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The recently introduced Jacobi or J-matrix techniques for quantum scattering are developed to
include the construction of exact analytic matrix elements of regular and Coulomb partial-wave
zeroth-order and full Green's functions. Very simple results obtain for the unperturbed Green's
functions, while full Green's functions require a single diagonalization of an N )& N Hamiltonian
matrix, where N is the number of basis functions coupled by the matrix truncated potential. In
an application of the J-matrix Green s functions to the theory of atomic dynamic polarizabilities,
the analytic result for hydrogen is derived, and it is shown how more general systems may be
treated in a way which is superior to the usual ¹erm variational approach. In an application
to error bounds for phase shifts, we show how the full Green's functions can be used to dem-

onstrate the absence of false pseudoresonances in J-matrix scattering calculations, and bound the
possible errors in computed phase shifts.

I. INTRODUCTION

The 4-matrix technique was introduced recently
as a natural and analytic approach to quantum
scattering theory using infinite sets of L2 Slater-
type basis functions for the projectile wave func-
tion. '2 The original s-wave theory'2 has been
generalized to all partial waves and to oscillator-
type basis functions, ' making the approach com-
plete, viable, and well suited for electron-atom
and nuclear collisions. Refer ence 3 also contains
results for the partial-wave Coulomb case using
Laguerre (Slater)-type basis sets The .goal of
these papers has been the construction of exact
scattering wave functions for mell-defined model
Hamiltonians which approximate physical Hamil-
tonians to arbitrary accuracy. This has been ac-
complished through the ability of the ~-matrix
techniques to account for the continuum solution
of the unperturbed Hamiltonian without any ap-
proximation even though a discrete L2 basis set
is employed. The coupling potential is the only
quantity approximated in the theory. It is trun-
cated and represented as an NxN matrix V~ in
the basis set. The infinite matrix problem (H,
—E+V")g—= (&+V")g =0 is solved exactly, yielding
the desired wave functions. ~ is an infinite tri-
diagonal Jacobi matr ix.

In this paper we focus attention on Green's func-
tions rather than wave functions. The two are, of
course, closely related. Basically, we wish to
learn how to invert the infinite matrix (&+ V"), i.e.,
we seek G"=-(&+V") '. Whereas the Green's func-
tion is not required in practice in order to con-
struct wave functions, it does serve several other
useful purposes. We focus attention here on two

applications, namely atomic dynamical polarizabil-
ities and error bounds for ~-matrix phase shifts.

Phase-shift error bounds, ' and, in particular,
the problem of false pseudoresonances, ' "have
played an important role in the theory and applica-
tion of algebraic variational methods in quantum
scattering since Schwartz's discovery of the false-
resonance problem in 1961. While several meth-
ods are available to circumvent the difficulty in
algebraic variational schemes, the pseudoreso-
nanees can still cause problems in applications of
these algebraic methods.

The ~-matrix methods differ from the algebraic
variational theories" in that the operator inducing
the continuous scattering spectrum, namely IP,
is treated exactly rather than by the ad hoc addi. -
tion of continuumlike basis functions to an I2 basis
set. A J-matrix pseudoresonance would appear
less likely since the Hamiltonian which is solved
approximates the exact Hamiltonian in a well-
defined and uniform way. In Sec. V it is shown
that, provided a certain error estimator is less
than unity, false resonances cannot occur (nor
can real ones be missed!). The error can always
be made small by enlarging the basis set used to
describe V".

Another application of the Qreen's functions, to
atomic polarizability, reveals that with the aid of
the Coulomb ~-matrix wave-function results, ' we
can obtain dynamic polarizabilities which contain,
for example, complete Hydberg series of singular-
ities characteristic of electron + core systems
such as the alkali metals. In contrast to the vari-
ational results, which yield N pseudopoles for N
input basis functions, the ~-matrix approach pro-
vides the correct quantum-defect behavior. This
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is because the Coulomb IP part of the problem is
treated analytically. This is discussed in Sec. IV
where some analytic formulas for hydrogen, de-
rived via ~-matrix theory, are also presented.

For completeness we review briefly the results
of previous work' ' in Sec. II. Section III shows
how to construct zeroth-order and full ~-matrix
Green's functions. The analysis and practical
effort is about the same as for the construction
of wave functions.

1 d' l (k +1) ZKp=- — +
2 dy" 2' y+ (2.1)

for the Laguerre-type basis set

$„(Ar) = (Xx)' "exp(- —,
' Ar)L2' "(Ar),

and

1 d' l(l+1)
2 dy2 ' 2y2

(2.2)

(2.3)

fol

y (X~) = (Z~)' "exp(- —,
' X2r 2)L,„' '»2(Z2r 2) (2.4)

which is an oscillator basis. Writing

II. REVIEW OF J-MATRIX THEORY FOR WAVE

FUNCTIONS

In this section we briefly review the develop-
ments of Refs. 1-3 which are mainly concerned
with the construction of wave functions, from
which scattering information can be obtained. The
key to the procedure lies in a choice of an un-
perturbed Hamiltonian IP which has a tridiagonal
(Jacobi) matrix representation in an appropriate
complete I,' Laguerre (Slater), or oscillator basis
set. The original s-wave theory'' for Laguerre
basis sets has received generalization' to all par-
tial waves and to H"s with Coulomb tails.

The unperturbed Hamiltonians, which so far
have yielded soluble ~-matrix forms, are

C(r) = cos(kr ——,
'

ln) . (2.7b)

In the partial-wave Coulomb case we have'

S (r) - s in[kr + t ln (2kr) ——,
'

l v + o, ],
C (x)- cos[kr + t ln(2k') ——,

' l w + o, ],
(2.8a)

(2.8b)

where 0, is a Coulomb phase shift. "
Equations (2.6), together with (2.5), are equiv-

alent to the infinite-matrix problem

(2.9a)

and

(2.9b)

where J„=(g„lH', ——,'k'l Q~) and where p„= p~„,.
Since J„—= 0 if l& —ml )1, it is easy to see that
Eqs. (2.9) are three-term recursion relations for
the coefficients s„and cn. These second-order
difference equations in the variable (n) are com-
pletely analogous to the corresponding second-
order differential equation in the variable (r).
Both have two linearly independent solutions. Cer-
tain well-known special functions are identified as
obeying the same recursion relations generated by
the matrix ~. The coefficients s„and c„are nec-
essarily given in terms of these special functions.
To finally pin down the coefficients s„and c„ it is
essential to choose the proper linear combination
of the two independent special function recursion
solutions in order to assure that the boundary con-
ditions (2.7) or (2.8) are satisfied. The value
of P in Eq. (2.6b) and Eq. (2.9b) is fixed by Eq.
(2.7b). The reader is directed to Ref. 3 for a more
complete discussion of the detailed H' solutions
in the general case.

Here we shall quote some results which are use-
ful for the sections to follow.

Case I: Laguerre basis set, H', = ——,'d'/dr'
+l(L+1)/2r2:

s„(&)=
& 2& 2

(sin9)' 'C„' '(cosg),
2' I'(l+ 1)n!

S(r) =Q s„p„,
n=p

C(r) = P c„P„,
n=p

it is possible to solve the equations

(y.lHO, --,'k'ls) =o, m=0, 1, . . . ,

(2.5a)

(2.5b)

(2.6a)
where

—2'I'( l + 2)n! 1—
~el'(n+2 l+2) (sin9)'

(2.10a)

(2.1Ob)

x,F, (- n —2 l —1, n+ 1; ~ —t; sin' 2 &),

(y, lHi --'k'IC& =Ps o,
(PJ H, ——,'k'lC) =0, m=1, 2, . . . , ~

(2.6b)

(2.6c)

S(r) = sin(k& ——,
' lm), (2.7a)

subject to the boundary conditions (in the non-
Coulomb case)

C„' '(cos&) is a Gegenbauer polynomial, "and
,F, (—n —2 l —1, n 1;—,+' —l; sin' —

2 8) is a hyper
geometric function' ' which is a finite polynomial
in sin' ~8.

Case &I: Laguerre basis set, H', = —,'d'/dr'—
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„le~a, e i28- ~- ( +i)e
s„(0)+ic„(0)= -:"

I'(n+l +2 —it)2'(sine)'

where

x,F,(- l —it, n+1;n ~l+2-i t; e "0),

(2.11b)

(-1) for 0[0, v]

(+1) for 0[0, —n']

and P„(Z;a; b) is a Pollaczek polynomial. ' "~
Case III: Oscillator basis, H', = ——,

' d'/dr'
+ t(t +1)/2r'.

—1 "n!v2~
I' n+I+ 2

(2.128)

2 ' ' I'(l+-,')(-1)"n!
c„(R')= —

I
' I, '

exp(- q'/2)0 '
I' n+I+ ~

+ l(l+ 1)/2r'+Z/r (Coulomb Case):

s„(0)= 2 n!
I
I'( I + 1 —it }I e&'I"'"&'e«

x (sine)' "P„'"(cose; 2Z/~; —2Z/~),

(2.11a)

sion relation after the starting values have been
given. The equation can be arranged so that a
single diagonalization of (H;+ V ")„„„servesto
specify the exact results at all energies in terms
of a few simple quantities. ' '

From here, one can build in several directions.
Multichannel scattering, ' ' the problem of ex-
change, ' and variational correction' ' of the re-
sults have previously been considered. Finding
the Green's functions for the ~-matrix equation
represents yet another direction which we now

pursue.

(H', ——,
' k')G0 (r, r '; k) = 5 (r —r'), (3.1)

where H', is of the form (2.1) or (2.3). The solu-
tion of this equation is given in terms of the regu-
lar S(r) and irregular C(r) (sinelike and cosinelike)
solutions of the corresponding homogeneous equa-
tion. Specifically, we have, for the outgoing
Green's function,

III. J-MATRIX GREEN S FUNCTIONS

We shall deal first with the unperturbed partial-
wave Green's function. In coordinate space,
these satisfy the equation

x F,(- n —!——,', —,
' —l, q'), (2.12b)

2S (r, )[C(r, ) ~ iS (r, )]
W(S( ), C( ))

(3.2)

(H', +V- —'k')P =0

by finding the e~~c~ solution to

(HO VN & k2)yE 0

where

N-1
v"= g 14„)&4„lvl4„,)&4„, 1

rl yrt =QI

(2.13)

(2.14)

where q =k/&.
With these solutions in hand, one can aPPxoxi-

mate the wave function g in

where IV(S, C) is the Wronskian of the regular and

irregular solutions, which is independent of &.
The J-matrix analog of Eq. (3.1) is obtained by

putting (3.1) in the appropriate L basis set. This
yields simply

Q &e. IHi l k'le.—- &&7.-I Gg"Ie.&=&0. I t.&

n, n' =0, 1, . . . , , (3.3a)

or, more compactly,
and Q„ is the orthogonal complement of p„, i.e. ,
&e. I e.) =&0. I y„) =5„„.." The exact solution of
Eq. (2.14) is obtained by writing

g" = 4 ~S(r)+ tC(r),
where

n'

Clearly,

G', ' (n", n; k) =& p„- I (J &'~ )-'I y„)

(3.3b)

a„„,$r = s„„,gy
n =p

(2.15)
It then turns out that Eq. (2.14) can be satisfied in
terms of (%+1}linear algebraic equations involving
the (%+1)unknowns (a„, tft."

The method is simple to execute in practice.
The various polynomials and hypergeometric func-
tions are easily generated via the J-matrix recur-

(3.4)

so our burden is to invert the infinite tridiagonal
matrix ~, with attention given to the proper bound-
ary condition (i.e., incoming, outgoing, or prin-
cipal-value Green's function). Note the juxtaposi-
tion of basis functions and their orthogonal com-
plements in Eq. (3.3a}. This arrangement is im-
portant in the Laguerre case, since we have"

p„(Xr)= (Xr)' "exp( ———,
' Ar)Li" "~(Xr), (3.5a)
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p„(Xr)=—(Xr)' exp(- —,
' Ar)L ~"" (Xr)

)&[Xn!/r(2 l+n+2)].
The J matrix is evaluated entirely in the Q„basis,
which is no~ orthogonal, but possesses a tri-
diagonal overlap matrix. This was the case in
Refs. i-3 also.

The easiest equation to work with is (3.3b), which
is very similar to the wave function case, differing
in the inhomogeneous term. In direct analogy with
the coordinate space Green's function, Eq. (3.2),
we suspect that the regular and irregular solutions
(S and C, respectively) can be used to construct
G', ~'

()n, n'; k), using a "greater than, less than"
switching prescription to create a &„„ term on
the right-hand side. Let us try

Go,
~'!

(n, n'; k) = n(k)s„(c„+is„), (3.6)

where o.'(k) is to be determined and where s„and
c„are given by the appropriate expression (de-
pending on Ho, and the basis set) found in Eqs.
(2.10)—(2.12). Finally, n( is the lesser of n and
n', and n) the greater of the two.

Fixing &' and examining

g J„„G',(+!(n", n'; k) = &(k) g J'„„s„(c„+is„,),
n" =0 n II-0

(3.7)

we can see that if n(n' —1 or n)n'+1, Eq. (3."I)

gives zero. This follows from the tridiagonality
of ~ and the fact that the s„'s and c„'s obey the
corresponding three-term recursion relation.
This leaves the n=a' case, which is

(k) [ n' 5' -isn'-1(cn'+ ll' }+ n'n' n' ( it'+ n')

+J„i „„s„(c„„+is„„)]=1,
(3.8)

where we want to choose o.'(k) so that the inhomo-
geneity is unity, as indicated. Using the recursion
relation, we can rewrite Eq. (3.8) as

o'(k) J„. „. ,[s„. , (c„.+is„)—s„.(c„. , +is„. ,)]

However, P is fixed by the requirement that
C(r)-cos(kr ——,

' lv) (non-Coulomb case) as r-~.
This requirement yields' '

P = -W/2so, (3.13)

Let us suppose thats' is large while r is small.
Then the nature of the basis functions (i.e. , their
over-all coordinate space dependences as a func-
tion of n) dictates that only large n' contribute to
P„.(r'), while small n contribute to predominantly
to P„(r). Thus, this heuristic argument allows us
to write

G', "'(r, r'; k) -=——Q s„p„(r)

X Cn' +ZSn' n

n'

= ( 2/W}S(r)[C(r') +iS(r') ]

since contributions to the equation above for n~ g'

are small.
Turning now to the full Green's functions, we

want to find

where again W is the x-space Nronskian of the
regular and irregular solutions. Equation (3.13)
fixes a(k), and we have finally

GP"(n, n'; k) =-(2/W)s„, (c„+is„,). (3.14)

The correspondence with Eq. (3.2) could not be
more complete. Simple substitution into Eq. (3.14)
for any of the cases I-III listed in Sec. II provides
the appropriate unperturbed J-matrix Green's
function.

As further evidence that indeed

(y„ i
G', "'g„,) = -(2/W) s„,(c„,+is„,),

we can work backwards from n space into r space,
writing

( ) q' ~'-i[St'-icq' Sq' C~'-|]

(3.9)

Again, using the recursion relation, we have

&(k)J„,„. ,[—s„,c„,+s„,c„,] =1

G"'+'(n n'k) -=(y„~ (J"'+V")-'i y„,),
or equivalently to solve

Q (J„„.+ V"„„.)GP"(n", n'; k) =5„„~.
n II

(3.15)

(3.16)

and successive application yields

o'(k) [s,p] =1,
where we have used Eq. (2.6b), i.e. ,

00 0 Ol

(3.10)

(3.11)

(3.12}

The J-matrix wave function which solves
(J+ p")g =0 and which goes asymptotically as

g- cos5 sin(kr ——,'lv) +sin5 cos(kr ——,'lw) (3.17)

(with a similar expression in the Coulomb case)
we designate the regular full wave function g„„.
Similarly, we can imagine obtaining an irregular
wave function g,„,„which goes asymptotically like
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(~+ V")0;„.,=y4. , (3.19)

where the asymptotic form (3.18) is imposed with
5 fixed from Eq. (3.17), and y to be determined
so that (3.19) and (3.18) are satisfied. The Eq.
(3.19) leads to a J-matrix problem similar to the
usual equations for the wave function g„„, where
now y appears (instead of t =tan5) as the (N+1)st
unknown in the set {a„,y}; so that f,„„„hsathe ex-
pansion

=g „a„P„+sin6S(r) +cos6C(r)

g,„„„-sin5 sin(kr ——2tw) + cosh cos(kr ——,
'

lm),

(3.18)

where 5 is the same as in Eq. (3.17). The irregu-
lar J-matrix wave function can be obtained, in
analogy with the problem of obtaining the cosine-
like solution for the zero-order Hamiltonian II„
by solving

(d+ V")@=1+b,

where

I „„,= -(2/W)6, , „Z„,,It„,(1„+iIt„).

(3.24)

In Eq. (3.24), all quantities are NxN matrices
(1 stands for the NxN unit matrix). Solving this
matrix problem, we have the desired elements
g„„.= GP'+'(n, n'; k) for n, n' ~ N- 1. Remembering
that J is a matrix composed of elements of H', —E
in the basis, we can avoid having to resolve Eq.
(3.24) for each desired energy E by using the same
prediagonalization technique used in Ref. 1 for the
wave function.

This completes our analysis for the matrix ele-
ments of G', and G~ in the J-matrix 2 Lbasis, and
we turn to applications in the following two sec-
tions.

Equation (3.21) works for all but the N' elements
g„„., which we find by solving the equations gener-
ated by inserting the form (3.23) into (3.16). These
equations read

-=PI„y„.
n=0

(3.20)

IV. APPLICATION TO ATOMIC POLARIZABi LITIES

Gp" (n, n'; k) = -(2/W)ft„(f„, +tel„,) (3.21)

in analogy with the coordinate space form, for a
Hamiltonian H', (r) + U(r),

G',"(r,r'; k) =-(2/W)A(r, )[I(r,)+iR(r, )], (3.22)

where TV is the Wronskian of the regular and ir-
regular solutions. Unfortunately, for n and n'
~ N —1, this is not the case. The reason is that
the potential V„"„ is nonlocal (i.e. , has off-diag-
onal elements) in the n indices. This spoils the
"less-than, greater-than" prescription, as the
reader may verify. The same is true in r space
where a nonlocal potential V(r, r') appears in the
Hamiltonian: the form (3.22) no longer holds.

However, it is easily shown, along the lines of
the arguments given for the unperturbed Green's
functions, that Eq. (3.21) satisfies Eq. (3.16) if n
ox n' is greater than N-1. This is the region
where the off diagonal potential P" vanishes, al-
lowing the simple result given in Fq. (3.21).

For n and n' (N- 1, we have to do a little more
work to find G", "'(n, n'; k). For fixed n' (N 1, we-
write

The reader may naturally suppose that armed with

g,„„and g„„—=Q,R„p„one can construct the full
Green's function as

The usual expressions for atomic polarizabilities
(see below) can be written as L' matrix elements
of Green's functions. Since we now have the neces-
sary tools in hand to obtain such elements in ana-
lytic form, we can proceed to the J-matrix polar-
izability analysis. fn keeping with the single-chan-
nel discussion of the previous sections, we speak
here in terms of one-electron or one-electron-
plus-core systems. An interesting and potentially
very useful result of the analysis will be that a
complete Rydberg series of poles in the frequency-
dependent polarizability will appear in the J-matrix
results independent of the number of basis func-
tions used to describe the core potential. This is
in contrast to the usual N-term variational results,
which give N poles, whose positions, beyond the
first few, have little to do with the physical reso-
nant frequencies.

We first derive analytic results for the hydrogen
atom, using the Coulomb J-matrix Green's func-
tions derived in Sec. III. This is a "zero basis
function" J-matrix calculation, since there is no
potential in the problem other than those already
accounted for analytically in the treatment of H', .
Following this, we indicate the modification needed
to add a core pseudopotential.

The frequency-dependent polarizability o.(v) of an
atom can be written in terms of the quantities"

= -(2/w)ft„(f„+ft„),
n or n') N- 1. (3.23)

~ (o/z Jn)&n Jz io)
F.„—E, + un=l

(4.1)



12 THEORY QF J-MATRIX GREEN'S FUNC TIONS. . . 1227

where IO) is the atomic state for which n(&u)
=—n, + n is the polarizability. The sum on n ex-
tends over all atomic states of the system, includ-
ing the continuum, which connect with Z IO). For
hydrogen, Z =xcos0, and in the ground 1s state,
only l= 1 (P states) contribute, allowing us to write

~, =(y„IZG',('(r, r'; u, )z Iy„& (4.2)

where 6', ' is the L=1 Coulomb Green's function.
For frequencies of interest, below the ionization
threshold, k, = [2(Eo+ (d)]' ' is purely imaginary,
so we define ip, , =—0, for convenience. The outgoing
scattering Green's function G", ~(r, r'; k) for real
positive 0 goes over to the correct exponentially
damped Green's function G', ('~(r, r'; i p, , ) for posi-
tive imaginary k, . The Green's function appearing
in Eq. (4.2) corresponds, of course, to the hydro-
genic Hamiltonian

we have derived correspond to the Ricatti form of
the kinetic energy, —,d'—/dr'. Using the Ricatti
Green's function G',(', Eq. (4.2) becomes

a, = J J J dod~dr'y, .(r)r'c sDe

x G', ('~(r, r'; i p. +)r"cos8$„(r')

(4.4)

Choosing a scaling parameter A. =2 in the Laguerre
basis set, Eqs. (3.5), we find that

r'e "=3[go(2r) —Q, (2r)]. (4.5)

From Eqs. (4.4) and (4.5), it is seen that n, is ex-
pressed in terms of a few matrix elements,

o., =-', x9 x [G',(' (0, 0;i p. , )
1 d, d 1 1

H =— —r2 —+———
dy dy' y' y

(4.3) —2G', (' (0, 1;i p, , ) + Go + (1, 1;i p, )] . , (4.6)

However, the J-matrix Green's function elements From Eqs. (2.11) and (3.14) with ip, , =0, we get

2n, ! Il (l+1+z/p. , ) I sin8,
i p, F(n& +2,i+2)

1g-c(n)+1) e~
xP„"'(cos8„2Z/A. , -2Z/h) '

~ F, ( 1+Z/p, , n&+1 ~ n +i +2+Z/~ e-»e~)

where

(4.7)

tron problem (which would be one way of approxi-
mating alkali-metal atomic polarizabilities, for
example), the Hamiltonian reads

Go(+j(1 1.i) x Go(+)(0 0. i)

Thus,

n= 2 x-,' x9(-,'+,-', )
9

0

2
Note the poles in G", ~(n, n'; ip) at the P-state hy-
drogenic energies, a, rising from the term in the
nume;ator

I
I (2 —1/p, ) I, (l=1, Z = -1).

If we now add a pseudopotential to our one-elec-

(4.8)

and /=1, A. =2, Z = -1 for the hydrogen ground-state
polarizability. Equations (4.7) and (4.6) provide
an analytic result for the frequency dependent po-
larizability of hydrogen. Similar solutions have
been provided previously" by direct integration of
the necessary matrix elements of the Coulomb
Green's function.

As a check on our results, we take the co-0 lim-
it and compare with the known value of o.(~ =0)=a.
We find that G', ('~(0, 1,i) =0, e's-0, and we obtain
further

0 = ——,+ Vp, (r) +, +—.l(t+1) z
(4.9)

We have allowed the pseudopotential V~, (r) to de-
pend on I; this would allow separate fits to the en-
ergy (and thus the asymptotic form) of the initial
state and the pole positions (energies) of the states
of differing symmetry which contribute to the po-
larizability. The importance of these parameters
for static polarizabilities has been emphasized and

demonstrated in the analytic theory and calcula-
tions of Adelman and Szabo. "

Several modifications of the theory given above
are needed when an additional potential not present
in H' is added. The pseudopotential must be trun-
cated in the N &&N matrix sense, leading of course
to the appearance of J-matrix full of Green's func-
tions 6", ' in the polarizability expressions, e.g. ,

o., = (y—„IzG","z
I y—„&. (4.10)

Further, in the example (4.10), for instance, the
state P—„is a ground s state in the presence of the
l =0 pseudopotential V~, and cannot be represented
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in general as the sum of just one or two J-matrix
basis functions. In fact, to account properly for
the importa, nt asymptotic behavior of Q

—„, it is
necessary that a sufficient number of terms be
included in the sum

o, =-p &0—,. i~ if.&G", "(~,s';~},)&O. IZ iy —„&.
nn'

exp(i&et) W(x) +exp(-iet)W(x), i.e. ,

(H'+ V+E, s (u)(f)' = -Wg, , (4.14)

where H'g, =E,g,. In Eq. (4.14), V and Ware
piecewise linear fits to the exact potential V(r) and

perturbation W(r). Then quantities such as n, ,

are computed as usual from

(4.11) I '(~) = &Q' I
W

I &.&, (4.15)

Of course, it is also required that the approxima-
tion used to generate p —„do justice to the correct
asymptotic form of this function. If P—„is a 8-ma-
trix bound stafe, then it is of the form"

Q~—, = Pa„p„
n =0

N-1
—= P a„P„+be(r),

n =0
(4.12)

where asymptotically e(r) satisfies H'„ thus as-
suring the correct long-range behavior of P

—„. The
coefficients a„appearing in

be(r) =—g a„P„
n=N

(4.13)

decrease exponentially with n for bound states, "
and this implies that the sums over n and n' in Eq.
(4.11) will converge rapidly after a certain number

of terms. Note that each term in Eq. (4.11) carries
with it the full Rydberg singularity structure pres-
ent in G", '~(n, n'; ig, ) (for H', which are asymptot-
ically Coulomb). The lowest-energy poles in G","
will be perturbed from a perfect Coulomb Rydberg
series as a result of the presence of V~p; for large
quantum numbers this will settle into a simple
quantum-defect behavior.

To find G"(n, n'; ip, , ) requires an NxN matrix
diagonalization. This is the same effort as in the
N-term Yariational treatment of polarizabilities, "
but in the J-matrix approach we get not N "pseudo-
poles" but a complete Rydberg series. The Ryd-
berg series of poles is accounted for in the J-
matrix approach because the Coulomb-O' Hamil-
tonian is treated exactly. Since this Hamiltonian
dominates asymptotically, the Rydberg series is
present. It should be noted, however, that this
has little effect on atomic properties dependent on

o(&u) for v lying far from the "inaccurate" varia-
tional poles, since the variational pseudopole sums
perform well under such circumstances.

It is interesting to compare the J-matrix ap-
proach to polarizabilities treated above to the nu-
merical method of Alexander and Gordon. " These
authors directly solve the Schrodinger equation
for the first-order wave function P' in the pres-
ence of an harmonic time-dependent perturbation,

where a, = L' for W=~cos&. This approach also
enjoys the advantage that the anomalous disper-
sion region is correctly treated. In fact, our re-
sults could also have been cast in the form (4.14),
(4.15) where now V and W become Vr and Wr, the
truncated X &&N matrix approximations in the J-
matrix basis set. It is felt that the J-matrix ap-
proach has some advantages over coordinate-space
techniques, however, since nonlocal potentials
(such as those which occur in the coupled Hartree-
Fock equations) are more easily treated by basis
set methods and since the result is given in analy-
tic form for all ~ in terms of the parameters of a
single matrix diagonalization. The J-matrix ap-
proach thus combines some of the best qualities
of the variational and "numerical" methods.

V. APPLICATION TO ERROR BOUNDS FOR J-MATRIX
PHASE SHIFTS

The Kato identity4

tan5 =tan5, —(2/k )&(, iH E i g,&-
+(2/k) &~qiH —E i ~q& (5.1)

= tan5„—(2/k) &Q" i
V"

i t}»,

where

(Ho + VN) qN 0

(5.2)

(5.3)

serves as a basis for many theoretical treatments of
phase-shift error bounds. In Eq. (5.1), 6 is the
exact phase shift and g is the exact wave function at
energy E for the Hamiltonian H, (, is a "trial"
wave function behaving as g, - sink~+tand, cosk&
(~-~), and 6g-=g, —g. The term (2/k)&g, iH-Eig, &

serves as a useful "Kato correction" to the initial
value for the tangent of the phase shift, tan5, . An

appropriate bound for the term (2/k) &b,g iH —Ei 6g&

must be found in order to bound the difference be-
tween tan5 and tan5„and discussions about error
bounds naturally center around this term. Our
treatment will deviate slightly from this in that,
because of the nature of the J-matrix "trial" func-
tion, we can use a simplified form for Eq. (5.1),
namely

tan5 = tan5„—(2/k) &q" i
V"

i
g"&+ (2/k) &&g IH —E

I &g&



12 THEORY OF J-MATRIX GREEN'S FUNC TIONS. . . 1229

H =H+V +V

Our problem of bounding the difference
~
tan5 —tan5N

~

reduces to that of bounding the last term in Eq.
(5.2). The last line of Eq. (5.2) is simply a ver-
sion of the two-potential formula, where V" + V"
= V. We are taking advantage in Eq. (5.2) of the
fact that the J-matrix wave functions are exact so-
lutions of well-defined scattering problems [Eq.
(5.3)j.

The task of bounding the term (2/k)&g"
~

V"
~ g& in-

volves techniques introduced into scattering theory
by Scadron and Weinberg" in the course of the de-
velopment of the quasiparticle method. The ap-
proach is quite simple to outline for the J-matrix
case which we do in the steps below.

The discussion is facilitated if we work with

wave functions of somewhat different normalization
than those of Eqs. (5.1) and (5.2). We define

gN - sin(kr + 5„)
sin(kr+5„) +tan(5 —5„)cos(kr +6N),

(5.5)

and

tan(5 —5„)= -(2/k)&g"
~
V (5 7)

which differ from gN and g by over-all factors.
With these definitions we have

qN + GNVBy

-sin(kr + 5„)—(2/k) &gN
~

V"
~ 1'& cos (kr + 5„)

(5.6)
where G" is the full principal-value J-matrix
Green's function. Thus, from Eqs. (5.5) and (5.6),

I
tan(5 —5„) I

= (2/k) I
&g"

I
V

&(2/k)i gN
i
yRJ qN&+&qN fyBGNyB J(N&~&qN i yBGNVRgNyRJ(N& +. . .

(2/k)(i &@" [
VR

i g "&I+
1
&q"

(
V"GN V"

] q N&
[ + " )

( (2/k)( f &g
N

f
VR

f q N&
i

+ Jf &g
N

[
(yR)l/2

fi
2

fi
(yB)1/2GN (yR)1/2

ii

+ ii &y
N

(

(yR)1/2
[[

2
ii

(yR)1/2f N (yR)1/2
i[

2 +. . .)
= (2/k)&O" I

y"
I e "&(1/(1 —IIKjl)} (5.8)

where K = ( yB) 1 2G (yB)1/2

The symbol ~(
~ ~

~~
stands for a vector or operator

norm, "as the case may be. Similarly, it may be
shown that

and free-free integrals. Computation of

[~K(~ = Tr(G"V")' = g (Q"V )'
n2 n

(5.11)

[tan(6-5„)+(2/k) &g") y" (g" &~

-. (2/»&ONI V" liN&(IIKII/(I- IIKIIH.

(5.9)
The advantage of the symmetric form for K is

that it is an L' operator, i.e.,
= TrKtK=Tr(VB) / G VBG (yR) /

—Tr(GN y RON VR) & 00 (5.10)

g a„@„cos6N+ cos5N $(r) +sin5N C(r)

where Tr is the quantum trace operation. Provided
we can calculate ([K(( and &P

N
(
V"

( P N &, and that
i)K [i

& 1, Eqs. (5.8}and (5.9}provide the desired
bounds. The term &g"

~

V" gN
& is just the Kato

correction term and can be computed by writing

requires knowledge of the J-matrix Green's func-
tion (Sec. III). We note the following facts about
()K~(: (i) As the number of basis functions used
for V" gets larger, V" =—V- V" gets "smaller, "
and ~~K~( is expected to follow suit. (ii) Near res-
onances for the Hamiltonian Ho+ V", G" will get
"larger" due to a nearby second-sheet pole in the
complex energy plane, "and ((K(( is expected to
follow suit. (iii) In going from E =~ toward E =0,
if H'+ V possesses a resonance not present in
H + V", then i~K(~ will become greater than unity,
and there will be no bound on tan(5- 5„), in accord
with a phase-shift error of g due to the missing
resonance. This phenomenon is, of course, relat-
ed to the failure of the distorted-wave Born ser-
ies, Eq. (5.8), to converge in this case.

In practice, it may be difficult to obtain an exact
result for ~~K(~ . However, for some potentials
V~ it may be possible to find M such that

and V~ = V- V". By using the explicit r-dependent
forms for $(r) and C(r), ' '

&gN ~

V"
~ gN& is obtain-

able in terms of certain bound-bound, bound-free,
P (P I

a„"„v'„„,I) M& z,
n, n' fn

(5.12)
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but others may depend too sensitively on sign can-
cellation in the sum

Q G'N VB

In this case a useful estimate of IIKII may be ob-
tained by summing Eq. (5.11) numerically (until a
reasonably well-converged result is obtained) or
by other means.

The clear implication of the analysis is that pro-
vided ((K(( & 1, no false pseudoresonances can ap-
pear in the J-matrix method. For a large enough
Wx N matrix V", ((K(( will always be less than uni-
ty. For electron-atom collisions at least, it ap-
pears that the size of N needed to assure a lack of
pseudoresonances is small indeed. Using very
small basis sets and fine energy searches such a
false resonance has not occurred in J-matrix work.
Of course, even if ((K(( & 1 there is no requirement
that pseudoresonances should occur.

VI. SUMMARY

We have extended the J-matrix scattering theory
to include construction of appropriate I.2 matrix
elements of unperturbed and full J-matrix Green's
functions. These Green's functions were in turn
used in applications to the J-matrix approach to
atomic-frequency dependent polarizabilities and to
establishment of error bounds and a discussion on
the lack of pseudoresonances in J-matrix phase
shifts.

The fully analytic nature of the J-matrix ap-

proach to scattering, and the fact that this ap-
proach does no violence to the operator H re-
sponsible for continuous spectra, Rydberg series,
etc. has made the analysis possible.

It is worth reemphasizing here that the J-matrix
methods, together with the R-matrix approach, "
are the only easily calculable specific realizations
of the general Feshbach formalism for scattering. "
In both 8- and J-matrix theories, the operator
H~o =Hope (in Feshbach's language) has simple
structure (albeit in quite different Hilbert spaces),
permitting analytic results. In the R-matrix ap-
proach Hpq is manif ested in the ~loch Z operator,
whereas in J-matrix theory H„ has but one non-
zero element. This simple structure of the unper-
turbed Hamiltonian, together with the solubility of
the Hz and H» problems, makes both A- and J-
matrix work analytically tractable.
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