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We have investigated the electron-ion three-body collisional-radiative recombination for
electron temperatures below 4000 °K using the Mansbach-Keck rates of electron-impact-
induced transitions between hydrogenic energy levels of high principal quantum number. At
such temperatures and for a wide range of electron densities, the statistical recombination
process is simultaneously governed by collisional and radiative transitions between excited
levels near the ionization limit, where many atomic and molecular systems possess a hydro-
genic energy-level structure. In order to also take into account radiative transitions, we
have numerically solved a system of coupled equations, describing the quasi-steady-state
populations of 100 bound levels. These equations are expressed in, and solved for, the
first differences between the reduced population densities p (p), which improves the comput-
ing precision and establishes the location of the “bottleneck” in the recombination sequence.
Our results are consistent with the following approximation for the collisional-radiative re-
combination rate coefficient (in cm®sec™!): @ =1.55x10710 77%8+6,0x 1070 77218 [¢]%¥
+3.8x 10~ 7-45 [¢], where the electron temperature T is in °K and the electron density [e]
is in em™3; the first and last terms describe purely radiative and collisional recombination,
respectively, and the second term results from the complex interplay of collisional and radia-
tive processes. Agreement with experimental data is reasonable.

I. INTRODUCTION

The process of collisional-radiative recombina-
tion has been recognized to play a major role in
low-temperature plasmas since 1961 when D’An-
gelo,! Bates and Kingston,? and McWhirter® inde-
pendently suggested this complex model. Experi-
mental evidence supports the model for several
atomic and diatomic molecular ions such as H*
(Cooper and Kunkel®), He* and He} (numerous arti-
cles, for a bibliography see Ref. 5), Ne* and Ar*
(Veatch and Oskam®), Xe* (Vitols and Oskam’),
and Cs* (Sayer et al.?).

As indicated by its very name, coined by Bates
et al.,® this model takes into account both colli-
sional and radiative mechanisms in describing the
statistical process of electrons cascading from
free continuum states to the fundamental bound
level. The rate-limiting step in this process has
been localized to energy levels a few 27T below the
ionization limit, and at electron temperatures T
below 4000 °K all atoms except for the heaviest
(such as Cs) have a hydrogenlike energy-level
structure around this “bottleneck.” Thus a theory
worked out for a cold hydrogen plasma may be ex-
pected to be generally valid for the electronic re-
combination of all atomic ions at low temperatures,
as well as for the diatomic molecular ion He; (the
He, energy levels being hydrogenlike downto 1.5 eV
below the ionization limit).

The radiative transition rates for the hydrogen
atom have been extensively calculated on the basis
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of quantum mechanics, and the results have been
reviewed by Bethe and Salpeter.® In very tenuous
plasmas, recombination will proceed by radiative
electron capture, preferentially into the lower
quantum levels. This radiative recombination has
been theoretically studied by Seaton.!' In labora-
tory plasmas, however, energy exchanges through
electron collisions are expected to play an impor-
tant role as well.

Near the ionization limit, i.e., for large princi-
pal quantum numbers p, the correspondence prin-
ciple leads to the natural assumption that a strictly
classical treatment may be applied in computing
the electron-impact transition rates. The most
recent such computation, which involves a mini-
mum of hypothesis, is due to Mansbach and Keck.*?
They considered a system of one free electron and
one bound electron orbiting around a point core,
all behaving in accordance with classical laws
under influence of the Coulomb interaction, and
they used Monte Carlo trajectory calculations to
eatablish the rates of excitation and deexcitation
of highly excited states by electron impact. From
these rates they derived, in a continuum approxi-
mation and neglecting radiation, analytical expres-
sions for the equilibrium population distribution
among the excited levels and for the macroscopic
rate coefficient for this collisional recombination,
valid in the limit of high electron densities.

On a wide range of intermediate electron densi-
ties, collisional and radiative processes compete
to yield a collisional-radiative recombination rate
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which differ markedly from what would be ob-
tained if radiative and collisional recombination
were regarded as being simply additive. The
present paper is devoted to a detailed computation
of excited-states populations and of the recombina-
tion rate coefficient in this intermediate range.
The method of calculation shall be discussed below.
Recently, Johnson and Hinnov!® performed simi-
lar calculations, using a set of semiempirical
cross sections for electron collisional transitions
in hydrogen. These cross sections were adjusted
to bring experimental and computed population den-
sities into agreement, and they may therefore be
considered as relatively accurate for quantum lev-
els up to about p =8. However, it does not seem
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a priovi justified to extrapolate these cross-sec-

tion formulas to higher quantum levels, which are
of paramount importance for the recombination rate
at low temperatures.

1. FORMULATION OF EQUATIONS

In order to take into account properly both colli-
sional and radiative processes, we have adopted
the formalism of Bates et al.® in calculating the
rate of recombination between electrons and hydro-
genic ions. Thus an equation is written down for
each excited level with principal quantum number
P, describing its quasi-steady- state population
N(p) under influence of the various processes,

le] > {K(g,p)N(q) - K(p, )N (p)}+ [e]{K(c, p)[X*] - K(p, c)N(p)}

a#p

where [¢] and [X*] are the number densities of free
electrons and ions, respectively, K(p,q) is the
rate coefficient for the collisional excitation or de-
excitation process

X(p)+e—~X(g)+e, (2)

and K(c,p) and K(p,c) are the rate coefficents for
three-body recombination and its inverse, respec-
tively,

X*+e+e=X(p)+e. (3)

A(p,q) is the probability for a spontaneous radia-
tive transition,

X(p)~X(q) +hv 4)

and B(p) is the rate coefficient for radiative cap-
ture into level p,

X*+e—-X(p)hv. (5)

J

+3 Alg,p)N@@) - Y A(p,q)N(p)+B(p)ellx*]=0,

24 a<p

)

The principle of detailed balance implies that
K(g,p)elN5@)=K(p,)elNz(p) =R(p,q) ,
(6)
K(c,p)e][X*]=K(p,c)eINg(p) =R(c,p),

where N4(p) is the number density of hydrogenic
atoms in level p in local thermodynamic equilibri-
um (LTE) with the free electrons at temperature T
so that

2 3/2 2
Va0 (grg) E L elxds e, 0

where g(p) and g(X*) are statistical weights of the
pth bound level of the ions in the ground state, re-
spectively, and R is the Rydberg constant. Equa-
tion (1) may be rewritten in terms of the equilibi-
um transition kernel R(p,q), defined in Eq. (6),

2R (2,0 0@ - p(0)]+R(c, D)1 - p(p)]+ 3 Alg, PN 5(@)p(@) - S A, N (p)p(p) +B(p)e]lx*]=0,

a#p a>p

where we have introduced the ratio p(p) =N(p)/N(p).

Mansbach and Keck'? found for the equilibrium
transition kernel for hydrogenic energy levels

R(D,q) =120R,U*(p* /gt /"¢, g>p
9)
R(C,p) = 60R0U9'83p6'56 s
where U=kT/®; R, is a characteristic three-body

<y

(8)

f

collision rate related to the Thomson radius
Ry=[X"][e P(rT/m) /?(e*/kT)" . (10)

The probability for a spontaneous transition
from a hydrogenic level ¢ to a lower level p is
roughly?®

A(g,p)=1.6 x10'%"55 (sec*) (11)

for p >1. All radiative line transitions to the
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ground level p =1 may be omitted because of reso-
nance imprisonment in many experimental situa-
tions. The helium molecule He, is an important
exception, since its fundamental state is unstable
and dissociative.

The rate coefficients B(p) were obtained from
Seaton,™!

B(p)=5.197x10-[X S, (A)/U°%] cm® sec!
(12)

where the function X,S,(\), tabulated by Seaton, as-

J

?

q=2 r=1 r=p+l

where s represents the number of bound levels
taken into account.

The levels above s are assumed to be in LTE,
so that p(s)=1. Further, as the decaying plasma
is far from its final steady state, we put p(1) =
These lead to the following normalization of the
solution for £(p):

S E(p)=1. (15)
=2

The system (14) contains s — 2 equations for p=2,
3,...,s—1, which together with the condition (15)
yield a unique solution for the s — 1 unknowns
£(2), £3),...,(s).

The population distribution having been deter-
mined, it is possible to evaluate the rate of ion re-

]

-3(3 $R(p, 1+ ZA(p PNG(B) = 3 Alr, PING()

sumes values in the range 0.2-0.9 for 0.1<1/Up?
<200. Above p=16 the term B(p)[e][X*] was ne-
glected, as compared with the collisional terms.

Near the ionization limit, the recombination
cascade between excited levels is mainly governed
by electron collisions, and depends on differences
of the form p(g) - p(p), where p(g) and p(p) are
both close to unity. To improve the computing pre-
cision, we introduced the differences £(p), defined
by

g(p)=p(p)-p(p-1). (13)

The system of Eq. (8) then transforms into

Ve + 3 (SR, +RE,p+ 2A<r PINz0) £@)

q=p+1 r=q

+B(p)lellx*]=
(14)

r

moval by recombination with electrons. In quasi-
steady- state, described by Eq. (1), the number
density of atoms in any excited level p is very
much smaller than the ion density, which ensures
that

afe]lx*]=- ZX1=EN (). (16)

However, in a plasma which is optically thick
towards the resonance lines the density of atoms in
the quantum level p =2 may become comparable
with the free-electron density, and the time deriva-
tive of N(2) should be added to the RHS of Eq. (16).
We now obtain two different ways of calculating the
recombination coefficient a defined in Eq. (16),

a3 SR s+ S0, (172)
b=2 ?=1 p=1
a=—e—]1[5{ ]<‘§; (q,z)NE(q)> £(2)+p(1) +B(2) +_Tf*— Z( Z [R(g,2) +A(g,2)N, (q)]> £(p). (1Tb)

In deriving the second expression we have omit-
ted radiative transitions from the bound levels ¢
to the fundamental level and neglected the corre-
sponding collisional transitions, as they are about
two orders of magnitude less frequent than transi-
tions to the second quantum level.

The system of equations in £(p) was solved in
double precision on an IBM 370/168 computer for
98 bound levels. The results of these calculations
will be presented and discussed in Sec. III.

r

III. COLLISIONAL-RADIATIVE RECOMBINATION
COEFFICIENT

From their Monte-Carlo trajectory results on
the electron-impact transition rates between vari-
ous energy levels, Mansbach and Keck!? derived
an analytic distribution function for the bound en-
ergies €<0 -

2
o p(e)]=7;—“v%%z—ﬂk, (18)
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where ¢=E/kT =-1/Up* and
W _(3.83)%(4.83 — €)(=€)**¢*

72~ 30R,(383-¢) s (19)
oW 130
227 R, (20

In the collisional limit of high electron densities
the function

7o R (21)

provides an excellent representation of our nu-
merical solutions for £ shown by the solid line in
Fig. 1. The curve has a relatively sharp maximum
at an energy €= -4.2, which may be interpreted as
the location of the “bottleneck” for the recombina-
tion process. Also, in this limit our calculated
values of the recombination rate constant @ are in
close agreement with the simple approximate for-
mula given by Mansbach and Keck,

Aoy =3.8X107°T(°K) *5[e] cm3sec™. (22)

As a test of internal consistency, it was verified
that Eqs. (17a) and (17b) give nearly identical re-
sults for the recombination coefficient @. A cor-
rect evaluation of Eq. (17a) requires that a large
number of bound energy levels be taken into ac-
count. The situation is illustrated by the dashed
line in Fig. 1, showing the net collisional recom-
bination rate

aa®)/le]={R(c, p)/[eFIX*I}H1-p(p)]  (23)

into each energy level p under conditions close to
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FIG. 1. Numerical solutions for £(p), obtained at
T =300 °K. Solid curve shows the result for [e] =10
cm™3, being close to the collisional limit. Dotted curve
represents £(p) for [e] =10° em™, illustrating the in-
fluence of radiation. Dashed curve shows the three-body
collisional recombination coefficient a:(p)/[e] into each
energy level p, for [e] =10 cm™. Note the important
contributions from highly excited levels (large p) to
the overall recombination rate. Energy scale: e=1/p"

the collisional limit, at T=300 °K. It may be seen
from Egs. (18) and (19) that for high quantum levels
[1 = p(p)] scales as p°+%¢, and hence with R(c, p)
given by Eq. (9), the partial recombination rate
a(p) decreases like p~3.

For electron densities smaller than 10'® cm ™
transitions to the p=2 level are mainly radiative,
and the collisional terms in Eq. (17b) are negligi-
ble. The remaining summation in Eq. (17b) has
the advantage of being rapidly converging, although
this does not remove the necessity of taking into
account a relatively large number of bound levels
in solving the system of equations. The s number
may here be reduced to about 30-50, well including
the “bottleneck” (curve £ in Fig. 1).

The existence of a bottleneck in the collisional-
radiative recombination sequence was first clearly
pointed out by Byron et al.** They discovered that
there exists a pronounced minimum in K(p,p~%)
x[e]Ng(p), located at p,~ (®R/3kT)*'2. When radia-
tive transitions are added, the location of p, is
shifted towards higher energies. The minimum
serves to limit the net rate of recombination to the
rate of deexcitation of the level p,.

If the recombination cascade between energy
levels were constituted only by collisional transi-
tions with Ap=+1, the quasi-steady-state assump-
tion implies that the rate of recombination be equal
to

alel[x*]=K(p, p - D]e]Ngp)E(D) (24)

taken at any level p. Hence, in this approximation
£(p) will have a maximum where K(p, p — 1)Nz(p)
has a minimum. After inclusion of collisional
transitions with | Ap| >1 and of radiation, this exact
coincidence may not be conserved. However, it is
the minimum in the total equilibrium deexcitation
rate which causes the transition from p=1to p=0
over a relatively limited range of energy levels,
and hence this group of levels, for which £(p) is
significantly different from zero, must clearly be
associated with the bottleneck.

Mansbach and Keck find for the total equilibrium
collisional deexcitation rate across an energy €

Re(€)=T8Ro(-€) %™, (25)

which has a relatively strong minimum at ¢,
=-3.83. By adding radiative transitions to this
crossing rate, we find that the resulting total
equilibrium collisional-radiative deexcitation rate
has a minimum at an energy €, which satisfies the
equation

3.75

—€,~3.83+1.056X1072 L (—e,)*%(=¢, —0.5)=0.

le]

-(26)

For all electron densities and temperatures con-
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sidered, the location of the maximum for £(p)
satisfies quite well Eq. (26).

The set of equations in the differences £(p) was
solved for a range of electron temperatures 250—
4000 °K and electron densities 10°~10*® em ™. The
effect of radiation on the distribution £(p) is de-
monstrated by the dotted line in Fig. 1, which rep-
resents our results for the electron density 10°
cm™ at T7=300 °’K. As compared with the collision-
al limit (solid line) the whole £ curve is shifted to-
wards higher quantum levels, resulting in an in-
creased ratio a/[e] [Egs. (17)].

In the limit of very low electron densities, Sea-
ton’s!! analysis yields a purely radiative recombi-
nation rate which for the electron temperatures
considered here can be well represented by the ex-
pression

Qg =1.55X1071°T(°K)™°-%*cm’ sec ™. (27)
rad

These radiative captures occur preferentially into
the lower quantum levels [see Eq. (12)], and at the
low electron temperatures considered here, they
add algebraically to the collisional-radiative mech-
anisms occurring at the bottleneck. In a wide
range of intermediate electron densities, spanning
eight decades or more, collisional and radiative
processes combine in a complex way so that for

the resulting collisional-radiative recombination
coefficient o,

(o 2N >acoll+arad . (28)

However, by adding one more term to the ex-
pression for o, we find that all our results in the
considered range of densities and temperatures
can be reproduced to within 10% by the simple
formula

g =1.55%x107107 7083 1 §,0x 10797 ~2+18[¢ 0.
+3.8x107° T *5[¢] cm®sec ™, (29)

Qualitatively, the second term in this expression
arises from the shift of the bottleneck position due
to radiative transitions, leading to an increased
deexcitation rate across the bottleneck. The con-
venient expression, where 7 is in °K, is easily
evaluated with pocket calculators and replaces the
usual tables for the collisional-radiative recom-
bination coefficient.

The recombination rate coefficient o, being a
function of both [¢]and T, can be represented by
a universal two-dimensional plot with coordinates

chosen as
x=log,{([e]x10710)-0-258
gm{ [ ] } s (30)
y=10g10{([e]x10—10)0'163ac‘_ .

This plot is displayed in Fig. 2 along with the re-
sults of four helium afterglow experiments. Most

of the experimental data lie above the dashed line
representing the collisional limit given by Eq.
(22). Even if the spread in the experimental re-
sults is relatively large, they are reasonably
well approximated by the solid curve calculated
with the full expression (29).

The recombination coefficients calculated by
Bates et al.® and by Johnson and Hinnov*? cannot
be represented by single curves in the diagram
of Fig. 2. We have compared in Table I some
representative experimental results with the vari-
ous theoretical predictions. The early measure-
ments by Hinnov and Hirschberg!® seem to support
the calculations of Bates et al., whereas later
measurements, in general, yield smaller recom-
bination rates. The computations of Johnson and
Hinnov'® lead to results that are significantly
smaller than the measured values, the disagree-
ment being particularly large with respect to the
low -temperature results of Collins et al.'® The
results of the present calculations are in good
overall accordance with the experimental data.

IV. CONCLUSIONS

We have combined the recent results of classical
Monte Carlo trajectory calculations for the rates

22 24 26
X

FIG. 2. Universal curve, representing the collisional-
radiative recombination coefficient @ as a function of
electron density and temperature (solid line). When the
coordinates X and Y are chosen according to expressions
(30), this curve represents well the results of present
calculations. For comparison some experimental re-
sults are given, transformed by expressions (30), and
coded as follows: y Hinnov and Hirschberg (Ref. 15),
O+++0O Collins et al . (Ref. 16), X Robben et al. (Ref. 17),
® Stevefelt and Robben (Fig. 18). The dashed line rep-
resents the collisional limit, Eq. (22).
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TABLE I. Selected experimental results compared with various theoretical predictions.

Qeor (10710 cm®sec™)

Experiment Johnson
[e] T a and
(em™3) (°K) (10~1% cm3 sec™?) Ref. Bates etal. Hinnov Present
6.2x 102 1510 3.6 15 3.3 0.86 1.6
2.3x 1013 2900 0.53 15 0.57 0.26 0.39
1.0x 10'! 370 29 16 42 3.4 12.4
1.6x 10 3250 0.19 17 0.28 0.14 0.21
6.6x 103 1975 3.4 17 6.6 2.1 4.0
1.7%x 10 1275 5.4 18 16.5 3.6 7.1
1.7x 10" 2000 0.94 18 2.0 0.67 1.2

of electron-impact-induced transitions between
highly excited hydrogenic energy levels with the
probabilities for radiative deexcitation in a set

of coupled rate equations for the various excited
levels. The first differences between the Saha de-
crements for adjacent levels are taken as inde-
pendent variables, extending the system to include
100 bound energy levels.

In the collisional limit of high electron densities,
the computed values of the recombination rate co-
efficient o are in good agreement with the simple
approximate formula given by Mansbach and Keck,
whereas in the low electron-density limit we adopt
the rate of radiative recombination calculated by
Seaton.!! In a wide range of intermediate electron
densities, spanning eight decades or more, where
collisional and radiative processes combine in a

complex way, the resulting collisional-radiative
recombination coefficient can be represented by

a simple formula containing a third term in addi-
tion to the two describing pure collisional and

pure radiative recombination, respectively. In-
clusion of this term improves the agreement with
experimental data obtained in the helium afterglow.
This agreement is generally better than what is
found for the theories of Bates et al.® and of John-
son and Hinnov.?®* We believe this to be due to the
more correct treatment of collisional transitions
between high-p bound energy states, performed by
Mansbach and Keck.!? An independent measurement
of the electron-impact transition rates between
these energy states, which are in general close to
Saha equilibrium with each other and with the free
electrons, would be highly desirable.

*Work partly supported by Direction des Recherches et
Moyens d’Essais under contract No. 73-34-380.
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