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The low-lying excited states of He, have been examined using spatially projected generalized-valence-
»xid wave functions. Typically the excited-state potential curves are repulsive at large R (internuclear
distance) but exhibit an attractive well at small R. We find that the repulsion at large R results from
an unfavorable exchange interaction of a Rydberg orbital mostly on one He with the two core orbitals
on the other He. This arises from the restrictions on the molecular wave function ixnplicit in the Pauli
principle and is similar in nature to the repulsive pair-pair interactions between ground state He atoms.
For R & 3ao the Rydberg orbital is large coxnpared with R and the shape of the potential curve is
determined by core-core interactions. For the A 'X+ state, the calculated maximum in the potential
curve is 0.0607 eV at 3.09 A, in excellent agreement with experimentally derived values. Results are
presented for several other excited states.

I. INTRODUCTION

Although the ground states of rare gas diatomic
molecules have very small binding energies
(-0.001 eV for He, "; -0.02 eV for Kr, 'b) arising
from van der Vfaals interactions, it is known that
the excited states are often strongly bound (by up to
about' 2.5 eV) although highly excited (e.g. , great-
er than -15.5 eV for He, ).' The combination of
high-lying bound excited states and a dissociative
ground state suggests several important applica-
tions. Since these molecular excited states are
generated in rare gas discharges one can use the
continuum emissions from these states as light
sources in the vacuum ultraviolet. 4 The possibility
of using the dissociative ground state to obtain pop-
ulation inversions has caused recent interest to
focus on the construction of a far-ultraviolet laser'
for use in many areas, including application as an
initiator of controlled-fusion reactions. Investi-
gations of liquid helium have shown that bombard-
ment with high-energy (i.e. , greater than 100 keV)
electrons leads to the efficient production of ex-
cited states of both He and He, .' Calculations' on
the excited atoms show that each of these states is
apparently inside a bubble more than 10 A in diam
and gives rise to liquid spectra which are remark-
ably similar to the gas phase spectra. The dense
nature of the medium may be important in the de-
velopment of uv rare gas lasers since it allows for
a high concentration of excited states. Lastly, we
note that because of their relative simplicity and
abundance, the lighter rare gases enable the com-
parison of experimental and theoretical descrip-
tions of collision processes. '"

A hindrance to these developments has been the
lack of an effective theoretical framework for
understanding the nature of the electronic interac-
tions characterizing the excited states of the rare

gas molecules. For example, it is important to
be able to predict the shapes of potential surfaces
and discuss in particular (a) which states have
maxima on these surfaces, (b) the magnitude of
the maxima and their location, (c) which states
will be quenched in dense media, (d) which states
are strongly bound, and (e) which can predissoci-
ate to yield translationally hot excited atoms. In
order to consider such problems one needs to have
a firm theoretical understanding of the states in-
volved.

Herein we describe results from ab initio studies
of those excited states of He, that dissociate to a
ground-state atom plus an excited atom in the
(1s,n s) 'S, (1s,nP) 'I', and (1s, Sd) 'D states for
n =2, 3. These results are interpreted in terms of
qualitative ideas based on the nature of the excited
atom involved. In particular we show that the
shapes of the potential curves can be understood in
terms of interactions between core orbitals and be-
tween core and Rydberg orbitals. The latter in-
teraction is shown to be due to the Pauli principle
and can be understood simply in terms of the shape
of the Rydberg orbital.

II. WAVE FUNCTIONS

In order to understand the approach it will first
be necessary to consider wave functions for the He
atom before examining the wave functions used to
obtain the potential energy curves of He, . Here we
will see that it is necessary to depart somewhat
from the Hartree-Pock description.

A. Generalized-valence-bond wave functions for the He atom

The Hartree-Fock (HF) description of the ground
and lower excited states of the He atom is shown
below:
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1 'S: P„P„(nP—Pa),
3$,

(1)

(2)

(3)

(4)

(5)

(4A'~+ 4~4.)(&& &&)—
where P, and Q, are different but not required to

where, for example, by (P„P„+P„P„)we mean

[p„(1)g„(2)+P„(1)g„(2)],and n and P are spin
functions. In the HF method each orbital in (1)-(5)
is solved for self-consistently so that the P,—, or-
bitals change slightly as we go from state to state.
Similarly the P„orbitals in (2) and (3) and the P»
orbitals in (4) and (5) are also slightly different.
In addition, in the HF approach we require that the

P,—, and P„orbitals in (2) and (3) be orthogonal.
The valence-bond (VB) wave functions for various

low-lying excited states of He, would now be ob-
tained by describing one He as in (1) and the other
as in (2)-(5). However, there are some serious
difficulties with the HF description of the atomic
states. The HF energies of these states are com-
pa.red with the experimental values" in Table I.
Here we see that the HF energy for the ground
state is too high by 1.1 eV, whereas the HF ener-
gies of the 2'S, 2'P, and 2'P states are too high
by 0.04, 0.11, and 0.03 eV, respectively. Such
differences are expected. In the exact wave func-
tion the motions of the electrons are correlated
so as to allow each electron to keep away from the
other while remaining close to the nucleus. In the
excited states one electron is in an excited orbital
and on the average is far from the nucleus. Thus a
(radial) correlation of the electrons is implicit in
the HF wave function and hence the error is small.
The HF description of the 1 'S state has both elec-
trons in the same orbital and hence the correlation
errors are large.

The 2'S state, however, is different. Here the
error is larger than for other n =2 states and it is
negative, -0.64 eV. Thus the calculated energy is
lorn)er than the exact energy, implying that the HF
wave function for this state has incorporated a
significant piece of the ground-state wave function.
We show below and in Appendix A that this results
from the requirement that the 1s and 2 s orbitals
be orthogonal to each other.

A generalization of the HF wave function, the
generalized-valence-bond (GVB) wave function,
ameliorates these problems. In this description
there is a, different orbital for every electron and
each orbital is solved for variationally. Thus
every singlet state is described as

TABLE I. Energies' for the He atom (in eV).

State
HF

Energy Error b
GVB

Energy Error b

1~S
23S
2 is
23P
2 1P

-77.870
—59.142
-59.025
-57.932
-57.755

1.135
0.044

-0.636
0.109
0.032

-78.314
-59.142
-58.327
-57.932
—57.755

0.691
0.044
0.062
0.109
0.032

'Energies are given in eV (1 eV =0.036 749 a.u.). The
calculated energies are obtained from a basis set con-
sisting of six s-type, two P-type, and one d-type con-
tracted Gaussians. For details, see Ref. 16.

The energy error is given by (error) = (calculated
energy) —(experimental energy) . Experimental energies
are from Ref. 11.

be orthogonal. In this case the ground-state wave
function has the form

1'S: (4,A,. +4,.0,.)(~P P~)—,

and the 2 'S state becomes

2'S: (0;.4.. +4..4,.)+»0;.4, — (3')

Thus as has been recognized before" the use of the
orthogonality constraint is not consistent with the
simple HF form (3) of the 2 'S wave function but is
consistent with (3'). However substitution of the
same transformation into the O'S wave function (2)
does not change the wave function. In (4) and (5)
the orbitals are already orthogonal by symmetry.
Thus the states described in (2), (4), and (5) do

(7)

As shown in Fig'ure 1 and Ref. 12a, orbita, ls p„
and Q„are both similar to the HF 1s orbital ex-
cept that one is closer to the nucleus and one is
farther away. In this manner the GVB wave func-
tion incorporates essentially all of the radial cor-
relation error. The self-consistent wave function
(7) for the 2'S state involves one orbital, P,—„that
is similar to the p„and p„.orbitals"b of (6)
(see Fig. 1).

By reexpressing (7) in terms of a configuration-
interaction (CI) formulation, "one can show (see
Appendix A) that the GVB energy is an upper bound
on the exact energy for the 2 'S state. A similar
approach applied to the HF wave function for the
2 'S state does not lead to an upper bound (see Ap-
pendix A).

In (7) the 1s and 2s orbitals are not orthogonal.
Modifying (7) by using p„,= P„—A. Q, —, so that P„
is orthogonal to g,—, (and taking P,—, to be approxi-
mately the same for HF and GVB), we obtain a
three-term wave function
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FIG. 1. (a) Core orbitals for the He atom. P~ and Q~~ are from He 1 S while Q~ is the core orbital from He 2 S. (b)
2s and 2p orbitals from atomic calculations (labelled with the atomic term symbols) and molecular calculations at B=~.
See Hefs. 16 and 18(d) for a discussion. (c) Same as (b) except 3s and 3p orbitals are shown. (d) Same as (b) except 3p
and 3d orbitals are shown,

not change upon going from HF to QVB since taking
the orbitals to be orthogonal in these states is not
a restriction.

The QVB energies are listed in Table I, where
we see that 39% of the error in the ground state
has been removed and that the error in the 2 'S
state is positive and small as for all other excited
states. Thus the QVB wave function provides for
a more consistent description of the states. How-
ever we can still visualize the total wave function
in terms of electrons moving in various orbitals,
each experiencing a (self-consistent) field due to
the motions of other electrons. Proceeding beyond
the QVB wave function to a GI-type wave function
(incorporating additional correlation terms) or to
the exact wave function leads to better energies
but to a less interpretable wave function.

The orbitals for these QVB states are compared
in Fig. 1. Although the (self-consistent GVB) /, —,

orbital changes slightly from state to state, the
changes are not of qualitative significance.

(a)

State

I
IS

Symbol

Is Is'

Equation

(6)

23S Is
2S

(c) 2 IS= Is 2s (7)

(e) 2 IP-

Is

2p

Is 2p

(4)

(5)

FIG. 2. Wave function symbols for states of the He
atom.

As a shorthand in describing the states of He
we will use the symbols shown in Figs. 2(a)-(e) to
describe the wave functions in (6), (2), (7), (4),
and (5). Here two orbitals in the same row are
understood to be singlet paired and two orbitals in
the same column are understood to be triplet
paired. As mentioned previously g,—, is different
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from state to state, . @„is different in Figs. 2(h)
and 2(c), etc.

B. GVB wave functions for He2

Although the HF wave function for the ground
state of He, goes to the correct separated atoms
limit as the molecule is pulled apart, the wave
functions for the excited states do not dissociate
correctly. In order to describe the correct molec-
ular symmetry for the excited states of He„ the
HF orbitals must have the inversion symmetry of
the molecule, i.e. , g or u symmetry. This is not
required in the spatially projected QVB wave func-
tion since the total wave function has the correct
over-all symmetry even if the orbitals choose to be
localized. As a result the QVB wave function dis-
sociates correctly. Ne will see later that the flex-
ibility of the QVB wave function in allowing for
localized orbitals will be important in understand-

ing some of the interactions determining the shapes
of the potential curves. For these reasons and
those discussed in Sec. II A, we use QVB wave
functions to describe the excited states of He, .

In order to construct the QVB wave functions of
He, at 8 = ~, we combine wave functions for the
atoms as shown in Table II for the lower states.
The short-hand shown in Fig. 3(a) indicates a
singlet coupled pair

(4.,4.; + 4.;4., )(» &~)-

on the left and a singlet coupled pair

(4.„4.„+-4.„4;„)(&& Pcl)—

(8a)

on the right combined into a four-electron wave
function corresponding to a singlet, i.e. ,

f1[(4.,4.;+4.; 4., ) (4;„0,„+A.„A;„)(~P~&)], (8h)

where 8 is the four-electron antisymmetizer (de-

TABLE II. Frozen-orbital (FO) wave functions and tableau for some of the lower states of
He2.

Separated Calculated Ionization Molecul r S mmetr b
Atoms Potential at R = co Wavefunction at R = af)

Tableau datR= cc

1'S+ 1 S

1S+28

1'S+ 2 S

1S+2 P

23.9

4, 7

3.9

3.5

X'Z
g

c' a ~g u(2S)
2

C, A'Z $2s)

Iig „(2p)

gg(1'S) $ (1'S)

(1'S) Pr(2'S) + g&(2 S) gr(1'S)

$~ (1 'S) $r (2
'
S) + $~(2 'S) $r (1 'S)

0&(& 'S) 0,(2 P) ' 0,(2'P) 0,(1'S)

1s& 1s&

1s 1s'

1s& 1s&
15
2s

u2 g

1s& 1S&
1s 2s

u, g

~1s~ 1SZ
1s

„(2p) 4$(1 S) 0 (2'P) kg(2'P) 0 (1'S)
lsg 18
ls
2pG

1 S+ 2'P 3.3 II (2p)
g2u

lt)g(1 S) 4 (2'P) fI('g(2'P) $ (1 S)
1s&- 1S&

1s 2p
U, g

u(2p) gg(1'S) gr(2 P) + gg(2'P) pr(1'S)
1s& 1s&
1s 2pG

u, g

i ls2 lsL
Note tha.t '~ 1s
the tableau 2sr

g

1'
1s shorthand for 1s

2sr
+

~ 1s 1s,'

1' and
similarly

1si 1' 18L Is~ ls 1S,'
1s = 1s - 1s&

'

r r
2s

i

282
— —u

Energies are in eV.
This notation is used to describe all the molecular FO states. In c, a Z~ „ the c and a re-

fer to the g and I subscripts, respectively.
The upper and lower signs refer to the g and u states, respectively. Ke have omitted the

antisymmetrizer,
~

8.
We take the coordinate axes on the right He to be the inversion of those on the left He.
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(a}
SINGLET HeHe

I

Cg

Cr Vr

(b)
TR IPLET He He

I

Cg Cg

Cr

Vr

(C)
SINGLET He He

I

cr cr

CS Vg

(d)
TR IPLET He He

I
Cr Cr

Vg

(e)

C C

or
C C

C V

g, U

g, U

FIG. 3. Wave function symbols for the states of He~2.

g, (He) g„(He *)

with the excitation on the right. However, excita. -
tion on the left leads to a wave function degenerate
with the above. These two states intera, ct, leading
to optimum wave functions

g, (He) („(He *)+ („(He ) g, (He ") (8c)

of g and u inversion symmetry. Thus for the ex-
cited states of He, the wave functions are doubly
degenerate at R=~. For large R (R&7a,), the two
states in (8c) are essentially degenerate, and we
can understand the potential curves by examining
either Fig. 3(a) for singlets or Fig. 3(b) for trip-
lets. For small R the two states arising from (8c)
have much different energies and it is necessary
to add or to subtract the wave function of Fig. 3(c)
from Fig. 3(a) in order to obtain a good description
of the singlet states. Note that v, is obtained by
inverting v„ through the midpoint between the nu-
clei. (We refer to le„and tIt„+ g„as spatially un-
projected and spatially projected wave functions,
respectively. ) g„a g„ then leads to both a 'Z~
state and a 'Z„' state as indicated in Table II. In
a, similar manner we obtain the four-electron trip-
let states.

Each of these states involves three similar 1s-

terminant operator). Similarly, the shorthand
shown in Fig. 3(b) indicates a singlet coupled pair
[as in (8a)] on the left and a triplet coupled pair

(0;„4.„—4.„4;„)(~P + P~)

on the right combined into a four-electron wave
function corresponding to a triplet.

The wave functions in Figs. 3(a) and 3(b) de-
scribe

III. FROZEN-ORBITAL (FO) POTENTIAL

ENERGY CURVES

Figure 4 contains the FO potential curves ob-
tained from the atomic wave functions shown in
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FIG. 4. Potential energy curves for the FO 'Z+~ and
Z+„excited states of He2 and the Z+„and Z~ states of

He 2. The FO wave functions from which these energies
are calculated are composed of orbitals solved for self-
consistently using projected wave functions at 8 =~.

like core orbitals (Q„P... and Q,—) and one Ryd-
berg orbital (P„) that differ from state to state.
Thus the wave functions we deal with all have the
form shown in Fig. 3(e) or Fig. 3(f).

If the orbitals in Figs. 3(e) and 3(f) are solved
for self-consistently at each internuclear distance,
they are referred to as spatially projected Q1 "'"
or generalized-valence-bond (GVB) orbitals for
short. " This leads to different orbitals for the g
and u states arising from the same separated-
atoms limit (although for large R they are quite
similar). If instead the orbitals are taken a.s the
GVB orbitals of the atoms (at R= ~) and are not al-
lowed to adjust to the molecular potential, the
over-all wave function is referred to as the frozen-
orbital (FO) wave function. In this case the g and
u states arising from the same separated-atoms
limit use the same orbitals. Each of the orbitals
have been expanded in terms of contracted Qaus-
sian basis functions on each atom. " Thus when

we refer to an orbital as being on the left or right
He atom we really mean only that it is mostly on
this center since all orbitals are expanded in a
basis set that is equally partitioned between both
centers (except of course for the FO wave func-
tions).
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(b) ~X+ =
Isp Is&

lsr

Is@ Is@
( )

2X+
Isr

Isr ls r

Isg

ls, Is,

Isg

If we take all the orbitals to be identical in shape
(P„=Q„=P,—,) but centered on the left and right
nuclei, then the wave functions in Figs. 5(s,) and
5(b) are elluivalent to those in Figs. 5(c) and 5(d),
respectively, where

(c) 2X+
9

~u ~u

2X+—
0

g
CJ'g

FIG. 5. Wave-function symbols for He2 ~

Table II. We will denote the FO states as -'Z,'(nl)
or 'Z„'(nl), where nl denotes the atomic Rydberg
orbital P„.

In order to understand the shapes of these
curves, we must first consider the sizes of the
Rydberg orbitals of atomic He. Amplitude plots
of these orbitals are shown in Fig. 1. The values
of (z')'l' for these orbitals (in bohr) are as follows:
0.46 and 0.80 for 1s and 1s' (both from a GVB cal-
culation on He 1'S), 3.30 for 2s, 4.35 for 2$„7.70
for 3s, 10.70 for 3P„and 7.43 for 3d,2. The equi-
librium internuclear distance is about 2a, for He,'
and for the bound excited states of He, . Thus at
R„ the P„orbitals are all much larger than the
molecule. Since most of the amplitude of these
orbitals is not in the region between the two nuclei,
it would appear that the binding is almost entirely
due to the three core orbitals. The spatial ex-
tent of the Rydberg orbitals is further illustrated
by the R = ~ contour plots shown in Figs. 11 and
12. Thus near R, the potential curves for the ex-
cited states of He, should resemble those of He,'.

For large R (R & 7a, ) the two wave functions

$, (He)g„(He*) and („(He)g, (He*)

are only weakly interacting, leading to two essen-
tially degenerate states. We will now analyze the
bonding for both small R and large R.

a „1s& 1s„

(ignoring normalization). Since P, is of bonding
character while Q, is antibonding, we expect the
'Z„' state to be strongly bound while 'Z,' should be
highly repulsive. Indeed this is the case, as shown
in Fig. 4.

The VB-type description of He,' is given in Figs.
5(a) and 5(b). In this case the splitting between
'Z' and 'Z„' is usually referred to as resonance
leading to the stabilization of 'Z„' and the destabili-
zation of 'Z,'.

2. He& core-core interactions

Consider the GVB wave function of an excited
'g„' state of He, shown in Fig. 6(a). For an R
small compared to the size of p„, we have

i.e. ,

(9)

(For p„„=-lIl„, see Ref. 18a and below. ) For (9)
the wave function in Fig. 6(a) becomes a product of
that in Fig. 6(b) with Q„(with this four-electron
wave function then antisymmetrized). "" Thus Fig.
6(a) involves core interactions of the type in the
'~„state of He, and should lead to an attractive
potential curve.

Starting with the positive 'Z' superposition of
states shown in Fig. 6(c) and applying (9), we find
a core of the form shown in Fig. 6(d). Hence
Fig. 6(c) should lead to a highly repulsive potential
curve (since the core interactions are the same as
in the 'Z,' state of He,').

A. SmallR

1. He& core-core interactions
He&

(b)
Hep CORE

Because of the important role expected to be
played by interactions between the core orbitals
at small R, we will first examine the core-core
interactions with the Rydberg orbital deleted, i.e. ,
we consider He,'.

Using the GVB atomic orbitals we obtain the two
states shown in Figs. 5(a) and 5(b), i.e. ,

l (4181Alai 0 18 ' 0 18rklsr 0 ill)(+0 P+)+]

Cg Cg

Cr Vr

I

Cr Cr Cg C~

Cr

Cr Cr

(c) (d)
I 1 1 I

Cg Cg Cr Cr Cg Cg Cr Cr
+ +

Cr Vr Cg Vg r Cg

FIG. 6. Comparison of He2 wave functions with the He2
core part of this wave function (assuming ~„=~&).
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For the excited states with -4.790

-4.815-

-4.840—

g„=2s, 3s, 4s, 3der, 4do, etc. , (10)

9 applies and Fig. 6(a) leads to an attractive 'Z+

state while
'

e Fig. 6(c) leads to a repulsive 'g' Q

For
e, sae.

(a)

1209

Q„=2Po, SPo, 4fo, etc. ,

we have"' +~~„„=-Q„,and Fig. 6(a) leads to repul-
sive 'Z„' states in the manner of the 'Z'o e , state of

e, w ile Fig. 6(c) leads to attractive 'Z,' states
in the manner of the 'Z' state of He,' For2'

(12)$„=2p&, Sp&, 4fs, etc. ,

F).g. 6(a) leads to repulsive 'Il„states while the
'll states frrom Fig. 6(c) are attractive. For

$„=3d7), 4d))', etc. , (13)

F).g. 6(a) leads to attractive 'll „states and Fi
o repuls)ve II, states. For $„=3d6,4d6,

etc. , we have +~+~„, - Q„„and hence the 'b.„states are
attractive while the '6 states ar 1

'

=45
es are repulsive. For

$„=4f, etc. we have g„, = -g„„and hence the 'g
states are attractive while the '6 t
pu sive. Similar considerations appl to th h'y o e igher

ance (g, ! Q„„)depends upon R the ratio
of 'Z' to 'Z'„core character in the four-electron
wave function depends upon R "
clusions a 1 e

e above con-
c usions apply equally well to the triplet states. "'

The above analysis pa, rtially explains the quali-
t . nc u lng which symme-tative features of Fig. 4 (incl d' h
tries are bonding). If the valence orbitals were
not further involved in determi thmining e potential
curves, then we wouM expect the potential curves
of He, to have approximately the form i d' t d'n lcae

y e solid lines in Figs. V(a) and V(b). We see
that this does in
to the

deed lead to a crude approx&xlma ion
the FQ potential curves but the differences are

quite significant. Now we must examine the re-
maining effects.

B. L. Large 8 (Rydberg-core interactions)

Atla, r eR F~g ( Va, ) the g and u states arising

and hence w

from each atomic level are essentiall dia y egenerate
an ence we may understand the interactions at
these distances b

~ ~

as Fi
s by examlnlng one compone t h

ig. 3(a), rather than Fig. 6(a) or Fi . 6' '
s b n

q
sue

The wwave function in Fig. 3(a) describes the inter-
action of a sin let wig pair localized on one atom with
a singlet pair localized on another.

of the corn
Because of the Pauli princi 1 th'p e e wave function

o the composite four-electron system cannot be
taken as a product of the two-electron wave func-

trized. In e
tions. Instead this product must b t'e an lsymme-
rized. In effect this antisymmetrization laces

restriction'ons on the four-electron wave function,
w ich in turn lead to an increa thse ln e energy at
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large 8 above that expected for a simple-product
wave function. This energy increase is therefore
a nonclassical effect and will be referred to as
exchange or Pauli principle induced. This effect
may be seen more clearly as follows. Since the
orbitals on the left He in Fig. 3(a) are highly over-
lapping, "b we will take for the moment p„=p„as
in the HF wave function. In this case the other or-
bitals, P,—„and P„„, of the antisymmetrized four-
electron wave function can be orthogonalized to
Q„without changing the total energy of the four-
electron system. Thus we may replace P,-„and
A., by

(ignoring normalization). For large R the total
energy is approximately the sum of the He ground-
state energy and the He* energy except that the
orthogonalized orbitals from (14) are used in the
evaluating the energy of He*. Since the unortho-
gonalized orbitals P,—„and P„„were already opti-
mum (at R = ~), the orbitals in (14) should lead to
a worse description of the right helium atom at
large A. As a result for large g we expect the en-
ergy to increase as A is decreased. The mixing
coefficients in (14) are

and

For large P we expect

A., »A. ,
and hence the energy increase should depend pri-
marily on X,. Since Q„ is highly concentrated near
the left nucleus as indicated in Fig. 1, we can view
it as a 6 function when compared to p„. There-
fore we have

X, = cy„„(I.),
where P„„(L)is the amplitude of P„„evaluated at
the left nucleus and is thus a function of A; c
is a constant approximately independent of A.

By an independent approach (discussed else-
where") based on a study of a partition of the total
energy at various B and an analysis of the exchange
kinetic energy, we find the total energy to vary ap-
proximately as A. ', . As a result the potential curve
is shaped at large 8 as the square of the amplitude
of the Rydberg orbital on the opposite center. Thus
we can now understand the shapes of the FO curves
in Fig. 4 from the orbital amplitude plots of Fig.
1. For example, the $„=2s orbital increases in
amplitude as x (distance from its center) decreases

from ~ to about 3.3a,." Thus we find the poten-
tial curves in Fig. 4 arising from y„=2s to rise as
8 is decreased, following the square of the ampli-
tude of the Rydberg orbital. This continues until
about 6.5a, where the core-core interactions be-
gin to become important. (The Z+ and 'Z,' curves
for He2+ become noticeably split at this distance. )
For smaller R we must consider wave functions
[Fig. 6(a)] and [Fig. 6(c)] rather than just Fig. 3(a).
As a result, the 'Z„'(2s) curve reaches a maximum,
and due to favorable core-core interactions falls
to an attractive minimum. The 'Z,'(2s) curve has
unfavorable core-core interactions and becomes
totally repulsive, crossing higher FO curves.

For the FO curves with $„=2P the splitting of
the u and g states occurs at smaller R (near 4a, )
than for 'Z„', (2s). In order to understand this we
recall that because P„,= -Q„, at small R the core
core interactions split the u and g potential curves
arising from the same separated-atoms limit. For
P„=2/ we note that instead of monotonically ap-
proaching -1 as R decreases, (P„„lP„,) is positive
at large R (since a lobe of the right p orbital over-
laps the lobe of the same sign of the left one). This
overlap first increases and then decreases as R
decreases, vanishes near 5a„and becomes more
negative as R decreases further. Thus due to the
Rydberg-Rydberg overlap the core-core splitting
does not dominate until 8 is decreased to 4a, as
compared to +=6.5c, for the curves arising from
P„=2s. In order to understand the region 4a, &R
&7a„we must also consider the Rydberg-core in-
teractions. Along its axis the 2p orbital has great-
er amplitude than the 2s orbital for x &2.2a, (see
Fig. 1). Thus the repulsive Rydberg-core interac-
tions discussed above are larger for $„=2P and
we expect a larger hump in the attractive 'Z,'(2P)
curve than for the attractive 'Z„'(2s) curve. . This
difference is further enhanced by the presence of
a favorable core-core interaction, which over-
whelms the unfavorable Rydberg-core interactio n

near R=6a, for 'Z„'(2s) but does not do the same
until about R=4a, for 'Z,'(2p). This also causes the
'Z~(2P) state to have its hump at smaller R than
that for the 'Z,'(2s) state.

The &f&„=3s and 3P orbitals each have a maximum
at large R (see Fig. 1 and below), but the ampli-
tude at this maximum is much smaller than the
maximum amplitudes found for the 2s and 2p or-
bitals. Thus we find a small maximum at large A
in the potential curves. For smaller g the ener-
gies decrease as the amplitudes of the P, =3s and
3P orbitals decrease with decreasing r. Since
these orbitals have nodes at 5.5a, and 6.3a„re-
spectively (i.e. , A, =0), the potential curves re-
turn to the A= ~ energy before being split by the
core core interaction-s. For &f&„=3s and 3P, the
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maximum in the orbital amplitudes occurs at 9.8a,
and 11.0a„respectively, while the maximum in
the potential curves comes at 9.8a, and 10.5a„
respectively.

Figure 1 shows that the amplitude of p„=3d has
a maximum near 5.7a, and crosses the amplitude
of Q„=SP near 12.5a, . As a result the 'Z+, (Sd)
potential curves cross those of 'Z„', (SP) and be-
come increasingly repulsive as R decreases to-
ward 6a, . At this distance the core-core interac-
tions intercede leading to separation of the 'Z,' and
'Z„' curves with 'Z„' lower (as expected).

Thus the Pauli principle should lead to repulsive
character at large R in all 'Z states just as is ob-
served in Fig. 2. The same effect operates also
for 'Z states. For ''Il, ' '6 states, etc. , A,,=0
and hence we do not expect a maximum at large R.

IV. SCF-GVB POTENTIAL CURVES
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Below we show that the shapes of the resulting
SCF-GVB potential curves for the various states
can be understood quite easily in terms of the FO
description discussed above.

We denote the SCF-GVB curves by the term sym-
bol followed by parentheses enclosing the character
of the Rydberg orbital at 8, (e.g. , 2sv, 2go, etc. )
followed by the character of the same orbital at

Thus 'Z,'(2po, 2s) indicates the state that
has 2s character at R = ~ and 2po character at R,. -4.850 I I

F He& STATES

FIG. 9. FO (dashed) and SCF-GVB (solid) energy
curves for the excited ~Z~ states of He&. Also shown is
an FO curve for Z~, He&, and FO and SCF-GVB curves
for ~Z+, He&.
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The SCF-GVB curves are shown as the solid lines
in Figures 8, 9, and 10. Contour plots of the SCF-
QVB Rydberg orbitals are shown in Figs. 11 and
12.

A. The A 'Zu(2so, 2s) state

The A state has been the most widely discussed
excited state of He, ."' Although it is the second
excited state (lying above a 'Z+), it is the lowest
state to be dipole connected to the repulsive ground
state. It is also the upper state for the transitions
giving rise to the continuum vacuum uv (-600-1100
0
A) emissions mentioned above.

Nevertheless, the shape of the A-state potential

curve has not been well understood. In the past,
humps in potential curves (for nonrotating mole-
cules) have generally" (with the exception of Ref.
20) been attributed to an avoided crossing of a
lower repulsive curve with a higher attractive
curve of the same symmetry (leading to a lower
adiabatic curve containing a hump). It is easily
seen that this cannot explain the hump in the A
state since the FO curve for this state has a hump
and does not cross any other curves. Thus the
hump in the FO potential curve arises from a new
effect: the Pauli-principle -induced Rydberg-core
repulsive interaction combined with an attractive
core-core interaction as discussed in Sec. III.

A 'Zu (2';2s) C IZ& (2pty; 2s) . DIZ„' (3s,2p)

R*co '
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FIG. 11. Contour plots of the GVB Hydberg orbitals are shown at several internuclear distances for several states.
The contours are plotted in a plane containing the internuclear axis with the two centers shown by small asterisks. The
contour with long dashes indicates the nodal plane. The positive contours are solid lines while the negative contours are
dotted. For the A and C states the contour interval is 0.005 and contours more negative than -0.050 are not shown. For
the other states the contours plotted are of absolute value 0.0025, 0.0050, 0.0100, 0.0200, and 0.0400. Distances are in
bohr.
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The SCF-QVB potential curve shown in Fig. S
is quite similar to the FO potential curve with the
maximum coming at nearly the same location.
From Fig. 11 we see that except for a slight polar-
ization away from the opposite center, the Rydberg
orbital does not change shape appreciably as 8 is
decreased from ~ to 9,. Therefore the hump in the
SCF-GVB potential curve arises from the same in-
teractions as found in the FO potential curve. Since
the shape of the SCF-QVB potential curve in the
region of the hump agrees well with experimental
results (see Sec. V), we conclude that the above
described Pauli-principle-induced repulsive in-
teraction is responsible for the maximum observed
in the A 'Z„' and therefore also in the a'Z„' state.

B. The C'Zg(2po, 2s) state

pected a large hump since $„=2s at R=~. How-
ever, we find that the repulsive part of the poten-
tial curve arises from the unfavorable Rydberg-
core interactions and are indeed present in the FO
curve with g„=2s at all R (no promotion). We find
that the Rydberg orbital for the C state becomes
2Po-like near R, (rather than Sgo-like), leading
to strong bonding character in the potential curve.
The valence orbital remains 2Po-like (although dif-
fuse) and unpromoted into our smallest separation
of 1.8 bohr. This is further supported by the fact
that calculations" on the ground state show that
the core orbitals remain localized and 1s-like into
8=1.8a, and do not choose to resemble a 2po-like
symmetry function. As a result the 2po cha, racter
is found in the first excited 'Z,' state while SPo
is found in the third 'Z,' state at 8=1.8a, .

The 'Z,'(2s) FO state is totally repulsive due to
the unfavorable Rydberg-core interaction at large
R (as in A'Z„') and the repulsive core-core inter-
action at small B. From Fig. 4 we see that this
repulsive curve crosses the attractive part of
'Z,'(2P) (having a favorable core-core interaction).
Thus we would expect the SCF-QVB curve to be
similar to 'Z+(2s) at large R and to 'Z~+(2p) at
small g. As can be seen in Fig. 9, this leads to
an avoided curve crossing and therefore a maxi-
mum in the C 'Z,'(2go, 2s) potential curve In ad.-
dition we expect the Rydberg orbital to reflect the
avoided crossing and to change from 2so-like at
la,rge R to 2po-like at small R. This is shown in
Fig. 11. Because of the avoided crossing, the
C'Z,'(2po, 2s) state has a shallow well compared
to the A state (see Fig. 10 and Table III). Upon

subtracting the energy of the C state at R, from
the energy at the maximum in 'Z,'(2p) we obtain
1.85 eV, in good agreement with the binding en-
ergy of 1.88 eV (or 1.94 eV if we take the binding
energy to be the difference between the maximum
and minimum energies) found for the A 'Z„' state.

Mulliken" has offered an explanation for the
origin of the large maximum in the C state and for
those found in other He, potential curves. In his
description, states will have large "obligatory"
humps when the principal quantum number of the
Rydberg orbital at the united-atom limit is greater
than the corresponding quantum number at the
separated-atom limit. He assumed that the united-
atom limit of the Rydberg orbital is important
near 8,. For cases in which the united-atom Ryd-
berg orbital is unpromoted (e.g. , A'Z„') he expect-
ed no large humps. Humps in such potential
curves were classified as "nonobligatory" or un-
explained. For the C state, Mulliken took the
united-atom limit of the Rydberg orbital (based on
the H,' correlation diagram) to be SPo and thus ex-

C. The 'Zg(3p0, 2p) state

Figure 9 shows that for A +4a, the FO and SCF
'Z~ curves arising from the 2P separated-atom
limit are quite similar. Indeed Fig. 11 shows that
for g&4.2a, the Rydberg orbital remains mostly
2Po-like. Thus, in this region, we consider the
interactions giving rise to the shape of the SCF
curve to be the same as those which determine the
FO curve. (Here again no promotion effect" is in-
volved in the repulsive character at large R.)

Nevertheless, as 8 is decreased further toward

8„ the Rydberg orbital cannot remain 2/0-like
since this character is present in the lower
C 'Z,'(2Po, 2s) state. As a result 'Z,'(SPo, 2p) ob-
tains SPo character from the next FO curve of g
symmetry having an attractive core-core interac-
tion (see Fig. 9). This is clearly shown in Fig. 11,
where for 8 &4.2 bohr the Rydberg orbital loses
its 2Po character and becomes Sgo-like. (This
could be considered a promotional effect of the
type attributed by Mulliken to the lower C state.
But note that the "promotion" causes the potential
curve to fall and not to rise. ) The minimum in the
'Z~ (Sp) FO curve lies above the separated-atoms
energy for 'Z,'(2p). While SCF adjustment accounts
for some lowering, the minimum of 'Z~ (Sacr, 2P)
remains slightly above its separated-atom limit.

D. The D'Z~(3s0, 2p) state

Because of unfavorable Rydberg-core interac-
tions, the SCF-GVB curve and the FO-QVB curves
are repulsive at large R (see Fig. 8). For R&4a,
the FO curve continues to rise because of an un-
favorable core-core interaction, crossing the
other attractive FO curves (possessing a favorable
core-core interaction), 'Z„'(3s) and 'Z„'(Sd). This
leads to an avoided crossing and a maximum in the
SCF-QVB curve. Figure 11 shows that the Ryd-
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TABLE III. Extrema in the He2 potential curves. '

&e

(A)

D~

(eV)
&max

(A)
~mm b

(eV)

A ~ Z„+(2so', 2s)
This work
Previous ab initio,

Ref. 2(d)
Ref. 20
Ref. d
Ref. e

Experimentally derived,
Ref. 2(a)
Ref. 21(b)
Ref. 2(c)
Ref. 2(b)
Ref. 23
Ref. 3

C~Z (2P, 2s)
This work
Previous ab initio,

Ref. 24
Ref. f

Experimentally derived,
Ref. 23

D~Z+(3so., 2P)
Thi.s work
Experimentally derived,

Ref. 27

'Zg (3po, 2P)
This work

E iZ„(3do, 3s)
This work
Experimentally derived,

Ref. 28
Ref. 3

~Z (4f o, 3s)
This work

~ Z„(4do, 3d)

This work

~ Z~+(4p o, 3d)

This work

1.10

1.082

1.040
1.12

1.04

1.039

1.15

1.14

1.091

1.15

1.069

1.16

1-16

1.089
~ ~ ~

1.19
1.84~

3.62-3 70 '~

1.16
3.420

1.15
2.75g

1.883

2.469 + 0.006

2.306
1.719

2.5

2.55 + 0.17
2.50+ 0.03

0.6443

0.89

0.221

-0.153

1.881

0.6694
0.3390
0.0057

1.220
0.0059"

0.7303
0.0571"

3 .08-3.09

3
2.8
2.76

3.1
3.1

3.0 +0.3

2.06

2.4

1.99

1.86

6.02-6.11

1.57
2.72

6.09—6.10 '

2.48-2.49
12 5 29c

2.02
36 c

0.0607

0.084
0.086
0.153

0.05
0.049 + 0.010
0.03 + 0.03

.059

0.216

0.7

0.6288

1.025

0.0040

0.0074

-0.120
0.0296
0.0040

0.0323
0.0062

0.119
0.011

All energies are in eV (l eV =0.036 749 a.u.) and distances are in A (i. L=] .Sggsp)
results of this work have been obtained from a cubic spline fit of the calculated energies (see
Ref. 16) and are shown in the first row for each state.

bum»-Z(a=am. g -Z(a=~).
To the accuracy reported the potential curve has a vanishing slope in this region.
S. Mukamel and U. Kaldor, Mol. Phys. 22, 1107 (1971).

'D. R. Scott, E. M. Greenawalt, J. C. Browne, and F. A. Matsen, J. Chem. Phys. 44, 2981
(1966).

E. M. Greenawalt (unpublished) [see F. A. Matsen, Advances in Chemical Physics ~iley-
Interscience, New York, 1971), Vol. XXI, p. 1.]

gThis is a local minimum and is not Ae .
This is a local minimum and is not D~ .
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berg orbital remains 2Po-like for R+4.2a, . As R
is decreased the orbital first becomes Sdo-like be-
fore becoming Sso-like for R &2.2a, . The overlap
and Hamiltonian matrix elements at S.8a, are about
a factor of SO greater for interaction between the
'Z+(2P) and 'Z„'(Sd) states as compared to 'Z„'(2P)
and 'Z„'(Ss). (For a detailed discussion of this in-
teraction see Ref. 16a.)

Near R =2.2a, the SCF-GVB O'Z„'(Sso, 2p) and
F 'Z „' (3do, 3s) states become nearly degenerate,
and indeed they switch character (see Fig. 11) be-
tween 2.2a, and 2.0a, (see Sec. V for a further dis-
cussion of this near degeneracy).

Although Mulliken" describes this state as being
Sdo-like near R„we see that a promotional effect
is not responsible for the repulsive character at
R &4a,. Incorporation of S6'o character was neces-
sary though in order that the curve have an attrac-
tive well.

higher (n =4) state in order to obtain attractive
Z„' core. (There are no remaining favorable n=3

FO curves. ) Both the 'Z,'(4f) and 'Z,'(4p) states
can contribute since they provide attractive core
interactions These states'x are separated by only
39 cm ' at R = ~ with 'Z,'(4f) being lower. 'Z,'(5f)
and 'Z,'(5P) are about 2200 cm ' above these states
and may also be important (although our basis set"'
will not provide a good description of these orbi-
tals). From Figure 11 we see that 'Z,'(4fo, 3s) be-
comes Qo-like near R,. Our basis set" doe5 not
contain any 4f basis functions and indeed the 4f or-
bital shown in Fig. 11 is somewhat tighter thin a
hydrogenic 4f. The inclusion of n =4 basis func-
tions could substantially improve the quantitative
description of the potential curves in this region.

F. The 'Zg(4po, 3d) and 'Zu(4do, 3d) states

E. The F'Zu(3do, 3s) and 'ZJ (4fo,3s) states

From Figs. 8 and 11"'we see that the 'Z„'
&& (Sdo, Ss) state is analogous to the A state, with
the FO wave function providing a good qualitative
description. In the SCF wave function the Rydberg
orbital remains Sso-like until about 2.2 bohr. Thus
the potential curve is quite similar in shape to the
A state, having virtually the same dissociation
energy (see Table III). For R-2a, the D~Z+

x(Sso, 2p) and E'Z„'(Sdo, Ss) states are nearly de-
generate, and the calculated wave functions ex-
change character, as mentioned above.

At large R both the F'Z„'(Sdo, Ss) and 'Z,'(4fo, Ss)
states are nearly degenerate and there is little
qualitative difference between the FO-GVB and
SCF-GVB descriptions of these states. The un-
favorable Rydberg-core interactions lead to a
small maximum in the SCF-GVB potential curves
near 11.5a„resulting from the overlap of the
outer maximum of the Sso Hydberg orbital with the
core orbitals on the opposite center. The potential
curves fall as R decreases from the distance cor-
responding to the outer maximum in the Rydberg
orbital.

For "Z,'(4fo, Ss) the repulsive-core FO curve
'Z,'(Ss) rises and crosses the attractive curve re-
sulting from 'Z~ (Sp) near 5a, (see Fig. 9). This
results in an avoided crossing of the SCF curves,
causing a maximum for 'Z,'(4fo, Ss) and a small dip
for 'Z,'(4po, Sd). Figure 11"'shows Spo charac-
ter mixing into 'Z,'(4fo, Ss) at R= 4.2a, . For
smaller R there is apparently a strong interaction
~with the repulsive-core FO state arising from p„
'.=2s leading to another maximum in the curvd neak
'R=Sa, . In order for 'Z,'(mfa, Ss) to be attractive
near R„ it must have an avoided crossing with a

In the discussion of the FO curves we noted that
because of the shapes of the $„=3d and Q„=Sp
orbitals, the energy curves cross near R=12a,.
%e expect this to lead to an avoided crossing of
the SCF curves, and this is shown in the contour
plots of Fig. 12. Here we see that the Rydberg or-
bitals of the 'Z „'(4do, Sd) and 'Z,'(4po, Sd) states
become SPo-like while those for the 'Z„'(4so, SP)
and 'Z,'(5po, Sp) states become Sdo-like as R is
decreased to 6.2a, .

The maximum in the potential curve for
'Z~(4po, Sd) does not come until R = 8.2a, (see Table
III) and can be explained by the near degeneracy of
the 'Z,'(4Po, Sd) and 'Z,'(5Po, SP) states at R = ~.
The orbitals of these states (and the corresponding
u states) at very large R (R &15a,) are represented
by approximately orthogonal linear combinations of
Sdcr and SPo character. The orbital for the lowest
energy combination is shown at R =15a, in the first
two columns of Fig. 12."' This orbital is signifi-
cantly polarized away from the opposite He and

causes the maximum in the SCF curve to come at
much smaller R than that which would be expected
from the crossing of the FO curves. For the high-
er 'Z,'(5Po, SP) and 'Z„'(4so, SP) states the orbital
is similar except that it is polarized toward the
opposite He (see the last two columns of Fig. 12)
resulting in more repulsive energy curves in this
region. Note that a similar mixing effect occurs
to a much smaller degree at large R for the
'Z;(2po, 2s) and 'Z;(Spo, 2p) states (and the, corres-
ponding u states) because of their large energy
separation. Sf&0 becomes dominant in the Rydberg
orbital of 'Z,'(4po, Sd) near R = 10a, and remains as
R is decreased to 5.4a, . Note that the 'Z'(SP) and

'Z,'(4po, 3d) states are nearly degenerate near R
=7a, (see Fig. 9). The small well in 'Z,'(4Po, Sd)
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FIG. 12. Contour plots of the GVB Hydberg orbitals are shown at several
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(see Table III) at A=5.2a, has been discussed in
Sec. IV E and is due to 3so character shown mixing
in at R=4.2a, in Fig. 12. Because the Rydberg or-
bital is now g-like necessitating unfavorable 'Z,'
core character, the potential curve rises. In order
to fall to a minimum at R„ it must mix in favor-
able core character from a FO state arising from
ann =4 atomic state. We see from Fig. 12 that
4!o character mixes into the Rydberg orbital be-
tween R= 3.8a, and 3.0a„causing the potential
curve to fal]. from a maximum at 3'8ao At R = 3.0ao
'Z,'(4po, Sd) becomes nearly degenerate with the
rising 'Z,'(4fo, 3s) state. The 4fo character is
transferred to the Rydberg orbital of the latter
state which then becomes attractive while the Ryd-
berg orbital for 'Z,'(4Po, Sd) mixes in favorable
4po character causing the potential curve to fall to
a minimum at R = 2.17@,. Once again the inclusion
of n =4 basis functions in this region would sub-
stantially improve our quantitative description.

For 'Z„'(4do, Sd) and It &6.2a„ the SCF curve
follows the repulsive 'Z„'(3p) curve. Near A=5a,
the latter curve has a second crossing with 'Z„'(Sd).
The mixing in of 3do character is shown at R=4.2a0

and 3.8a, of Fig. 12."' At R =3.8a0, 3do charac-
ter is important in 'Z„'(Sscr, 2p) and as a result
'Z „'(4do, 3d) must mix with states having n = 4 Ry

orbitals in order to have an attractive potential
well near R, . Figure l.2 shows that near R=3.4a„
4da character becomes important and remains as
R decreases to R, .

G. The 'Q(5p0, 3p) and 'Zu(4so, 3p) states

The polarization of the Rydberg orbitals near
R=15.0a, has been discussed in Sec. IVF. At R
= 6.2a, the 'Z,'(3p) and 'Z,'(3d) FO curves are no

longer nearly degenerate, as they were for very
large R and the Rydberg orbital of 'Z,'(5po, 3p) is
dominated by 3do character. Near R =4.2a„ the
Rydberg orbital mixes in some 4fo character [com-
pare with 'Z,'(4fo, Ss) at 8 = 3.0a, in Fig. 11]. At
R=3.4a„4PO character becomes evident, as ex-
pected. For smaller R this character is lost to
the lower states, and the wave function must in-
corporate character from 'Z'(5f) or 'Z,'(5P) (or
higher states) in order to have an attractive core
and fall below the ion curve, 'Z„'. Near R=2.6a„
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'g,'(5po, Sp) obtains repulsive character from the
FO 'Z'(2s) state. For smaller R, 5po' character
becomes evident in the Rydberg orbital, and the
SCF potential curve follows the inner wall of an
FO curve corresponding to 'Z,'(5p).

For 'Z„'(4sa, SP) near R = 4.2a, (see Figs. 8 and

12), the potential curve begins to rise as it ob-
tains unfavorable core character from 'Z„'(Sp).
At smaller B it approaches the repulsive FO curve
for 'Z„'(2P) and rises even further. Near R=2a„
favorable 4so-like character causes the potential
curve to drop.

For both of these states the basis set used is in-
adequate near R, and one must include atomic func-
tions with n ~ 4 in order to obtain a reasonable de-
sc ription.

Further details" of these calculations are dis-
cussed elsewhere, including a more quantitative
description of the variation of the core-core inter-
action with R and an analysis of the Rydberg-core
interaction in terms of the exchange kinetic energy.

V. NUMERICAL RESULTS AND COMPARISON WITH

PREVIOUS WORK

The aim of the work described here has been to
obtain a physical understanding of the excited
states of He, . Thus the emphasis has not been on
obtaining quantitative accuracy for all of the ex-
cited states. Nevertheless, the basis set provides
for a near-quantitative description of the lower ex-
cited states at large R (in the region of the maxi-
ma).

%e find the magnitude of the maximum in the
A'Z„'(2so, 2s) state to be 0.0606 eV at R= 5.&2a,.
Assuming the atomic contribution to the correla-
tion energy to remain nearly constant for R&5.8a„
our calculated value for the magnitude of the maxi-
mum is probably 10 to 20% too large. From the
spectra of Tanaka and Yoshino, ' Sando and Dal-
ga, rno" determined a potential for the A state
and found a hump height of 0.049+ 0.01 eV at 8
=5.86a, . In addition, their curve is quite broad
in the vicinity of the maximum, in agreement with
the curve calculated here. Recent results" for
differential cross sections (describing the scatter-
ing of He* by He) obtained from the C- and A-state
potentials calculated here show excellent agree-
ment with the experimental results'b if the calcu-
lated potential curves are scaled so as to decrease
the potential maximum in the A state by about 15%.
Table III lists the results of the best previous theo-
retical calculations and experimentally derived re-
sults for the positions of extrema in the potential
curves. Some comparisons to previous results
have been discussed in Ref. 22.

%bile the results for the A-state maximum cal-

culated here are in excellent agreement with ex-
perimentally derived results, we note that pre-
vious ab initio values for the maximum in the A
state have all been too large (see Table III). We
found that in order to obtain a good description of
the maximum in the potential curve of the A state
it is necessary that the basis include 2Po functions
that allow the 2s orbital to polarize properly
away from the other He atom.

The SCF value for D, [D, =E(R= ~) —E(R =R,)] of
the A state is 1.883 eV (R, =2.07a, ), which is 75%
of the experimentally derived value of 2.50 eV'b
(R, =1.9&a,).23 Reference 16 contains a discussion
of the error in D, and how it is related to the de-
tails of the basis set expansion of the orbitals.

The calculated maximum in O'Z,'(2po, 2s) is
0.2166 eV at 8 = 3.90a,. The calculated minimum
is at 2.17a„with D, =0.6444 eV. As for the A
state we expect the calculated magnitude of the
maximum to be about 10 or 20% too high, while the
va, lue for D, may be too small by up to 0.6 eV.

Ginter" has reported 11 bands ari. sing from the
C-A transition and finds A, =2.072 a, for the C
state (about 5% smaller than the value found here).
He also reports the emission spectra, to only v' = 5
in the C state and suggests that the similar e'Z,'
state predissociates by v' =5 or 6. This would im-
ply the possibility of a small D, for the C state
(compared to the A state) in qualitative agreement
with the results reported here.

Several previous calculations"' "on the C 'Z,'
state led to a tota, lly repulsive curve because the
2so Rydberg orbital could not mix in 2Po character
and the avoided crossing could not occur. Only
one previously reported calculation" has allowed
for the avoided crossing in the upper state, thereby
obtaining a maximum. However the wave functions
used provided only a minimal description and led
to a large value (0.7 eV) for the hump.

In discussing their experimentally determined
potential curves Ginter and Battino" did not corre-
late the He (1s'; 'S) + He (ls, 2P; 'P) separated-atom
limit with any 'Z' molecular state at R, . Never-
theless they speculated that it might correlate with
a state denoted as 4Po'Z,'. This is the first state
found above those that correlate with the other n =2
separated atom levels and was estimated to have
its v=0 level at several hundred cm ' below the
above R = ~ limit. Thus the identification of our
'Z,'(Spo, 2P) state as Ginter's 4go state appears to
be very rea.sona.ble a,lthough the Rydberg orbital is
SPo-like. (We find that the higher 'Z,'(4Po, Sd) state
has 4@v character. )

Near R =2.2a, the SCF-GVB D'Z„'(Ssa, 2P) and
F'Z„'(Sda, Ss) states become nearly degenerate
(see Fig. 8). In Ref. 26 at la, rge R, these states
are allowed to cross, and as a, result, for separa, -
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tions greater than the crossing point, our states
are equivalent to the E and D states, respectively,
of Ref. 26. In qualitative agreement with the cal-
culations presented here, Ginter's f 'Z„' state
(which should be similar to the corresponding sin-
glet state F'Z„') shows a large maximum at about
8=3.1 a, . Near A=2. 7 a, his I' state crosses the
D state with the minimum of the D state falling
about 700 cm ' below that for the F state. (Our
calculated O'Z„'(3sg, 2P) lies 410 cm ' below F'Z'„
(Sdg, Ss) at the minimum. ) Fromthenoncrossing
rule we know that SCF-QVB Born-Oppenheimer
curves for these states will not cross. However
from Fig. 11 we see that the Rydberg orbitals for
the 'Z„'(3sg, 2P) and 'Z„'(3dg, 3s) states switch
character near A=2.2a, . This suggests that we
use the diabatic curves. Inclusion of nuclear ki-
netic energy will tend to mix these nearly degene-
rate (Born-Oppenheimer) GVB states. Probably
a better set of zero-order states for describing
dynamic processes would be the diabatic states
in which (for 8 &Sa,) one state is taken as having
3dcr character and the other as having 3so charac-
ter. The calculated A, for O'Z„'(3sg, 2P) is 2.17a„
which agrees favorably with the experimentally de-
rived value of 2.02a, ." There are no accurate ex-
perimentally derived data in the literature for D,
or the magnitude and position of the maximum.

The similarity in the shape of the potential wells
for F'Z„'(Sdg, 3s) and A'Z„'(2sg, 2s) has been dis-
cussed in Sec. IV. For the former state we find

D, =1.862 eV compared to 1.883 eV for the A state.
The calculated 8, for F'Z„'(3dg, Ss) is 2.19 a, com-
pared to the experimental value of 2.06a, ." Also
we find that there is a sma, ll maximum of 0.00015k
in the calculated potential curve (cubic spline fit-
ted) at A=11.SS to 11.54a, (see Table III). This
arises from the unfavorable overlap of the outer
maximum of the Rydberg orbital with the core or-
bitals on the opposite center and has been dis-
cussed in Secs. III and IV. Tanaka and Yoshino'29
have reported a band in absorption at 540.77 A cor-
responding to an energy slightly greater than the
atomic line, IsSs'S-1s''S (540.94 A). They also
report that this band wa, s quite similar in appear-
ance to the band at 600 A, which is due to transi-
tions from the ground state to the quasibound levels
(occurring at energies between the maximum and
the 8=- ~ asymptote) of the A state. As a result
they proposed that F'Z„'(3dg, Ss) has a hump of
about 60 cm ' or 0.000 27 hartree.

There is little quantitative information in the
literature describing the potential curves of the
higher states reported here. Table III contains a
summary of the locations and magnitudes of the
maxima and minima in the SCF-GVB curves.

From the analysis presented in Secs. III and IV

one would expect the FO curves for ' 'II, (2p),
'''li, (SP), and ' 'II„(Sd) to be attractive at small p
while ' 'II„(2j&), ' 'II„(SP), and ' 'II, (Sd) will be re-
pulsive at small A, with all the curves showing no

unfavorable (Pauli-principle-induced) maxima at
large R since A., =0. The latter three states should
have large maxima in the SCF curves resulting
from avoided crossings with attractive higher
states of the same symmetry. Thus a large maxi-
mum in ' 'II„(Sd&, 2P) would arise from the cross-
ing of ''II„(2p) with ''II„(3d). These predictions
have been confirmed for the ''II„states by the CI
calculations of Qupta and Matsen" and Browne"
and for 'II~(2p&, 2p) and 'II„(3dw, 2p) by Gupta
eg al. 32

VI. BUBBLES IN LIQUID HELIUM

Walters and co-workers' have found that particle
bombardment on liquid helium leads to excited
states of He and He„and they have examined the
spectroscopy of these states. Interpretation of the
results" '' suggests that each excited state leads
to a bubble radius'" of 12a, =6—,

' A (for He 2'S) or
larger. The origin of the bubble around an excited-
state atom is the same as the origin of the barriers
in the He,* potential curves, namely, the repulsive
interaction arising from the Pauli principle. The
excited state has a much more diffuse orbital so
that these repulsive effects have a much larger
range than between ground-state atoms. Since the
effect involves basically the overlap of a ground-
state atom with the excited orbital, the size and
shape of the bubble should be closely related to
the size and shape of the excited orbital.

From Fig. 11 we see that the 2scr orbital of the
A'Z„' state is essentially identical in size and
shape to the 2s orbital of He 2 'S. Thus the bubbles
should be essentially identical for these two cases.
The best estimate'" for the bubble involving the 2s
orbital of He 2'S is a diameter of 24a, =12—,

' A.
This compares with a diameter of 18-,'a, for the
outer contour (0.005 a.u. ) in Fig. 11. In order to
provide some idea of the shapes of the bubbles ex-
pected for the other excited states of He* and He,*,
we will scale the size found by the 0.005-a.u. con-
tour so as to obtain 24a, for He 2'S. For C'Z,'
this leads to 17&12—,

' A. This state has the shape
of a 2s orbital (12—,

' X12—,
'

A) at 8 = ~ but the shape
of a 2PO orbital at small R. The next two states,
'Z„'(3sg, 2p), 'Z,'(Spg, 2p), correlate with 2p at R= ~
(13~ X10 A) but are much larger at 8, (20—,

' x 16 A

for 3scr and 26&17—,
' A for 3&cr). (Note that except

for the A and t" states, the 0.005-a.u. contour is
the second one. ) The next two states, 'Z„'(Sdg, Ss)
and 'Z~(4fg, 3&), correlate with Ss at A =~ (size
19 x17—,

'
A) and are only slightly larger at
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ft, (20 x19 A for 3do and 23—,
' x17-', A for 4fo).

The envelope of the rotational structure of the
emissions from d'Z„' and D'Z„' is preserved in
liquid helium, suggesting unusually long vibration-
al and rotational lifetimes for a liquid. From the
roughly spherical shape of the Sso-like orbital of
the O'Z„' state (Fig. 11), long relaxation times are
not unexpected.

APPENDIX: UPPER BOUNDS FROM GVB WAVE FUNCTIONS

O' =N(g, gb+Pbg, )(CbP —Pn) (A1)

to be stationary under first-order variations in the
orbitals P, and g„we obtain the GVB equations

By requiring the energy for the QVB singlet wave
function

VII. SUMMARY

H, Q, = e,Q„
&blab (A3)

In conclusion we find that the independent-par-
ticle nature of the projected G1 or GVB wave func-
tions leads to a highly interpretable and meaning-
ful description of the excited states of He, . Two
types of interactions have been shown to be im-
portant in understanding the shapes of the poten-
tial energy curves: Interaction between core or-
bitals on opposite centers is dominant at small R
whereas at large A the significant interaction is
between Rydberg and core orbitals on opposite
centers. The former interaction leads to repul-
sive and attractive FO potential energy curves
which in turn helps us to describe avoided cross-
ings of SCF curves. At large R, where spatial
projection is not important, we have found that the
unfavorable Rydberg-core interactions can be un-
derstood in terms of the Pauli principle and indeed
the unfavorable maxima can be quite large [e.g. ,
see 'Za(SPo, 2P) and 'Z„'(3so, 2P)]. These ideas can
also be used to help understand the shapes of po-
tential curves for both heteronuclear and homo-
nuclear diatomics containing other rare gas atoms.
Calculations" on Ne, have shown the usefulness
of these ideas. Furthermore the results presented
here for He, imply that the experimentally de-
rived'4 barrier in He(2's) +Ne(2Pa) is Pauli princi-
ple induced. Other molecules having repulsive
ground states (e.g. , diatomics from Group II of
the Periodic Table) may also be amenable to the
ideas discussed here. Such an application has al-
ready been made to Hg, ." Lastly we note that it
has also been shown" that the rotational barriers
about single bonds (e.g. , C,H, and CH, OH) also
arise directly from the Pauli-principle-induced re-
pulsion of singlet coupled pairs of orbitals.
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Hbg» ——e»P»
I.et p» be the first solution of Hb,

bulb lb%lb t

and consider the two wave functions

4i =&i(4'i.lib+ 4»4'i. ) (&~ P&)—
4.=&.(4,.4.b+ 4,4,.)(~& &~) . -

(A5)

(A6)

(A7)

From the Hylleraas-Undheim-MacDonald theorem"
we know that the lowest state of the wave function

@ =Ci 4i+Cb'4b

has an energy which is an upper bound on the exact
energy of the ground state and that the energy of
the second state of (A8) is an upper bound on the
exact energy of the second singlet state. We make
use of this theorem by taking y„= P» and rewriting
(A4) as

&e,.e,.ITIC-EI(e,.y y e,.)&=o

since &Q»~f»&=0. But (A9) is just

&0, I3C -E
I s.& =0.

(A9)

(A10)

Therefore (A10) implies that the solutions to (A8)
are

where H, and H, are one-electron Hamiltonian
operators and e, and e, are orbital eigenvalues.
By choosing a basis for X„such that &X„~Qb& =0,
Eq. (A3) can be written equivalently" as

&X, IH, I 0,&
= Q.X„ I3t-E II.O, +e,0.& =0, (A4)

where X is the total Hamiltonian and E is the total
energy. To solve for the first excited state de-
scribed by (Al), we solve self-consistently for
the lowest solution of Eq. (A2) (P„) and the second
solution of Eq. (A3) (P»), yielding the equations

The authors wish to thank Dr. D. L. Huestis, Dr.
Ra C. Ladner, Dr. T. H. Dunning, and Dr. R. J.
Blint for many informative conversations and for
the use of their computer programs and subrou-
tines.

@b = tj'b

Thus the GVB solution for the 2'S state leads to
an energy that is an upper bound on the exact en-
ergy of the 2'S state. (Note that here we have con-
structed g, using P„, which was solved for self-
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Now taking X„=g, and

(A1 1)

in (A8), we obtain for (All)

consistently in the field due to Q». While g, is not
the optimum description of the ground state, we
need only assume it to be lower in energy than g,
in order to complete the above proof. )

Now consider the HF wave function, which has
the form (Al) except that p, and pb are required to
be orthogonal. In this case (A2) and (A3) become

0, = ea4'b+ eab4b ~

+b 4b blab bala&

where ~„and ~„are Lagrange multipliers. Thus
(A4) becomes

Therefore g, is not a solution of (A8) and the
Hylleraas -Undheim-MacDonald theorem" does not
apply. Indeed the calculated HF energy for He
(2 'S) falls below the experimental value for the
second state as shown in Table I. As pointed out
in the text, the form of g, is inconsistent with the
form of the HF wave functions for the other n = 2
excited states. The proper form, shown in (3'),
is equivalent to the GVB wave function and does
lead to an upper bound on the exact 2 'S energy.

In a manner analogous to that used above for
wave functions (A7), we can show that the four
electron projected SCF-GVB wave function for the
nth excited state of He, also leads to an upper
bound to the exact energy of the nth state of the
same symmetry. Note that the orbitals from FO-
GVB calculations are not solutions of Eq. (A5) (ex-
cept at R = ~) and as a result the energy of the FO
wave functions need not be upper bounds to the
exact energy.

~Partially supported by Grants Nos. GP-15423 and GP-
40783X from the National Science Foundation. Based
on the Ph.D. thesis (California Institute of Technology,
1972) of S. L. Guberman.

~Current address: Center for Astrophysics, Harvard
College Observatory and Smithsonian Astrophysical
Observatory, Cambridge, Mass. 02138.

~{a) R. A. Buckingham, Trans. Faraday Soc. 54, 453
{1958); {b) Y. Tanaka, K. Yoshino, and D. E. Freeman,
J. Chem. Phys. 59, 5160 (1973).

2(a) K. M. Sando, Mol. Phys. 21, 439 (1971); (b) 23, 413
(1972); (c) A. L. Smith, J. Chem. Phys. 49, 4817
(1968); (d) B. Liu, Phys. Rev. Lett. 27, 1251 (1971).

Y. Tanaka and K. Yoshino, J. Chem. Phys. 50, 3087
(1969).

4R. E. Huffmann, Y. Tanaka, and J. C. Larrabee, Appl.
Opt. 2, 617 (1963); J. Opt. Soc. Am. 52, 851 (1962);
Y. Tanaka, A. S. Jursa, and F. J. LeBlanc, ibid. 48,
304 (1958).

5N. G. Basov, V. A. Danilychev, and Yu. M. Popov, Sov.
J. Quantum Electron. 1, 18 (1971); H. A. Koehler, L. J.
Ferderber, D. L. Redhead, and P. J. Ebert, Appl.
Phys. Lett. 21, 198 (1972); E. V. George and C. K.
Rhodes, ibid. 23, 139 (1973); Physics Today 26 (No.
8), 17 (1973).

6J. Nuckolls, J. Emmett, and L. Wood, Physics Today
26 (No. 8), 46 (1973).

~{a) %. S. Dennis, E. Durbin, Jr. , W. A. Fitzsimmons,
O. Heybey, and G. K. Walters, Phys. Rev. Lett. 23,
1083 (1969); (b) J. C. Hill, O. Heybey, and G. K. Wal-
ters, ibid. 26, 1213 (1971).

(a) A. P. Hickman and N. F. Lane, Phys. Rev. Lett. 26,
1216 (1971); (b) J. P. Hansen and E. L. Pollock, Phys.
Rev. A 5, 2214 (1972).

9(a) R, A. Buckingham and A. Dalgarno, Proc. R. Soc.

Lond. A213, 506 (1952); F. D. Colgrove, L. D.
Schearer, and G. K. Walters, Phys. Rev. 135, A353
(1964); V. Sidis and H. Lefebvre-Brion, J. Phys. B 4,
1040 (1971); E. W. Thulstrup and H. Johansen, Phys.
Rev. A 6, 206 (1972); H. J. Kolker and H. H. Michels,
J. Chem. Phys. 50, 1762 (1969); (b) H. Hoberland,
C. H. Chen, and Y. T. Lee (unpublished).

'B. B. Andresen and A. Kuppermann (unpublished).
C. E. Moore, Atomic Energy Levels (U. S. GPO, Wash-
ington, D. C., 1949), Vol. I.
(a) W. A. Goddard III and H. C. Ladner, J. Am. Chem.
Soc. 93, 6750 (1971); (b) The overlaps for the 1~S and
2 ~S core orbitals are (with all orbitals on the same
center), (Q«lg«) =0.879, (P«lgg) =0.996 end

(P« lpg) =0.910.
3W. A. Goddard III, Phys. Rev. 176, 106 (1968).

~4W. J. Hunt, W. A. Goddard III, and T. H. Dunning,
Chem. Phys. Lett. 6, 147 {1970).

~~For a discussion of spatially unprojected G1 wave func-
tions see W. A. Goddard III, Phys. Rev. 157, 73 (1967);
157, 81 (1967).
(a) For a discussion of the projected G1 wave functions
used here see S. L. Guberman, Ph. D. thesis (Califor-
nia Institute of Technology, 1972); {b) S. L. Guberman
and W. A. Goddard III (unpublished).

~7W. J. Hunt, P. J. Hay, and W. A. Goddard III fJ. Chem.
Phys. 57, 738 (1972)] use the term GVB to describe
somewhat restricted spatially unprojected wave func-
tions containing strong orthogonality constraints be-
tween orbitals. In our work we make no orthogonality
constraints whatsoever between any orbitals.
(a) Note that for small R, P„„=P» for s, d, etc. ,
orbitals while P„„~-P» for p, f, etc. , atomic oi'bitals.
(b) With Eq. (9) we obtain for the total wave function



NATURE OF THE EXCITED STATES OF He2

j4cj +4gj 4cj)(key 4' p+0 4g )

+(Ac~4~, +4~, 4 ) (4'~id', j+4~ jlgjHjjjPojP}

=@(~~4j~c j+~c j 0'cj)&cr

+~&~&c.+Ac~kc,)ka)4, &P ~jjP &—jj'0,

and hence Fig. 6(a) contains core interactions as in
Fig. 6(b). (c) For a triplet excited state only the spin
function in the last equation of (b) is changed. (d) For
~Z~+(2s) at R =~ this is the lowest state of this sym-
metry and as a result the Rydberg orbital need not have
any radial nodes. However, for ~Z~+(2s) at R=~ this is
the second state of this symmetry and the Rydberg or-
bital has one radial node. Thus the Rydberg orbitals
[see Fig. 1(b)] for these two states are similar at large
r but differ near r =0. The differences come at small
enough r to have no effect on the discussion here.
Nevertheless this also leads to a slight difference in
the calculated molecular energies at R =~ (0.02 eVin
the above states) which is again small enough so that
it can be neglected in the qualitative discussion. Simi-
lar splittings, of even smaller magnitude, occur for
the states having Rydberg orbitals Q, =3s and $„=3d.
For p, =2p, 3p the Rydberg orbitals are orthogonal
by symmetry to the lower orbitals and such splittings
do not arise. See Ref. 16 for a more detailed discus-
sion. (e) See Refs. 2-4, 16, 19-26, 28, and 29 and
references cited therein.
R. S. Mulliken, Phys. Rev. 136, A962 {1964).

~OR. A. Buckingham and A. Dalgarno, Proc. R, Soc.
Lond. A213, 327 {1952). These authors point out that
maxima in potential curves can arise from the overlap
of wave functions of separate atoms.

~(a) The slight distortion of the 3s and 3d Rydberg orbit-

als at R =~ in Figs. 11 and 12 is due to the incomplete
description of the 3d orbital used here and does not
affect the qualitative discussion. Only a contracted
Gaussian-type 3d, 2 function was included for polariza-
tion and the description of the 3do orbital. (b) K. M.
Sando and A. Dalgarno, Mol. Phys. 20, 103 (1971).
S. L. Guberman and W. A. Goddard III, Chem. Phys.
Lett. 14, 460 (1972).
M. L. Ginter, J. Chem. Phys. 42, 561 (1965).

24D. C. Allison, J. C. Browne, and A. Dalgarno, Proc.
Phys. Soc. 89, 41 (1966).
J. C. Browne, J. Chem. Phys. 42, 2826 (1965).
M. L. Ginter and R. Battino, J. Chem. Phys. 52, 4469
(1970).

2~Donnees Spectroscopiques Relatives aux Molecules Di-
atomiques, edited by B. Rosen (Pergamon, Oxford,
1970).
M. L. Ginter, J. Chem. Phys. 45, 248 (1966).
Y. Tanaka and K. Yoshino, J. Chem. Phys. 39, 3081
(1963).
B. K. Gupta and F. A. Matsen, J. Chem. Phys. 50, 3797
(1969).

3~J. C. Browne, Phys. Rev. 138, A9 (1965).
32B. K. Gupta, E. M. Greenawalt, C. E. Bodrigoez, D. B.

Scott, P. L. M. Plummer, J. C. Browne, and F. A.
Matsen, Bull. Am. Phys. Soc. 12, 182 {1967).

33J. Cohen and B. Schneider (unpublished).
3~B. Arrathoon, Phys. Rev. Lett. 30, 469 {1973).
3~D. J. Kckstrom, R. A. Gutcheck, B. M. Hill, D. L,

Huestis, and D. C. Lorents, Stanford Research Institute
Report No. MP73-1, 1973 (unpublished).

36O. J, Sovers, C. W. Kern, R. M. Pitzer, and M. Kar-
plus, J. Chem. Phys. 49, 2592 (1968); C. W. Kern,
R. M. Pitzer, and O. J. Sovers, ibid. 60, 3583 {1974).

37K. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930);
J. K. L. MacDonald, Phys. Bev. 43, 830 (1933).


