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A formalism is discussed whereby many-electron systems may be described by a great number of product
functions of different configurations in a manageable way. Calculations are made to find triply excited energy
levels of three-electron atomic systems, using products of hydrogenic functions with a Z equal to that of the
nucleus. Results for the lowest 'P' and 'S' levels in the I.i isoelectronic sequence, Z = 1 to 10, are presented.
The results of calculations for the energies of D' triply excited states in He are also reported. The calculated
energies are compared with available experimental and other theoretical values. Finally, the lowest 'S' and two
lowest P' energy levels in the isoelectronic sequence are fitted by a 1/Z perturbation expansion. It is seen that
this expansion can be used to estimate the energy levels of such states for higher nuclea. charges.

I. INTRODUCTION

The existence of certain discrete and quasista-
tionary excited atomic states having narrow widths
was known experimentally in the early 1930's in
the electron scattering from different atomic tar-
gets, and also in the photoabsorption spectra of the
rare gases. ' These quasistationary levels lie in
the continuous spectrum of the atom above the first
ionization threshold. ' lf their coupling with the
adjacent continuum is not zero, they decay spon-
taneously by electron emission. ' Such states are
not true eigenstates of the total Hamiltonian for
the atom as are the stationary states and the con-
tinuum states. In the literature they are referred
to as unstable, metastable, quasistationary or
autoionizing. In nuclear physics such states are
also known as compound states. They are also
called "resonant states, " or simply resonances,
because their excitation and subsequent decay in
different collision processes results in the ap-
pearance of asymmetric peaks in the cross section
near the energies of these levels. In the indepen-
dent-particle approximation these states are clas-
sified as multiply excited, whereas the stationary
states are almost always singly excited. The de-
cay of the multiply excited states by electron emis-
sion takes place according to the selection rules
of "radiationless transitions, " derived from the
conservation of energy, total angular momentum,
and parity. If one or more of these conservation
laws cannot be satisfied, then the multiply excited
state will not autoionize into the adjacent continu-
um. There are many examples of such metastable,
multiply excited states. The literature contains
several review articles on the experimental and
theoretical evidence for the existence of quasi-
stationary states in various atomic and molecular

systems. 4 '
To explain what we mean by singly, doubly, and

in general multiply excited states of an atom or
ion, we have drawn schematic diagrams [Figs.
l(a), 1(b)] for the energy levels of a three-electron
atomic system. When possible, each level is as-
signed a single atomic configuration, but when a
mixture of several configurations is needed to de-
scribe that state accurately, the symbolic notation
(n„n, n) is used (see Refs. 15 and 22 for details).
For instance, the lowest 'S' doubly excited state
in helium is made up of (2s')+ (2P') and so is clas-
sified as (2, 2a). The second lowest 'S' state is
mostly (2s')-(2P2) and is classified as (2,2b). The
ground-state configuration for the neutral atom
(Li), and also positive ions (Be, etc. ), is shown
as (ls'2s)'S' [Fig. 1(a)]. Above the ground state
there lie an infinite number of singly excited, sta-
tionary states of the atomic system. These levels
converge to the first single-ionization limit for
the three-electron system which corresponds to
the ground state of the two-electron system plus
one electron at rest at infinity. Above that lie the
singly excited states of the two-electron system
(e.g. , Li ). Each of these states (including the
ground state) has an adjacent single-electron con-
tinuum of energy levels which begins at the par-
ticular state and extends to infinity. The lowest
doubly excited state of He, (1s2s')'S', which lies
19.35 eV above the He ground state (1s')'S is
shown in Fig. 1(b). This state is an example of a
discrete, quasistationary state embedded in the
continuum [in this case, the continuum of levels
associated with the ground state of He, (ls'el)'S',
c &0].'

Higher up in the diagram we see the first double-
ionization limit, denoted by (1sele'l') which cor-
responds to the ground state of the doubly ionized
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three-electron system with the other two elec-
trons being at rest at infinity. For He the single-
electron continuum starts at the ground state of
He'(1s), at 24.6 eV. The two degenerate excited
levels of He', 2s and 2P, at 65.4 eV, form the
second single-ionization limit of He. Below the
2s and 2P levels there exists an infinity of Rydberg
series of doubly excited levels of He having sym-
metries "S' "/' "P' "D' "D' etc
three low-lying members, (2, 2a)'S' (at 5't.9 eV),

(2s2p)'P' (at 58.4 eV), and (2s2p) 'P' (at 60.2 eV},
are shown in the diagram. At around 59.7 eV there
exists the (2P') 'P' doubly excited state of He. This
is an example of a nonautoionizing state lying in
the continuum, as it cannot spontaneously decay
into He (1s) plus a free electron, without violating
conservation of parity or angular momentum.

The existence of two triply excited states of He
with the configurations (2s'2P)' 'Pand (2s2P'}'D', '
respectively, below the (2, 2a) 'S' and (2s2P) 'P'
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- is+el+a'(l ~1)

two-electron emission

(2s2p')'D'-1s +el + @'(l, l +2)

two-electron emission

- (1snl) "l+c(l, l +2)

one-electron emission

—(2s') 'S + cd —1s + e 's + ed

two-step one-electron emission

(2s2p') 'S'- is + el + e 'l two-elec tron e miss ion

—(1snl) "l+el one-electron emission

- (2, 2a)'S+as- is +as+a's

-(2s2p)'p+cs-is+cp+e'p
two-step one-electron emission.

Generally speaking, an N-tuply excited state of a
many-electron system is embedded in one to
(X- 1)-electron continua and can autoionize, giving
up 1, 2, . . . , up to N-1 free electrons.

With this introduction, we are now ready to
present a method for the calculation of the energies
of triply excited states in He and other members
of that isoelectronic sequence. The method is a
modification and extension to three-electron atoms
and ions of the procedure of truncated diagonaliza-
tion (TDM). ' The triply excited states of a three-
electron system will be treated as being quasista-
tionary bound states. This means that we suppose
the system has been prepared to be in such a state
at a certain instant by some excitation mechanism
and persists in that state for a period of time equal

doubly excited states of He [Fig. 1(b)] is experi-
mentally well established. ' " Their energies are
roughly 57.2 and 58.3 eV above the ground state of
He. There have also been several theoretical cal-
culations of these levels. ' ' Qrissom et al. '
have reported two other resonance structures with
energies around 58.79 and 59.4 eV, respectively,
which have been interpreted as being due to the
formation of 'S', triply excited states of He by
Smith et al. ' These triply excited states are seen
from the diagram to be embedded in the first dou-
ble-electron continuum of the ground state of He',
(1s), and also in the various single-electron con-
tinua associated with the singly and (in the case of
'S' and 'D' levels) doubly excited states of He.
They can autoionize into the adjacent single- and
double-electron continua by the following pro-
cesses:
(2s'2P) P'- (1snl) "1+@(l+1)

one-electron emission

to the mean lifetime of the state. To account for
the well-defined existence of quasistationary states
in various types of collision experiments, this
time has to be much larger than both the excita-
tion time and the period for the orbital motion
of the electrons around the nucleus. The interac-
tion is not known explicitly but it includes a part of
the interelectron and the electron-nucleus potential
terms of the total Hamiltonian for the system. In
other words, the triply excited states are eigen-
states of a part of the total Hamiltonian; the other
part of the Hamiltonian induces the transition to
the continuum states for those triply excited states
which autoionize.

The quasistationary states can be treated theo-
retically as discrete, bound states which have
well-defined energjps and widths irrespective of
the method employed for their excitation (prepara-
tion)." Further, we assume that a triply excited
state of the three-electron system is formed as a
result of the interaction between low-lying doubly
excited two-electron targets and an additional elec-
tron. Therefore, its wave function can be repre-
sented by a linear combination of functions which
are products of these doubly excited two-electron
targets and one-electron functions. The various
doubly excited targets are themselves described
by coupled and totally antisymmetric configuration
interaction (CI) wave functions, using hydrogenic
basis functions with the nuclear charge Z. The
additional one-electron functions are represented
by the hydrogenic orbitals with the same nuclear
charge Z. We will assume that L-S coupling is a
good approximation for our purpose as we deal
with light atoms (maximum value of Z =10) in the
present work. Thus the triply excited wave func-
tions are constructed to be the eigenfunctions of
total I, S, and ~, the parity for the state. To take
into account the electron exchange, the wave func-
tion will be antisymmetrized with respect to the
additional electron, as the doubly excited target
functions are already antisymmetric in the two
electrons. Such a wave function for the triply
excited state is approximately orthogonal to all
the lower-lying states with the same symmetry,
including the discrete (singly and doubly excited)
states and one- and two-electron continua. Since
the low-lying three-electron states include in
them the 1s orbital, and since the doubly excited
states do not have a 1s orbital in them, "and the
last electron orbitals are also orthogonal to 1s,
the wave function for the triply excited state is
orthogonal to the low-lying states (exactly so in
the independent-particle approximation). We will
discuss this point later in more detail. The for-
malism for the calculations will be derived in Sec.
II. In Sec. III we present the procedure and the
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results of calculations for the energies of several
triply excited states in He, Li, Be, and other
positive ions. In Sec. IV we give a general dis-
cussion of our method, and comment on certain
related points.

II. MATHEMATICAL FORMALISM

A. General discussion

As discussed in Sec. I, we wish to represent
the triply excited states of a three-electron sys-
tem as a sum of products of doubly excited two-
electron targets with one-electron functions. This
requires the evaluation of the full three-electron
Hamiltonian matrix with respect to the functions
which are constructed by coupling a third electron
to a two-electron wave function which is itself
made up of many configurations. If we use two-
electron functions which are coupled and properly
symmetr ized products of one-electron funct ions,
then as will be shown here, the antisymmetrization
with respect to the third electron can be carried
out, in either of two ways, giving rise to two
choices of basis functions. One of these is the
basis set of functions which are coupled and totally
antisymmetric products of single configurations.
The other, albeit much larger basis set, consists
of coupled product functions of single configurations
which are antisymmetric in electrons one and two
but not in three. In the latter case, the three-
electron antisymmetrization operator A will be
incorporated explicitly in the various matrices
arising in the formalism. When the number of
different three-electron configurations is very
large, using the former choice of basis functions
requires a somewhat tedious and complicated
procedure for evaluating the "coefficients of frac-

tional parentage" (CFP), and removing the degen-
eracies associated with "seniority. "" The second
choice of bases recasts the formalism in an ele-
gant and simple way such that questions regarding
seniority do not arise, and an explicit formula can
be used which avoids some of the problems of
CFP's. Much of what follows is applicable to any
N-electron system, but when explicitness is de-
sired, we will focus on three-electron systems,
since the formalism will specifically be applied to
evaluate the energy levels for the triply excited
states in He, Li, Be', and other positive ions of
that isoelectronic sequence.

We are interested in working with three-electron
functions of the form:

~rr„r-„r-,) =~ Q (~„l,l ~M„m,M)(S„—,'S~ g„p,M, }
tyi3p 3

&g(r„r,)(p„, (r, )

=-&[4(r„r,)q „, (r,}]1",',

where A. is the three-electron antisymmetrization
operator, and

V.r (r}=R.&(&}YP(~h,"y,

is a single-particle function. The dependence of
g and y on the magnetic quantum numbers M»,

p. », and p, , are shown explicitly in Eqs. (2)
and (3) although they do not appear in Eq. (1). The
brackets [ ]~~' will be used at times to denote that
the terms inside have been coupled together to
give total L and S. The g(r„r, )'s are themselves
expressible in terms of linear combinations of
product functions. Thus we have

(3a)

where

( )
R.. .(1)R...(2)'g ,', (1,2) (-1) "R, ,(2)R...(1)'g,"...(2, 1)

~1~2 1 2

(3b)

'g, , (1,2}= Q (L,L,I ~m, m, M}Y, '(1)Y, '(2).
1' 2

The R„,'s are mutually orthonormal but other-
wise unspecified, although in our application, we
will use hydrogenic functions with a Z equal to that
of the nucleus. The ~, 's are the usual spherical
harmonics, the X's are spin functions, and
(l, l,i.~m, m, M) is a Clebsch-Gordan coefficient as
defined in Rose." The &'s are CI coefficients

which presumably come from having previously
diagonalized some two-electron Hamiltonian ma-
trix, thereby making g, (r„r,) a reasonable ap-
proximation to some two-electron wave function
with energy E;. In our application, the g s will
be CI wave functions for various doubly excited
states of the two-electron atomic core of He, Li',
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etc. as calculated by the TDM"' without |s or-
bitals. We note that &;&=0 unless L; =L, , S; =S&,
M, =M, , and p &

= IL(.,
The subscripts are somewhat ambiguous. We

understand that the subscript i when associated
with P, (r„r,) stands for a set of values

i =- (nzlz, n, l 2, L,2, Mz2, Sza, p, z,j.
The subscript i when used with g, (r„r,) will stand
for the set

(7a)

where n is the dimension of the subspace spanned
by the I%, &'s. We have

(7b)

and for an arbitrary function I f ),
(7c)

' —= (Lz2, M„,S„,i z2, 8,)
On the other hand, when i is used as a subscript
for +„ it stands for the set of quantum numbers

i =(L„,S„,n„ l„E,, L, S}Z.

if and only if

&@,. I f)=0 for all i =1,n.

It easily follows that

(7d)

(7e)

I„.= &@,I@z&.

X is Hermitian and has no negative eigenvalues.
The vectors defined by

(4)

I+, & =g(A "v)„I+,&,

The functions defined in Eq. (1) are linearly in-
dependent, but not orthogonal (except in trivial
cases). An orthonormal basis set can be con-
structed by first evaluating the overlap matrix:

B. Method

First of all, we will use the basis set of three-
electron product functions which are antisym-
metric in particles one and two, but not in three.
All the above functions will be expressed in terms
of these:

@,(1,2;Sl nz f„n,/„L„,S„,n, l„L,S)

-=l kz (1,2)W.,z, (8)fs'.
where A and the unitary matrix U satisfy the eigen-
value equation

UXU ' =A =A''A'~,

form the desired orthonormal basis set which
spans the same space as the @~'s. The orthonor-
mality is easily shown:

&+,I+, &
= g(A z~v)„(A z"v)., &~zl~, &

j, l

= (A-'Z2VXVA 'J') = (A- *AA-' )-
=(Z)„.=6„.

The next step is to construct the Hamiltonian ma-
trix with respect to this orthonormal basis:

(8)

We define now the three-electron antisymmetriza-
tion operator as

A =,(Q (-z)' 4',),
where the sum is over all permutations of three
particles. With this definition, A has the property
that A'=A, andA =A~. That is, A is idempotent
and Hermitian; therefore A is a projection opera-
tor"

We have to calculate the matrix representation
of A in terms of the functions of Eq. (8). Thus we
have

x,, = &e,.lzzle, .&, (6a) A@, = +A, z 4',

where

=Hi +H2+Hs+ i2+ qs+ is (6b)

A„.=0 unless the single-particle quantum numbers
(n l n,zlz„n, l, )z of function Z are a permutation of
those of function i. The 4'"'s are orthonormal, but
the A@"'s are neither orthogonal nor normalized.

As an example, consider the three functions
is the standard three electr-on Hamiltonian (ex-
pressed in atomic units) in the field of nuclear
charge Z. The eigenvalues of & can be thought
of as representing the energy levels associated
with the operator QZZQ, where Q is the projection
operator onto the subspace spanned by the 4', 's
and can be written as

4'z(2s2s 'S 2p 'P'),

@,(2s2P 'P 2s 'P'),

4', (2s2P 'P 2s 'P').

These three functions form an invariant subspace
for A, in that A operating on any one of them will
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give a linear combination of them only. In this
case, A has the three-dimensional representation:

-I/W2 W3/W2

[A) =-' -I/~»/2 ~3/2

-v 3/VY W3/2

but

MM =A-"UnAAn U- g-~»

=A ''U&A&~U 'A "
=A ~'UXU 'A ''

(13b)

It is easy to see that Ac'»A@'»A@, are all propor-
tional to each other, as required, since there is
only one totally antisymmetric function in this
three-dimensional space, and therefore the A
matrix in Eq. (9) has only one nonzero eigenvalue.
In Appendix A, we derive the explicit formula for
A, for all cases.

We now express +, [Eq. (1}]in terms of o.', A,
and the C'"'s:

~~s
~~=A[4~V"ilss =A Z ~~&4 V"i

-LS

A Q „[y,y„,] =A +,4, (1,2; 3)

M M=A~ X '~AI.
In fact,

(14)

is the matrix representation in the @ basis of the
projection operator defined in Eqs. (7). Q has
zero eigenvalues corresponding to the eigenvectors
not lying in the subspace spanned by the 4's, while
the eigenvectors of Q belonging to eigenvalue 1 all
lie in this subspace.

We can now evaluate the Hamiltonian matrix
[Eq. (6)]:

*»=Z ~~~A&a C'a
ink

(10) =+M,*»H„,Mq, ——(MHM ),J,
kgl

(15a)

k, l, m, n
&&rAia&g A .&4'ale'. &

f l A tk A fftn ™jfft kn ~

But A is real and symmetric, so we have

Xq; = Z +„A,kAmk&~~ = Z +„A,kAk

= (QAAQ )~(
——(oAB ))) ——(o'A(x )(~,

where o',.*& = (o ).. . and we have made use of the
fact that A' =A. From Eqs. (5) and (10), we can
now write down the relationship between the +'s
and the @"'s.

The matrix & is rectangular and of order a&m,
where m denotes the dimension of the full con-
figuration space spanned by the partly antisym-
metric 4'"'s, and n is the dimension of the subspace
spanned by the +'s. The matrix A is square and
of order m&m.

Next we evaluate X in the 4' basis. From Eq. (4)
we have

&„=QM*;(&@'((1,2; 3)~ 3(H, + V„)~C',(1,2; 3)&M„
l,k

=3(MfjM ))), (16a)

where

(15b)

Note that Eq. (15b) is real and symmetric.
It is of interest to look further at the matrix

QHQ. This is the type of matrix one uses in Fesh-
back formalism to calculate autoionization reso-
nances. " It can be shown that QHQ (with dimen-
sion space m of C' space), has the same nonzero
eigenvalues as X (with dimension n of @ space),
since they are related by the following equations:

QHQ = MtMHMtM=MAMA

and

3C = MQHQM = MHM" .
Thus, by selecting a set of functions (i.e., the
4,. 's} one has equivalently chosen a projection
operator Q.

We now show that

@;(1,2,3}=Q(A ~'UoA),
q 4)(1,2;3).

f=l
(12) where

At this point, we stop to mention that the matrix
ii =H, +V„, (16b)

M-=(a-"UoA)

has the properties

(13a)

(16c)C,„=&C, (1,2; 3)~H, +V„ic,(1,2; 3)&.

and H, and V» are as defined in Eq. (6). First of
all, consider
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Since this represents an integral over all three
particles, the labels 1 and 2 can be interchanged,
leaving

C, =(C', (l, 2;3)IH, +V„~4 (1,2; 3)),

When the coordinates of particles 2 and 3 are
relabeled, C» becomes

C„=(C, (1,3; 2)~H, + V„~@,(1,3; 2))

= (P„C',(1,2; 3)iH, +V„iP»C' (1,2; 3))

because

4, (1,2; 3) = —4, (2,1;3) = P„4-,(1,2; 3). (17)

= (P2~ jP2s)r) ~

Recalling Eq. (13a), we have

C,, =- (MCM'), ,

=+M, , C,„Mj
l ~A

(~ "U~h. A. )(&»~)(1, 2; 3)IH. + V, lP„C,(1, 2;3))(ji Un)*A*,
&,m, n, a

It is not hard to show that

P23A =AP~3 = -A,

and since

A„,4, =A4„,

we get

C,.~ --Q (A Uo)),.„(-A@„(tj~-A4 )(A ~ Un),*.

(A U&)(„A„,(4, i fji4) )A* (A ' Un)*.
k. l, m, n

(18a)
In effect, A has absorbed P», leaving

Cq~
——(MfjM ),.~,

and so we have

(1Sb)

Note that jj is block diagonal in form, in that lj, , =0
unless I, =I ~, 8,. =S, , L„=l3J .

One would similarly show that & can be written
in the form:

30= 3M[g(H, +H2) + V~2]M =3MtjMt. (19)

lj;~ has the additional property that Ij,.j --0, unless
N3) fL3j m aking it comp lete Iy independent of the
third electron function.

C. Relation of the a matrices with CFP and seniority

The treatment of product wave functions rep-
resenting several equivalent electrons is exhaus-
tively covered in the literature. We would like
to connect this with the formalism developed in
Sec. IIB. In the process we hope to gain some
insight about totally antisymmetric basis functions
in N electrons, and also about coefficients of frac-
tional parentage and seniority schemes. Briefly,
one would like to express a totally antisymmetric
N-electron wave function in terms of sums of
(N 1)-electron —wave functions, which are multi-
plied by a one-electron function and then coupled
together, i.e.,

C', (1,2, . . . ,N~LS)=pa, ,[ j()1), , .2. . , N1~L,S,)y, (r„)]„=Qa;, C(1,2, . . . , N1;N), (2o)

where

C,. (1,2, . . . ,N 1;N)-=[)j),(1,2-, . . . ,N-1~L, S, )y, (r„~l,)]». . .

The sum is only over all those j's which have the
same set of orbitals as i. The a„.'s are general-
izations of the coefficients of fractional parentage
(CFP's). This decomposition is not necessarily

unique. There may be two or more mutually or-
thonormal C)(1, . . . , N)'s with the same L and S,
associated with a given set of orbitals (i.e., same
set of fn& 1)j=1,Nj). For example, for d' con-
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figurations, there are two functions with L =2 and
S = &. Racah' introduced the concept of seniority,
so as to remove this degeneracy, and thereby
allow the @'s to be uniquely specified. Any given
orthonormal set of @'s is related to Racah's by a
unitary transformation.

Consider now, the functions, 4 (1, . . . , N- 1;N)
Ae', must be expressible as a linear combination of
the 4's of Eq. (20}, since the @'s span the space
of completely antisymmetric functions. We can
write

AC'q(1, 2, . . . , N- 1;N) = Q bing, (1,2, . .. , N)

(21a)

a' =Ua,

where

(26)

so

A.'=a' a'=(Ua) Ua=a UrUa

= a U 'Ua =a~la =a a =A.

We can look at A from an alternate point of view.
Suppose the @'&'s span an n-dimensional subspace
of the m-dimensional space, spanned by the 4', 's.
Let A, &

be an m-dimensional representation of A.
Since

and

all the eigenvalues of A must be either 0 or 1.
Also, as A is real-symmetric, there exists an
orthogonal matrix U, such that

Since A;,. =A&;, we have

(2lb)
0UAU- ( )

0 0( „)
(26)

(22)

Recall that the 4"s and also the 4"s are ortho-
normal sets, so from Eqs. (20) and (21a}

a;g = &4'gl+g&= &@'(lACq&

where n equals the multiplicity of eigenvalue ~ =1,
and (m —n) is the multiplicity of the zero eigen-
value. The n-dimensional subspace is spanned by
the totally antisymmetric functions. Now

or

b~=a, (23)

1(n)

where

0(m-q)-

T=a, a„ (2'la)

and from Eqs. (22) and (23)

A =a~a. (24)

Because of the orthonormality of + s and @','s,
we have

1000'0000
01000000

~ ~ ~ ~ ~ ~ ~ 1 ~

0001'0000
(2 Vb)

k, l

is an &-rom by ~-column array. Consequently,

A =U 'a, a,U =Uraora, U = (a,U)r(aoU) =ara,

(28a)

where

or a =a,U (28b)

aa = I.
The a, &'s are generalized CFP's but they are

not uniquely defined because of the fact that the
@'s are not unique to within an arbitrary orthog-
onal transformation (unless there is only one @).
But, A is not dependent on what seniority scheme
is picked, since different schemes are related by
unitary transformations. Let a and a' be two dif-
ferent sets of CFP's derived from different
schemes; then

T — = Taa = I,„&
—- aoao . (28c)

a = U, (n xn)ao(nx m)U2(m x m). (29)

The matrix a is seen to be rectangular (with the
same dimensions as ao) whose rows are ortho-
normal vectors. Any orthogonal rearrangement
of these rows mill also give a valid a, yielding the
same A. Therefore, a can be written in the gen-
eral form
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U, A U2~ = ao~ao. (30)

But ao~ao is diagonal, so U2 is an orthogonal matrix
which diagonalizes A. Since, in general, the eigen-
values of A are not all distinct, there exist many
such orthogonal matrices which satisfy Eq. (30).

In the above discussion we have only used the
properties of A which make it a projection opera-
tor; thus everything shown is true for all projec-
tion operators. The a matrices for two different
cases are evaluated in Appendix B.

D. Explicit use of totally;antisymmetric bases

Since our objective is to evaluate the matrix +
[Eqs. (16) and (17) in Sec. IIB], we see that if
we use CI target functions (nontrivial &), a knowl-
edge of a is unnecessary. What we need instead
are the eigenvalues and eigenvectors of X = eA~
[Eg. (11)]. If we include enough two-electron target
states, so that & has the same dimension +, as a,
then X will have the same dimension as the number
of linearly independent, totally antisymmetric
functions. Any further addition of target states
will not increase the dimension of C' space, and X
will have some zero eigenvalues. In any case,
when o.' and a have the same dimensions, the eigen-
values of will be identical with the Hamiltonian
matrix derived from using totally antisymmetric
functions directly, without concern for target
states. The dimensions of the + matrix, in this
case, however, can exceed 360, even if only one-
electron orbitals through n„n„n, =5 are included,
so this procedure is not of practical use. In Sec.
VC we discuss our results for 'P', where we cal-
culate energies using five target states and all
orbitals through 2 &m,. &4, l, &2 and compare with
calculations using all possible antisymmetric func-
tions having the same orbitals. The former re-
quires the diagonalization of a 21 x21 Hamiltonian

U, corresponds to the arbitrary choice of the @"s
and U, corresponds to the selection of the basis
functions (@,). There are two trivial cases, cor-
responding to n =0 (then a0=0, a =0, and A =0)
and n =m (i.e. , a, =I, a =U, U„ and ara A =I).
Otherwise, we have 1 ~n ~m. If + = 1, then U, =1,
and a is uniquely defined by the choice of basis
functions (C',.].

In Appendix A, w'e shall derive a relationship
between A and the exchange operator P,.&

using the
(C';j as the basis functions, and then evaluate the
matrix A explicitly for three particles. Once we

have done this, we may calculate some a, if neces-
sary, by observing that since

A =g~g =U2aoaoU2,

matrix, while the latter requires one which is well
over 100x100.

&E(eV) =27.2102 E(a.u. ),

E„,.(eV) = 78.9878 —27.210~ &H, (a.u. )~,

&~+(eV) =2o3 43o3 —27 210I&L+(a u )I,

(31a)

(31b)

(31c)

where E„(eV) is the energy above the ground state
of A.

The results of our calculation of the energy of
the lowest 'P' state of He is given in Table I,
together with several recent theoretical calcula-
tions and experimental measurements. Golden,
Schowengerdt, and Macek ' have pointed out that
earlier experiments which used the (1s2s')'S reso-
nance in He to calibrate their energy scales gave
values for the triply excited states which were on
the order of 0.05 eV too low, since they would
have used the value of 19.3 eV instead of the pres-
ently accepted position of 19.35 eV.

Our value of 57.350 eV is in good agreement with
the calculations of Nicolaides, "and Eliezer and
Pan, "but the experiments of Kuyatt ef' a~. ,

' Sanche
and Schulz, ' and Grissom et al."all found a reso-
nance about 0.2 eV below our value. This dis-

III. CALCULATION OF THE ENERGIES QF TRIPLY EXCITED
STATES

As discussed in Secs. I and II, we expanded the
wave function of the triply excited states in a linear
combination of products of low-lying doubly excited
two-electron target functions, with various one-
electron functions for the third electron. For ex-
ample, in order to calculate the (2s' 2P)'P' state
in He we first diagonalized the particular trun-
cated two-electron Hamiltonian, as in Befs. 6 and
15 to obtain the CI eigenfunctions (& matrix of
Sec. II) for the lowest members of the five doubly
excited He targets with symmetries 'S', 'P', 'P',
'P', and 'O'. The two-electron functions were
constructed using all possible hydrogenic orbitals
with orbital angular momentum 0, 1, and 2, and
principal quantum number & =2, 3, 4, 5. The chargeS
used was the same as that of the nucleus. Hydrogenic
single-particle orbitals w'ere also used for the
third electron function, using the formalism of
Sec. II to construct the basis functions (@;j. The
Hamiltonian matrix X [Eq. (17)]was then set up
and diagonalized, yielding eigenvalues which are
approximations to the various 'P' energy levels.
All the energies calculated in this way are ex-
pressed in a.u. below the total ionization limit for
the three-electron system (the zero of the energy)
For He and Li some of the energies calculated
here are also given in eV above the ground states
of He and Li', respectively. The conversion be-
tween eV and a.u. used is as follows:
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TABLE I. Position of (2s 2p) jp resonance jn He

Experiment
(eV)

Theory
(eV)

Present
calculation

(eV)

57.15+ 0.04
57.1+0.1

57.16+ 0.05
57.21

57 3
57.3
56.5 ~

57.350

Reference 11.
Reference 8.

~Reference 9.
Reference 10.

~Reference 13.
~Reference 12.
g Reference 14.

crepancy is not surprising, since the discrete set
of hydrogenic functions is not a complete set. We
could expect better agreement if we used different
basis functions, such as generalized Laguerre
polynomials with one exponential. The calculation
of Smith et al. ' is well over 0.5 eV below all other
results, and should probably be reexamined.

In Table II, the energies of the eight lowest 'P'
levels for He are listed. Their energies below
the five doubly excited thresholds used in the cal-
culation are also included. We see that only the
lowest level lies below the (2, 2a)'S' state, and only
one other (the one at 58.2 eV lies below the second-
lowest doubly excited state. We feel that our
method (and any other method which uses dis-
crete bases) can treat definitively only those Fesh-
bach resonances" which lie below the lowest
doubly excited threshold included in the calculation.
For this reason, the resonances quoted in this
paper lying above the lowest 'S' threshold should
be used with some caution. Keep in mind, though,
that there must exist resonances in that region,
and some (if not all) of the quoted levels will cor-
respond to experimental reality.

It should be mentioned here that the threshold

energies quoted in this paper are higher than those
calculated in other papers by similar methods. e'"
This is due to the fact that we have only included

s, P, and d orbitals and n = 2, 3, 4, 5 states. A

forthcoming paper on doubly excited states by
Lipsky, Conneely, and Anania" will include all
orbitals through h (l =5), and some principal quan-
tum numbers through n =10. They report energy
levels which are on the order of 0.02 eV lower
than the doubly excited levels quoted here.

Once the formalism is set up for a given con-
figuration (e.g. , 'P') it is not hard to perform the
same calculation for any Z. In Table III we report
the results of such calculations for all nuclear
charges from 1 to 10. All levels given in this
table lie below the (2s2P)'P' threshold for that
system. Table IV gives the energies of the lowest
doubly excited state for each of the configurations
'S', ''P', 'P', 'D' for every Z from 1 to 10. These
are, of course, the five lowest thresholds below
which the triply excited states are supposed to lie.

Similar calculations have been performed for
the energy levels of 'S' triply excited states. The
basis functions (4',) used in this calculation con-
tained the three-electron configurations built upon
the following four doubly excited He targets:

(2, 2a) 'S', (2s2P) "P', and (2P2) 'D'.

The lowest 'S' levels are tabulated in Table V.
Two 'S' triply excited states of He are observed

experimentally by Grissom et aI. ,
' having energies

around 59.4 and 58.79 eV, respectively. Our cal-
culation, on the other hand, gives several levels
in that energy range. We find one value at 59.61
eV corresponding to the 59.4 eV they report, but
we have two levels, 58.71 and 58.79 eV, which
could correspond to the one they report at 58.8 eV.
Furthermore, we calculate one level at 58.07 eV,
which is only 0.16 eV above the 'S threshold. This
level's existence may have been obscured by the
presence of that threshold.

TABLE II. Lowest P' energy levels in He as calculated using five two-electron target
functions.

Energy
(a.u. )

Energy
(eV)

Energy differences from the thresholds
(2, 2a)'S (2s2P) ~P (2P ) P' (2P ) B'

(eV)
(2s2P) I 0

-0.795 217
-0.763 004
-0.750 180
-0.736 239
-0.729 234
-0.711747
-0.693 873
-0.688 598

57.3500
58.2265
58.5754
58.9547
59.1453
59.6212
60.1075
60.2510

0.5630 1.0238
0.1473

2.4230
1.5465
1.1976
0.8183
0.6277
0.1518

2.6874
1.8109
1.4620
1.0827
0.8921
0.4162

2.9322
2.0557
1.7068
1.3275
1.1369
0.6610
0.1747
0.0312

Threshold energie% (eV} 57.9130 58.3738 59.7730 60.0374 60.2822
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TABLE IV. Doubly excited target thresholds for the He isoelectronic sequence for Z = 1 to
& = 10, expressed in a.u. below total ionization.

Target threshold. energies (a.u. )
(2, 2a) S (2s2P) ~P (2p2) 3Pe (2p') 'D' (2s2p) P

1
2
3
4
5
6
7

8
9
10

-0.147 740
-0.774 522
-1.901094
—3.527 836
-5.654 583
-8.281 589
-11.408 53
-15.035 50
-19.162 48
—23.78948

-0.141791
-0.757 588
-1.873 643
-3.490 166
-5.606 933
-8.223 833
—11.340 81
—14.957 84
-19,074 90
-23.69199

—0.124 988
-0.706166
-1.789 498
-3.373 959
-5.458 984
-8.044 310
-11.12981
-14.71542
-18.801 10
-23.386 84

-0.127 623
-0.696 448
-1.758 493
-3,320 759
-5.383 758
-7,947 281
—11.01114
-14.575 24
-18.639 50
-23.203 87

-0.125 827
-0.687 454
-1.745 186
-3.302 136
-5.359 355
-7,916888
-10.974 66
—14.532 61
-18.590 68
-23.148 85

Table VI is similar to Table III in that it contains
the lowest '5' triply excited states which lie below
the 'D' threshold for each nuclear charge from 1
to 10.

The last set of levels we calculated were those
for 'D', which were carried out only for He .
Here, seven doubly excited target states were in-
cluded. In addition to the five which mere used in
the 'P' calculation, we included the second lowest
'S'(2, 2b) and 'P'(2, 3&) states. Table VII indicates
our value of 58.43 eV agrees reasonably well with
experiment' ' and other calculations. ' ' How-
ever, the experimental values all fall below the
'P' threshoM at 58.36 eV, whereas all the theo-
retical calculations fall at or above that threshold,
so the difference between theory and experiment
is small but significant.

Table VIII contains the 13 lowest 'D' levels for
He . Here we see that the two lowest levels (at
58.43 and 58.52 eV) are separated by less than
0.1 eV, so if the lowest resonance is below the
'P' threshold, then there could be another one
right at that threshold.

There has been some experimental and theoreti-
cal interest in triply excited states in Li recently.
In particular, Bruch et al."have reported struc-
tures in electron emission from foil-excited states
in Li which cannot be explained by doubly excited
states. Our lowest 'P' state [taken from Table III

and using Eq. (3lc)] gives a value of 142.55 eV
above the Li ground state, while our lowest 'S'
state (Table VI) gives a value of 147.39 eV. Both
states can autoionize to a, 1s2l continuum, giving
off an electron with energy of 80 to 86 eV. It is
in this range that the otherwise unexplained reso-
nant structures lie. Nicolaides" has calculated a
value of 141.7 eV (misquoted as 140.7 in his paper)
for the lowest 'P' state.

IV. Z DEPENDENCE FOR THE (2s2p2 )2S', (2 22p)2 po,
AND (2p3) 2P' LEVELS

It is of interest to study the dependence of the
various energy levels on the charge of the nucleus.
We have fitted the lowest 'S' level of Table VI
a,nd the two lowest 'P' levels of Table III to a per-
turbation theory expansion in 1/Z, "retaining
terms up to the order 1/Z'. From perturbation
theory it can be shown that by scaling the coordi-
nates of the electrons (&,-&,/Z) the energy & can
be expressed as follows:

z(z) =z, +z(@,civic, )+a+a/z+ ~ ~ ~,

where

e, = --,'v2

TABLE V. Lowest S energy levels for the He as calculated using four two-electron tar-
get functions.

Energy
(a.u. )

Energy
(eV)

Energy differences from the thresholds (eV)
(2, 2a) S~ (2s2p) P' (2p ) D' (2s2p) P

-0.768 649
-0.745 258
-0.742 416
-0.712 023

58.0729
58.7093
58.7866
59.6137

0.3010 1.9646
1.3281
1.2508
0.4238

2.2093
1.5729
1.4955
0.6685

Threshold energies (eV) 57.9130 60.0374 60.2822
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Experiment
(eV)

Theory
(eV)

Present
calculation

(eV}

TABLE VII. Position of (2s2p~} 0 resonance in He (4,I vl &,&= & y(2P "s)lv„l y(2P "s)&

+-,'(y(2s2P 'P)l V„l Q(2s2P 'P))

+ 2 ($(2s2p 'P)l V„l p(2s2p 'P)).

58.23+ 0.04
58.2 + 0.1

58.25+ 0.05
58.31'

~Reference 11.
Reference 8.
Reference 9.

dReference 10.

58.3'
58.4'
58.3 ~

58.433

eReference 13.
~Reference 12.
&Reference 14.

The P's are the same as those in Eq. (3b), with

Z =1. Ne use the values of two-electron matrix
elements in the hydrogenic basis and get

(4,IVI@,&
=- ~ =0.511 v188

E,(2p"S2s) =--,Z'(—, + —,'+ —,') =-BZ' (a.u. ). (33b)

1 1 1V= + +
r12 rl3 r23

The letters A and B involve matrix elements,
which are independent of Z.

To apply the above analysis to the lowest 'S'
energy level, we have taken

@,= 4[(2s2P') 'S'1,

which is a coupled the totally antisymmetrized
three-electron product function. Now this func-
tion can be expressed in terms of the 4, 's of Eq.
(8) as follows:

& = (1/V 3 )[4(2P 'S2s) —(1/v 2 )4 (2s2P 'P2P )

+ v-,' 4(2s2P 'P2P)j.

%e note that since @p is totally antisymmetric, we

have

(4,I v I @,& = 3 (@,I(1/&„)I @,& = 3 (@,I V,.I 4.&

and

The expression E(Z)+ SZ' —0.511 V188Z, where
E(Z) is taken from the first row of Table VI, is
plotted against 1/Z in Fig. 2. The plot shows that
the linear fit is good for Z&5.

To extend this analysis to the lowest two 2P'
levels, we note that in this case, there are two
degenerate unperturbed levels:

4„=-4„[(2s'2p) 'P']

4.=-~,[(2P')'P'j.

@pg and C p, can be wr itte n as

4„=(1/v 3 )[4(2s"S2p) —(1/v2 )4'(2s2p 'P2s)

—&4(2s2P 'P2s)],

4 = v-' [v-' 4 (2P"S2P) —v-' 4 (2P"P2P)
—WyC (2P"a2P)].

Following the procedure of degenerate perturba-
tion theory, '4 we have to diagona, lize the matrix:

&»"slv,.l»"s) (»"slv, .l2p"s&

&2p"slv, .l»"s) (2p"slv, .l2p"s& '

TABLE VIII. Lowest D energy levels in He as calculated using seven two-electron target functions.

Energy
(a.u. )

Energy
(eV) (2, 2a) S

Energy differences from the thresholds (eV)
(2s2P) P (2P2) ~P (2P~) D' (2s2P} P (2, 2b) S (2, 3b}~P'

-0.755 416
-0.752 229
-0.741 436
-0.705 968
-0.694 605
-0.687 960
-0.683 837
-0.679 340
-0.671432
-0.657 672
-0.640 338
-0.622 390
-0.617 703

58.4329
58.5196
58.8133
59.7784
60.0876
60.2684
60.3806
60.5029
60.7181
61.0925
61.5642
62.0525
62.1801

1.3401
1.2534
0.9597

~ ~ ~

1.6045
1.5178
1.2241
0.2591

1.8492
1.7625
1.4688
0.5038
0.1946
0.0138

3.8456
3.7589
3.4652
2.5001
2.1909
2.0101
1.8979
1.7756
1.5604
1.1860
0.7143
0.2260
0.0984

4.3309
4.2442
3.9505
2.9854
2.6762
2.4954
2.3832
2.2609
2.0457
1.6713
1.1996
0.7113
0.5837

Threshold energies (eV) 57.9130 58.3738 59.7730 60.0374 60.2822 62.2785 62.7638
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0.37 0.42

0.32- 0.37—

0.27— 0.32—
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0.0 O. l

I
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I

0.4 0.5

FIG. 2. 1/Z expansion to the lowest 2$ energy level. ,
where the unperturbed state is (2s2P ) S'.

FEG. 4. I/Z perturbation theory fit to the second
lowest P' level.

The two eigenvalues obtained are

&, =0.43033, ~ =0.5599. (33c)

V. FURTHER DISCUSSION
A. On the linear independence of 4; 's and on their orthogonality

to lower states

According to the development of Sec. II, the X
matrix [Eq. (4)] gives the overlaps among the func-
tions (4',.j. These functions (and equivalently (@,j}
form a basis set in the physical space. The physi-
cal space is a subspace of the full configuration
space spanned by the 4, 's. The dimensions of the

0.I7

O.I5-

Nio
4J

I
Lij

O.I3-

O. II I I

O.I . ( /IZ) 0.2
I

0.3

FIG. 3. 1/Z expansion of the lowest P level. .

The smaller value corresponds to the lowest 'I"
energy level, and g corresponds to the next lowest
level, while Eo is the same for both and the same
as Eq (33b).. The expressions E, (Z)+3Z'/8 —&,.Z,
for i =I and 2, are plotted as functions of I/Z in
Figs. 3 and 4, respectively. E, (Z} and E2(Z) come
from the first two rows of Table III.

subspace which we use here are determined by the
number of doubly excited targets and the number
of one-electron functions which are coupled to each
of these targets. Now, to do the calculation of a
triply excited state by our method, we have chosen
a few of the low-lying doubly excited targets (see
Sec. III for details). The basis functions (+,j thus
constructed mill normally be linearly independent,
as is manifested mathematically mhen the X ma. —

trix has no zero eigenvalues. But the formalism
also provides a test of linear independence for the
basis set (+,j in the physical space. That means
if we had initially constructed a set which was not
linearly independent, then some of the eigenvalues
of X mould be zero, and by throwing away the cor-
responding eigenvectors of X, one could obtain a
linearly independent, orthonormal basis set (@;j
as described in Sec. II. In such a case, this set
would span the appropriately reduced subspace of
physical space.

Another point on which we would like to comment
here is the orthogonality of the functions f@;jto
lower-lying states of the same symmetry. As
mentioned in Sec. I, these functions are approxi-
mately orthogonal to all the states of the same
symmetry, i.e., to the low-lying discrete states
(singly and doubly excited), and also to the states
lying in one- and tmo-electron continua. This is
so because these functions are made up of products
of various doubly excited states of the target with
single-particle hydrogenic states. Now, the
doubly excited states of the two-electron target
are orthogonal to all the singly excited eigenstates
(including the ground state) of the two-electron
Hamiltonian, and the singly excited one-electron
states of the additional electron are also mutually
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orthogonal as well as orthogonal to (1s) (the
ground-state orbital). Therefore, the wave func-
tion of the triply excited state in the +, basis con-
structed by our method is approximately orthogo-
nal to all the low-lying singly excited and doubly
excited states of the same symmetry. The asymp-
totic behavior of the continuum states in the one-
and two-electron continua is different from the
asymptotic behavior of a triply excited state, which
decreases exponentially as a function of the coor-
dinates of any of the three electrons. So all the
continuum states are also orthogonal to the wave
function of the triply excited states.

B. Calculation of (Zs2 2P) 2P' level using the full 4; basis set

We would like to comment here on employing the
full basis set (C',) for the expansion of the wave
function of a triply excited state. In Sec. III we
described the calculation of triply excited levels
using CI wave functions for the low-lying doubly
excited two-electron targets. To study in some
detail the differences between the two approaches,
we have performed the calculation of the energy of
the lowest 'P' level, (2s'2P), in He using the full
~', basis. That is, we diagonalized the total three-
electron Hamiltonian matrix

(34)

evaluated in the 4; basis consisting of all the
three-electron configurations up to a certain maxi-

mum value of n, and I, (i .=1, 3), From the for-
malism developed in Sec. IIC, this could be ac-
complished either by calculating the Hamiltonian
matrix with respect to the eigenstates of A be-
longing only to nonzero eigenvalues or equivalently

by calculating the matrix,

&' = aIIa~ (35)

with some known a.
We now consider the Hamiltonian matrix &

evaluated in the 0, basis [Eq. (15), Sec. IIB] which

includes all the doubly excited states of He lying
below the various thresholds of He', with nl rang-
ing from 2s up to n;"'l, "' and having symmetries
1 3S8 1 3P 1 3P8 1 3D8 1 ~ 3D0 and 1 3P Since
& in this case is square and unitary and the X ma-
trix is given by Eq. (11):

X = eA~~,

where X and & are of the same order as the A ma-
trix (m&m); therefore X is a projection operator
just like A. with the eigenvalues 0 and 1 only. Now

the Hamiltonian matrix & has the form:

X= @A~a~,

which has the same eigenvalues as

X=AHA,

and thus the same nonzero eigenvalues as &'. We
have then shown that using the full 4', basis (i.e. ,

employing the straightforward CI expansion for
the wave function of a triply excited state) is for-

TABLE IX. Energy of lowest P state in He using different basis sets. The energy entries
are in a.u. ; these are also given within parentheses in eV.

Configurations
included

max
n

ssp
(No constraints)

s+ (3-TDM
targets, 'S'
and 'P )

sst t p
(No constraints)

s+, P~ (5-TDM
targets ~S

'sP0 3P and
0')

A11 ~

(No constraints)
A11 {5-TDM

targets, 'S8,
is 3P0 3P8

t

and D }

-0.754 91543
(58.4466)

-0.754 382 40
(58.4611)

-0.779 99649
(57.7 641)

-0.779 01917
(57.7907)

-0.795 636 64
(57.3385)

-0.793 559 21
(57.3951)

-0.758 350 65
(58.3531)

-0.757 81946
(58.3676)

-0.781496 42
(57.7233)

-0.779 931 54
(57.7659)

-0.796 880 50
{57.3047)

-0.794 690 74
{57.3643}

-0.759 145 13
(58.3315)

-0.758 81370
{58,3405)

-0.781 008 56
(57.7366)

-0.795 216 74
(57.3500)

The three-electron configurations used for these calculations are (n 1s, n2s, n 3p), (n~p,
n tp, &pn), (n ~s, n tp, n

& d), (n tp, n td, n td), where 2 —n&, n~2, n t ~ n~'".
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TABLE X. Cal.culated energy of lowest P level. in He with increasing number of target
states.

Energy of
(2s22p) 9"
level in He

(ev) (2, 2a) Se
Energy differences from target thresholds (eV)

(2s2P) 3 (2P') 'Z' (2P') 'D' (2s2p) '~'

58.1540
57.7823
57.4910
57.3831
57.3500

Threshold
energies (eV)

0.1307
0.4220

. 0.5299
0.5630

57.9130

b
b

0.8828
0.9907
1.0238

58.3738

b
b
b

2.3899
2.4230

59.7730

b
b
b
b

2.6874

60.0374

b
2.4999
2.7912
2.8991
2.9322

60.2822

"'Indicates that the energy l.evel is above the particular threshold.
"Indicates that the particular target was not included in the calcul. ation.

mally equivalent to expanding this wave function
in a linear combination of the products of all the
doubly excited CI target functions with various
one-electron functions. For comparison, we list
in Table IX the results of the calculation for the
energy of (2s'2P)'P' state in He with CI functions
for the lowest doubly excited two-electron targets,
and also without them (i.e. , using full @ basis) for
different values of n'."'" and l,".'"" (3 &n',.""& 5, 1 & l,. '"
&2)

We observe from TableIX that the difference be-
tween calculations using doubly excited targets
and those which use the full 4' basis (i.e. , have no
constraints) is less than 0.06 eV. This is rather
surprising, since we had expected that the latter
calculations would have yielded much lower energy
values, perhaps -even lower than experiment, and
comparable to the calculation of Smith et al.''
Since this did not happen, we must conclude that
either we did not include enough radial configura-
tions (including all n =5 states would have required
the diagonalization of a 340X 340 matrix —an irn-
possibility on our computer system) or orthogo-
nality to the 1s orbital is all that is necessary to
define triply excited states. In other words, a
projection operator can be constructed (a direct
extension of the Q of Hahn, O' Malley, and Spruch25
for two electrons) which projects out the ground
state of the one-electron system.

Of course, a calculation which includes several
two-electron CI functions will yieM lower energies
than equivalent calculations using fewer CI func-
tions. Table X shows the results of calculations
where one to five target states were included.
First, a calculation using only the lowest 'S' state
yielded an energy of 58.1540 eV for the lowest 'P'
triply excited state. Next, two target states were
included, the lowest 'S' and the lowest 'P', giving

an energy of 57.7823 eV. Then, successively,
the lowest 'P', 'P', and 'D' states were included,
giving energies of 57.4910, 57.3831, and 57.3500
eV, respectively. Naturally, if more and more
states were added, the calculated energies for the
triply excited states would approach the eigen-
values of 30 [Eq. (34)] or 36' [Eq. (35)]. But, after
some point, states would be added which are poor
approximations to their respective doubly excited
targets, thereby, presumably losing the orthogo-
nality to the singly excited states.

C. Relation with close-coupling method

Here we discuss some of the points relating our
method of calculation for triply excited levels with
the close-coupling procedure. In the close-coupling
procedure for electron-atom scattering the wave
function is expanded in a linear combination of
products of target eigenfunctions, g, with some
unknown functions for the additional electron,
+„(&). The unknown functions F&'s satisfy second-
order integrodifferential equations obtained from
Kohn's variational principle. " In the CI method,
on the other hand, known functions A„, are used
for the additional electron, and the iV independent
expansion coefficients are chosen such that the
energy is minimized, which is equivalent to diago-
nalizing the Hamiltonian matrix. Thus, the con-
figuration-interaction method is equivalent to a
close-coupling procedure involving closed channels
only. Our approach, using CI target eigenfunctions
for the doubly excited target states is better than
the close-coupling approximation, in the sense that
we can use more accurate g, 's. But the close-
coupling approximation is better in the respect that
the functions E„are more accurately and effi-
ciently determined, as these are the actual solu-
tions to the differential equations describing the
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multichannel scattering.
To achieve the same accuracy as that of a close-

coupling calculation, we would have to include
many more hydrogenic single-particle orbitals
for the additional electron. We can expect to speed
up the convergence if we use as &„,'s, generalized
Laguerre functions (of which Sturmians are per-
haps the best known set) in the place of hydrogenic
radial functions. Because these functions are
more compact and tightly bound than the hydro-
genic, one can achieve some of the advantages of
the variationally determined E„'s for the low-
lying multiply excited states. Also the generalized
Laguerre functions, being a complete set, repre-
sent well the contributions from the continuum.
However, the hydrogenic radial functions are
better suited to describe the higher members of
Rydberg series of triply excited states since the
Laguerre functions are more tightly bound, and
more of them will be required to describe an elec-
tron of relatively high quantum number.

=-', [u, , —2&C, )P„(C,&] (A3a)

ol

and

p„,. e, (1, . . . , i, . . . , N; N+1)
=e (1, . . . , N, . . . , i; N+1}

e, (1, . . . , i, . . . , N; N+1),
we have

(e, /p, „„/e,&=(e, /p„„„/e, & .

So

A;~ ——[1/(N+1)] (5;~ —N (e; i P„~e, ie~) ) (Al)

or, in matrix form,

A =[1/(N+1)](I sVPy „,)
In particular, for N= 3,

A, , =&e, ~-,'(1-2p, ,) ~e,. &
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A = ~s(I- 2P)

is always true. The answer is yes, namely

(A4a)

Note that this equation is not a general operator
equation, since it does not hold for the evaluation
of the matrix elements between states which do not
satisfy Eq. (17). One may ask the question, then,
if there is an operator P for which

APPENDIX A. DERIVATION OF THE MATRIX

REPRESENTATION OF A IN THE 4; BASIS
1 + P,2 1 —P,2 1 —P,2 (A4b)

The antisymmetrization operator for N+ 1 par-
ticles &g+y can be written in terms of that for N
particles, A.„, as follows:

1
, g(-1)'P,

1
N+1 (1 —P& „„i—P2, hei' ' —P„„e&)Az &

Equations (A4a) and (A4b) together present an
identity for A

(e, /p/e, & =&4;/ p„ fe, & .

As a result of the above we note that A can be
used interchangeably with its matrix representa-
tion A;&, but P» cannot. We a.iso know that A (and
therefore P» in the C basis) commutes with total
L and S; so we can write that

where P; „„(i=1, N) denotes the interchange oper-
ator for the pair of particles i and N + 1.

If we use as basis functions 4's which are anti-
symmetric in the first N particles but not in the
(N+ 1) st, we have

and

A =A(I., M„S,M, )

P,s
= P,~(L, M~, S, M~) .

(A„„),, =(e,. (A„„(e,&
=(e, ((1-P,„„

—Pg, ». ) I eg&«N+1),

The functions e; and 4,. are defined by Eq. (8) and
can be written as (the quantum numbers associated
with subscript j are denoted by primes):

e;(1,2; 3) = N(n„ l„n„l, )

since, by definition of the C 's,

A~e~(1& 2, . . . , ¹ N+ 1) =e,

Also, since

x [P(l, 2, 3
~ n, l „n,l„L»,S», n, l„L,, S)

—P(2, 1, 3 [ n,l„n,l„L»,S», n,l„L,S)]

=-N[g(1, 2, 3) —P(2, 1, 3)]
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Here

/2+(2 —v 2) 8(n n ) &(l l )

change of any two particles.
Upon taking the scalar product &C; (P» (C~), four

terms appear. The first term is

is the normalization constant and

(f)(1, 2, 3) = A„ g (1)lt„, (2) ll„, (3)

(A8)

Note that this @ is not antisymmetric in the inter-

M, =&y(1, 2, 3)(&„(y'(1, 2, 3))

=&4(1, 2, 3)(4'(1, 3, 2)&

It can be shown that Q'(I, 3, 2) can be written in
terms of the functions p'(I, 2, 3) by carrying out a
change of coupling transformation. " Therefore,
we have

y'(1, 3, 2) =- P(1, 3, 2(n,'l„', n,'l,', L,'„Si„n,'l,', L, S)

&I,'l,'(L,', ) l,'; L (l,'l,'(L,', ) l,'; L) (-,' -,' (S,', )-,'; S( l l (Sl.)-' » 0'(I 2 3) .
Lf3 Syg

where

Ill( i )ll, L (fill(LI )ll L) &LL(Si )i S i 4(S& )
—~ S)—

( j)iy+i2+i3+~( 1)~+'i'(- I)'~+'2+i»'i»(- 1)

x[L,,][S,',][L,', J [S,', ]

Finally, the first term is

M =&4,(1 2 3)(0'(I 3 2))
=(-I)»' »' I2' I2(- I)'i' (-1) "~'x[L ][S ][S' ][L',]
x&(n„n,') &(l„l,') &(n„n,') &(l„l,') &(n„n,') &(l„l,') W(l, l, l, L; L» L,', ) W(-,'-,' —,'S; S»S,', ) .

Here 8' is a Bacah coefficient as defined in Rose." Similarly, the second term is

M, = - &y(2, 1, 3) (S'„(y'(I, 2, 3))
= —

& y(1, 2, 3) ( y'(2, 3, 1))
=(-1)»' »(-1)'~+ (—1)~" 'x[L»][S»][L,', J [S,', ]8(n,n,') &(l, l,') &(n,n,') 8(l, l,') 8(n, n,') 8(l, l,')

(A7)

The third term is given by

M, =-&P'(1, 2, 3)(P„(y(2, 1,3))

=-&y(1, 2, 3)I 0'(3, 1 2))

=(-I)""' (-I)' "(-1)"'"x[L„][L;.] [S,.] [S,'.g(N~.')~(i, i, )8(sn )8(i,i;)f(n;, )8(l, l;)
x W(i2l, I,L; L»L»)W(g 2 2S; S»S») .

The fourth term is given by

M, =&y'(2, 1, 3)( ~„(y(2,1, 3))
=

& y(1, 2, 3)( y'(3, 2, 1))

= ( I)'i+'2' 'a+i( 1)~' '"x [L»] [S»][L»] [S»]5(n,n,')5(l, l,')5(n, n,')5(l, /,')5(n, n', )5(l, l,')
x W(l, l, l,L; L»L»)W (» 2S; S»S») .

(A8)

(A9)

The notation [L»] etc. stands for

[L„]= (2L„+1)"'.
The final expression for A, &, Eq. (A3), will, in Aff 35$y 3N;Nq[M, +M, +M3+M4]. (A 10)

general, be a sum of the above four terms plus
a diagonal term whenever it is present; i.e.,



12 TRIPLY EXCITED STATES OF THREE-ELECTRON ATOMIC. . . 1195

APPENDIX B. EVALUATiON OF TWO a MATRICES

Example 1

The matrix A as evaluated by the above pro-
cedure has already been given in Eq. (9) of Sec.
IIB with respect to the basis functions C „C,and

that is,

have

Also,

A4,. = a,4 (i = 1, 3)

(82)

(83)

-I/WZ

V 3/2 (81) aa~ =I, a~a=A.

with the matrix a having the property

Wa/2

The functions AC „AC„and AC, are all propor-
tional to each other in this case, and only one
totally antisymmetric function (4) can be con-
structed from them. The a matrix, therefore, is
of order (1xs), and from Eq. (20) of Sec. IIC we

[a]=(1/v 3)[1 -I/W2 -v —,']. (84)

Example 2

Consider the following A ma. trix:

As there is only one C, a is unique to within +1
and is given by

I
2

0 1 -v3/2

-v 3/2 ——,
' -v 3/2

WS/2

-Ws/2 -Zs/2

-WS/2
1
2

1
2

Ws/2

v S/2

-Ws/2 1
2 Ws /2

The above representation of A has been obtained
with respect to the basis functions 4, (i =1, 6), as
defined below:

1 1 0 —2a=—
0 1 -vS/2

-~s/2 --, Ws/2
1
2

4i 2=4(n, sn2s' Sn~p P ),
4, ,=4 (n, sn,P"Pn, s'P'),

4, , =4 (n, sn, P"Pn, s 'P'), n, x n, .
We note here that the functions AC, and AC, are
orthogonal to each other but are not normalized.
Also the remaining functions, AC „AC 4, AC „
and AC 6, can be represented as different linear
combinations of AC, and AC, . So if we construct
a pair of orthonormal functions given by C „C„
then we have [analogous to Eqs. (Bl) and (82)]

AC, =N;4], (89)

where C,. is a totally antisymmetric function of
unit length. With the help of Eqs. (86) and (87),
one can write

(86)

The above examples lead us to a general state-
ment of how one might get an a matrix directly
from the A matrix. First of all, if we select a
particular C, and antisymmetrize it, we get

4;=pa, ,4q (i=1, 2), (86)
A&& N, a,&(j=——1,.nc.) . (810)

A4, = g (a ),,4,. = g a, ,4,. (i = 1, 6)

and the a ma, trix sa.tisfying the property

aa =I
q

a a=i.
We find that such an a matrix is given by

(87)

(811)

then

This equation says that the ith column of A is
proportional to one column of an acceptable a ma-
trix. In example 1 all three columns of A are
proportional to a [Eq. (83)]. Now suppose that
for some k t i, we have

A, , =O,
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A, , = (A'),.» (since A' =A)

= g A;~Aq»

= Q A;,A»,.

=0

This equation says that columns i and k are
mutually orthogonal. Therefore the 0th column

can form another column of a. In example 2, we
have three such zero pairs, [(i,k) = (1, 2), (3, 4),
(5, 6)], allowing us to write down directly three
different acceptable a's. Equation (B6) is the
case for (i, k) =(1,2). So, in those cases where
there are as many mutually orthogonal (rows)
columns in the A matrix as the dimension n of
the subspace spanned by the eigenvectors of A,
an a can easily be found by inspection.
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