f„(r,)~e "o''2 '~ f'8(r,')),

(4.1a)

(g„'(r,')(e "~' '&/'[gz(r, )) =(f„'(r2)[e"~' '2/'[ f z(r, )) .

(4.1b)

With these relations we need to evaluate only one
set of the matrix elements.
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The evaluation of these matrix elements in the
mixed bases can be simplified by the use of the
completeness properties of [f„(r,)l . We have

~."s'= &-f.(r.)l s"'s "'"If s(r.')&

&
r

&
r2 8 r2

y

(4.2)

The overlap matrix elements (fz (r, )[f s(r,')) can
be nonzero only between magnetic substates. This
is evident since the space-fixed and rotating
atomic states are related by a rotation. We have,
for n = 1 and n = 2,

(4.3a)

f,~,(r, ) = (z/R, )f—,'~,(r,') —(B/R, )f,' (,'),
(4.3b)

f„, ,(r ) = —(z/R, )f.'.. . (r.') + (BIR.)f,', ,(r,')
(4.3c)

The translational matrix elements ~ '& can be
evaluated in closed form. We have, for example,

1 (» 1 —3 (v, /2)'+ 2(v, /2)'
is, is [1 + (v /4)2]» 2s, 2s [1+(v /2)2]3

(4.4a)

1 —5(v/2)'
[1+(v/2)']" [1+(v/2)'] ' '

The velocity dependence of the translational
matrix elements is given in Fig. 9. The effect of
these translational factors may be visualized
through their effect on the 2pa„-2pn„nonadiabatic
interaction which dominates the 18 2p„,@

excita-
tiofi process. Let us consider the coupling term

T(&) g 7(&)
2&cos@ 2&cos@& ~~

At low velocities where the coupling matrix ele-
ments ~,', „are essential unity, the 1s-2P„,&

excitation proceeds with the help of the 7» 2P
matrix elements without much loss of its ampli-
tude. As the nuclear velocity increases, the other

and &y 8 matrix elements become appreci-
able (see curves 5 to 8 in Fig. 9) causing a redis-
tribution of the amplitude into other channels.

8. Space —fixed and rotating atomic bases

As was pointed out in Sec. DID, the appropriate
coordinate transformation of the kinetic- energy
operator alone does not remove all the long-range
interactions. Some of the asymptotic rotational
coupling can be removed only if a space-fixed
atomic basis is used. Calculations for the (p', H)
system reported in the literature are carried out

I I I I

l

(, )
2'vY (v, /3)' (,)

is, 2s 34 [1+ (v /3)2] 3 2s, 1s & (4.4b)

~",,'» =+ t(z/R, )w(v, ), ~",,'» =+ t(B/R, }X(v,),
(4.4c)

0 5--

~2, » =+&(z/Ro)B(v2)t ~2, » . =+&(BIRD)B(v2) i

(4.4d)

(4.4e)

, ,= -(z/R)C(v, ), T('), =+ (B/R )C(v ),
(4.4f)

T(s) &(s)
2Pcosg' 2Pcos

(4.4g)

(4.4h)

0.25 0.5 0.75

Relative Nuclear Velocity (a.u)

where

2'N v, 1 —(v/2)'
3' [1+(v/3)']" ' [1+(v/2)']''

FIG. 9. Velocity (a.u. ) dependence of the translational
matrix elements ~« ——(f„(r&)(e "'t

t~ fs(r2)): Curve 1,
~fg f its curve 2, D(v); curve 3, 72, p, curve 4, C(v);
curve 5, A. (v); curve 6, ~f, 2, ——~» f, , curve 8, -B(v).
A(v), B(v), C(v), and D(v) are defined following Eqs. (4.4)
for the translational matrix elements r&„').
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in states which are expressed in coordinate sys-
tems rotating with the molecular axis. Here we
examine the effect of the rotating atomic states in
the translational contributions. In the Appendix,
the transformation of the coupled equations from
the space-fixed atomic basis to the rotating atomic
basis is examined.

If the rotating atomic basis is used, we have

7(&)I I ri r r g~f v8 1'2/2

amined for the nonadiabatic portion of 4„6. By
replacing the translational factors with unity in

the v 0 limit, we have

s' r2 +s'g' +g'g g' 2 8 2 = ag '
s' t'

(4.7)

With the help of the transformation relations be-
tween the space-fixed and rotating atomic states
given by (4.3), we obtain from (4.7), for example

(4.5)x(f„(r.) If,(r,')&,

which can be evaluated using the same techniques.
The results are not changed for Eqs. (4.4a) to
(4.4d). For the rest of the matrix elements, we
have

7(+) I ~(+) 7 (+)I 7(+)
2P 01S 1S 2P 0& 2P 02S 2S 2P 0 & (4.6a)

&(&)i z(~) &(~)I &(~) (4 6b)
~cosset, 2 S S ~ ~ cosy ~cosy 2 2S 2Sp 2P cos

(,), 1 —(5 —6B'/R')(v, /2)'
2p2 2p2 [1+ (v /2)2]4 (4.6c)

T(~)I T(~) 2'2
2P 0~ 2PcotP 2PcorP~ 2Pp R2 [1+ (V /2)2] 4 '

0 L 2

~(~)r 1 —(5 —6z'/R', )(v, /2)'
Peon p~ 2P cos4 [1 y (v /2)2]

(4.6d)

(4.6e)

In this rotating atomic basis, all the translational
factors approach either zero or unity in the v- 0
limit due to the orthonormal properties of the
atomic states. Its effect can be clearly seen in
examining the residual translational contributions.

122p (Z/RO)( 12 2p 6 12 2p )

Thus the nonorthogonality retains the mixing of
states which are rotationelly coupled asymptoti-
cally. Of course this mixing is lost if the rotating
atomic basis is used.

The nonadiabatic interactions 6 8 and ~~& are
first-order in v [see Eqs. (3.3)]. To examine the
v-0 limit of '0 8, we need to retain the potential
portions of the g 8 [i.e. 2v„s —W 5„s, see Eqs.
(2.18)] terms to first order in v coming from the
translational factors. This v -0 contribution of
the translational factors can be most clearly seen
in the rotating atomic basis, without including the
contribution coming from the nonorthogonality of
the atomic basis states. In Figs. 10 and 11 the
v-0 limits of Q

&
between the H, ' adiabatic states

0.5

C. Residual translation contributions

The effect of the translational factors on the in-
teractions Q ~ is examined in Sec. IVA. It is seen
that through the translational matrix elements, the
interaction $„8 is redistributed according to the
collision velocity to give rise to the interaction

This effect of translational factor increases
with velocity. What happens to this effect if the
velocity is considerably decreased' At what ve-
locity can the translational effects be neglected?
To answer these questions, we examine here the
effect of the translational factors in the zero-ve-
locity limit.

In the v- 0 limit, the translational factors affect
the coupling interactions 'U„s (1) through the non-
orthogonality of the mixed atomic bases and (2)
by supplying the velocity dependence to the poten-
tial portion of 4 8 [see Eqs. (2.18)] which is veloc-
ity independent.

The nonorthogonal effect can be most easily ex-

O. I—

-0.I—

-0.3 I

0 5 I 0 I5 20 25
Internuclear Separation (ap j

FIG. 10. Internuclear-separation dependence of the
interaction'0~8 multiplied by a factor of Ro/z in the v=0
limit (residual translational effect) between states which
are radially coupled.
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0.5—

0-

-I.0 t I I 1
' ' I

0 5 10 I 5 20

Internuclear Separation (aoj

FIG. 11. Internuclear-separation dependence of the
interaction U„B multiplied by a factor of Ro/B in the v =0
limit (residual translational effect) between states which
are rotationally coupled.

25

are shown for the radial couplings and rotational
couplings, respectively. The residual transla-
tional effect can be seen by comparing Figs. 10
and 11 with Figs. 6 and 8. The results presented
in Figs. 10 and 11 are obtained using the rotating
atomic basis which affects the rotation coupling.

V. DISCUSSION AND CONCLUSIONS

With the interactions calculated, we are now in
a position to examine their general features in
connection with the current conceptual model for
electronic transitions in atomic collisions. One of
the basid questions of current interest concerns
the proper molecular electronic basis. We shall
discuss the adiabatic-diabatic question in connec-
tion with the noncrossing rule and dynamic corre-
lations between the separated and united atomic
states. The validity of the "coupling hypothesis"
which is a basic ingredient of the Landau-Zener
model for electronic transitions in slow-atom
collisions is examined in terms of the calculated
interactions. The characteristic features of the
radial and rotational couplings are then discussed
in a phase-interference model.

A. Noncrossing rules and the adiabatic -diabatic questions

By examining the irreducible matrix for states
of a given symmetry, Wigner and von Neumann
have shown that the crossing of states of the same
symmetry requires the specification of two (three)

physical parameters of the real (complex) Hamil-
tonian. " The adiabatic electronic Hamiltonian of
a diatomic colliding system has only one physical
parameter, namely the internuclear separation A„.
consequently the adiabatic electronic states of the
same symmetry cannot cross. This rule is rigor-
ously applicable only when the matrix is truly ir-
reducible; i.e. , there exists no relationship be-
tween the elements of the matrix other than those
which are a consequence of the Hermitian charac-
ter. This immediately excludes the application of
the noncrossing rule to systems which contain hid-
den symmetries and accidental degeneracies.

In practice hidden symmetries are difficult to
discover without first solving the system. In the
two quantum systems H and H,

' where exact solu-
tions are available for the electronic states, ac-
cidental degeneracies are found in both cases.
Consequently the noncrossing rule is not applicable.
In Fig. 2, it is seen that for the H, ' system, the
adiabatic H,

' electronic states of the same sym-
metry (e.g. , 2so 3do,-3po„-4fo„) cross freely.
For a general diatomic system where the questions
of hidden symmetry and accidental degeneracy is
not clear, the use of the noncrossing rule is un-
certain.

In analyzing diatomic collisions, one observes
that the details of the collision processes some-
times depend critically on the dynamic correla-
tions between the asymptotic atomic states and the
states of the united atoms. These dynamic corre-
lations can be examined in the adiabatic represen-
tation. In this representation, the correlations
between the separated- and united-. atom states
are given by the adiabatic electronic states. The
noncrossing rule, however, sometimes clouds the
correlation picture. To overcome this difficulty,
a diabatic representation in which states of the
same symmetry are allowed to cross is proposed
by Lichten. "

Since the introduction of the diabatic states,
there has been a great deal of discussion as to
which basis —adiabatic or diabatic —should be
used in calculations and in conceptual models.
Rigorous calculations involving diabatic states re-
quire a quantitative definition of the states. Many
different definitions may be made. " Since the ex-
act H,' electronic states of the same symmetry
cross freely, the adiabatic-diabatic question does
not exist in (p", H) collisions. For other collision
systems, one expects that the details of the molec-
ular states for 0&8 & ~ are less critical than the
correct correlation of the separated and united
atomic states in the A =0 and A =~ limits.

Consider a diatomic system with separated-atom
states f (here f denotes the product of atomic
states of the separated atoms) and united-atom
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q.(R,) = Q(R„)f., (5.1a)

(5.1b)q.(R,) = Q(R„O)Z„,

where the dependence on Ro and electronic coor-
dinates are not explicitly shown. From the rela-
tion Q(0, ~) =Q(O, R)Q(R, ~), we have

X„=Q(O, )f„. (5.1c)

Thus the dynamical correlations between the sepa-
rated and united atomic states may be represented
by Q. By the use of the relation

Py, ) f, =O(R, )gf .=Q(R„) (5.2)

and the functional form of 'U„B given by Eqs. (2.17),
the interactions g 8 take the general form

'O„, =(f„( Q VQ — V (f,), (5.3)

states +. We may suppose that a set of molecular
states q can be generated from these atomic states
by a unitary operator Q(R„R,'),"

g R c
n n 0&R0

(5.4)

where the term R, bh /BR, is zero at RO=O, R, =~,

matrix elements are smaller between states that
cross than between states that do not. A plot of
these radial couplings (multiplied by a factor of
Ro/z) is given in Fig. 12 together with the differ-
ence in electronic total energy (denoted by 8) and
in kinetic energy (denoted by X) between the cor-
responding states. It is seen that the maximum of
the matrix elements between states that cross does
not occur at the crossings. Between states that do
not cross, the radial couplings are not largest at
distance of closest approach. The radial coupling
matrix elements, however, tend to be largest
where the difference in the electronic kinetic en-
ergies is minimum. By the use of the virial theo-
rem, the electronic kinetic energy X may be ex-
pressed in terms of the electronic energy 8„(S„

—W„),

where 7'~ and 7' are the translationaL factors, and
V and V' are the interaction operators, which are,
for example, the operators in the matrix elements
of 8 8 of (2.18). This suggests that the dynamical
correlations between the separated and united
atomic states can be introduced in the interaction
'0„8 zvithout the explicit use of molecular states.

I.O

—1.0
—-40

B. Qualitative features of the nonadiabatic interactions

The current model for electronic transitions in
atom-atom collisions is based heavily on the
"coupling hypothesis" which states that the non-
adiabatic transitions are directly correlated to the
distance of the closest approach of the electron
state energies. This hypothesis is the basic in-
gredient in the Landau-Zener model" for elec-
tronic transitions in slow collisions. The "cou-
pling hypothesis" is supported by stationary phase
arguments for cases where the phase of the nu-
clear wave function (coming from the diagonal
interactions) oscillates everywhere much more
rapidly than the nonadiabatic interaction except
at the distance of closest approach of the energies.
For cases where the nonadiabatic interactions are
large at the distance of closest approach of the
electronic states, the "coupling hypothesis" is
automatically satisfied. Thus the study of the
general behavior of the nonadiabatic interaction
can provide valuable information on the region of
validity of the "coupling hypothesis. "

The radial couplings of the nonadiabatic inter-
action couple states of the same symmetry. The
striking feature of the radial coupling is that their

-2, 0

2.0

-B.O

—0.2

—
I .0

-2,0-

5.0
2.0
I.O
0

-I.O

-2.0
-3.0
-4.0—
-5.0—
-6,0

0

—-0.2
—-0.4
—-0.6
--0.8

—I.O

1.0

—-1.0

I I I I I I I I -2.0
5 I 0 I5 20 25 0 5 I 0 15 20 25

FIG. 12. Nonadiabatic radial matrix elements
z ~ (p, R y8)R xl0x Bo/z, the difference in total energy,

0
and the difference in kinetic energy —4, 8, and X, re-
spectively —as a function of internuclear separation (in
ao) between the states (top to bottom, left to right) 2po'„-
3po'g, 2po'„-4fo„, 1so~-2scrg, 1sog-3da~, 3po„-4fo„, and
2 sog-3d(Tg.
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8.0 3.0

2.0

and R, =R~ ~, the equilibrium distance of state n.
Thus the closest approach of the total electronic
energies is not in general at the same internuclear
separation as the closest approach of the kinetic
energies. These features of the radial coupling
are not in favor with the "coupling hypothesis" ex-
cept at low energies where the phases control the
transition.

The rotational couplings which arise from the
rotation of the quantization axis allow the coupling
between states which differ by one unit in m. The
rotational couplings, unlike the radial couplings,
are dominated by their united-atom and separated-
atom limits when the states are degenerate there.
In Fig. 13, the rotational matrix elements (multi-
plied by a factor of R',/B) are plotted together with
the difference in electronic total energy (denoted
byb) and in kinetic energy (denoted by X) between
the corresponding states. It is seen that the 3do~-
3dn and 2Po„-2pm„rotational matrix elements are
largest in the united-atom limit where the states
are degenerate. For the 2so -3', 3p0„-2pm„, and

4f o„-2pw„matrixelements between states that are
degenerate in the separated-atom limit, the inter-
actions are largest asymptotically. This is more
apparent in Fig. 7 where the spurious long-range
interactions are taken out so that the maximum is
transmitted to the small R, region. Thus, the
rotational couplings which couple only states of
different symmetry are more compatible with the

coupling hypothesis.

C. Phase - interference model

In general the rotational couplings are of shorter
range than the radial couplings. From Pigs. 6 and

7, it is seen that matrix elements vary significant-
ly over a distance of -2ao for the rotational coup-
lings (including the B/R~o factor) and a distance of
-10go for the radial couplings. This difference in
oscillation range can be significant in considering
the interference with the phase of the nuclear mo-
tion. At low energies, this interference gives rise
to the stationary-phase arguments. At higher en-
ergies, this interference continues to be impor-
tant.

The interference can be examined from Eq. (1.2).
After removing the asymptotic phases which do not
depend on z, the function A„s can be written as

4.0—

I.O

A„a =i'„s[cos4s (z, B)—i(z/~z ~)sinC 8„(z,B)],
(5.5)

with

-4.0
2.0

-1.0

i 1.0

1.0—

—1.0

1.5

-2.0

1.0

—-1.0

0 5 I I I I -2.0
0 5 10 15 20 25 0 5 10 15 20 25

FIG. 13. Nonadiabatic rotational matrix element
z ~ (y~, '7

R y8)R x 80/B, the difference in total energy,
and the difference in kinetic energy —A, 8, and X, re-
spectively —as a function of internuclear separation (in

ao) between the states (top to bottom, left to right) 1so~-
3dn~, 2s0~-3dm~, 3do~-3dm~, 2p0„-2p7t„, 3p0„-2pm„, and
4fa.„-2p n.„.

e, (z, B)=—— ' (u, —u ) dz .
v o

(5.6)

In the absence of the translational factors, iQ 8
are essentially real. By iterating Q„ in Eq. (1.1),
it can be shown that for interactions which are
even functions of z, such as rotational couplings,
the dominant contribution to Q comes from the
cosC z (z, B) term. For radial couplings which
are odd functions of z the sinks (z, B) term gives
the dominant contribution. With the inclusion of
the translational factors and for ig 8 becoming
complex, the picture is slightly modified but the
qualitative feature remains much the same.

This suggests a simple qualitative model in

which the radial couplings are weighted by the
sine function of the nuclear phase 4& and the ro-
tational couplings are weighted by the cosine func-
tion of the nuclear phase. The wavelength of the
nuclear phase is proportional to the relative nu-
clear velocity [see Eq. (5.6)]. As the wavelength
changes with velocity, the nuclear phase may in-
terfere constructively or destructively with the
phase of the coupling interaction which is essen-
tially energy independent. By knowing the wave-
length of the phase of the coupling interaction, the
interference pattern can be investigated as a func-
tion of collision velocity.
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interaction will be present (see Sec. III D for de-
tailed discussion). These long-range interactions
appear explicitly in the transformation of the cou-
pled equations for the nuclear wave function from
a space-fixed to a rotating atomic basis.

With the use of eikonal approximation for the
nuclear wave functions, the coupled equations
given in Eqs. (2.16) take the form

d g gnawn g gn oa 8+ 8
CX a8

From the expressions of g 8 given by Eqs. (2.23)
and the equalities

Qla &&g. l= +la.'&&a.'I,

iv —4
8

(Al)
Qlf.&&f I

= Plf'&&f'I, (A2)

Multiplying (Al) by g, summing over o. , and not-
ing that g are not a function of z gives we have

Qr &.i~a= Q Q z'&&a'e'""8'~z'&R a. &elle *""'"'Qg &; +
as tX y'

+ g ++1&&gieigx 'rig&& g &ye leiPKi'r2+f )
st'

(A4)

With the help of Eq. (A4) and the transformation
given by (2.15), Eqs. (A2) take the form

iv —g g~ T. = gg„'&.'8T8,
f&f ag

where 'U„'8 are now expressed entirely in terms of
the rotating atomic basis states. The coupled
equations for the nuclear wave functions Y are
obtained by multiplying by g' and integrating over
the electronic coordinates. We have

If n is an s state, then the additional term will
vanish for all y. If n is a 2Pp or a 2P„,@ state, then

the matrix elements will not vanish. In particular,
we have

( dg cos p p

so that

d I, I d
SV Yg( = U~g Ta —iV g~ gy R Ty .

dz
8

(A6)

Equation (A6) differs from (A2) by the presence of
the &g'(d/dz)g&& term, in addition to that '0„'8 are
expressed entirely in rotating atomic states.

(A8)

The long-range interaction B/A', which is also
present in the Y»,(R,), T» (g, ) and T, (p, )
channel equations is due entirely to the transfor-
mation from the space-fixed to the rotating atomic
basis.
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