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Diagrammatic quasidegenerate Rayleigh-Schrodinger perturbation theory is used for the construction of
an effective Hamiltonian, defined completely in a finite-dimensional model space. This effective Hamil-
tonian, containing one-, two-, three-, etc. particle terms, may serve as a useful tool for constructing an

ab initio theory of quantum semiempirical effective Hamiltonians, widely used in quantum molecular
andatomic physics, and also in some modified form in solid-state physics.

I. INTRODUCTION

The purpose of the present communication is to
call attention to the interesting and fruitful possi-
bility of introducing an effective Hamiltonian by
the up-to-date diagrammatic (quasi-) degenerate
Rayleigh-Schrddinger perturbation theory' '
(QD-RSPT). This theoretical many-body tech-
nique was initially elaborated in the framework of
the "microscopic" theory of nuclei' ~ as an ade-
quate apparatus for introducing effective interac-
tions of the many-nucleon system. Here, follow-
ing Bloch and Horowitz, "an open-shell system
(in principle also closed-shell systems) is divided
into two subsystems: (i) an inert "core" which
covers a closed-shell many-particle subsystem,
and (ii) valence particles which determine the
"open-shell nature" of the total system. More-
over, it is expected that the behavior of such a
system is nzainly determined by the properties of
the valence particles, while the influence of the
inert "core" emerges merely through higher-order
perturbation effects. In other words, the method
may be interpreted as a procedure reducing the
number of particles explicitly treated. Generally,
this idea has wide applicability also in other parts
of many-body theory, namely, in quantum atomic,
molecular, and solid-state physics.

A mathematical representation of this approach,
in the framework of quantum many-body theory,
is usually realized through the concept of one- and
two-particle effective matrix elements (in quantum
chemistry called the semiempirical parameters),
actual numerical values of which are fitted to ob-
tain agreement of some observables (e.g. , ener-
getic terms) with experiment.

A theoretical justification and foundation of these
semiempirical parameters, which would enable
their complete a priori physical determination and
understanding, is a very interesting problem of
the present quantum theory of many-electron sys-
tems.

Recently, the first introductory step toward solv-
ing this problem was made by Freed" "using
(i) an energy-dependent model Hamiltonian deter-
mined with the use of the Brillouin-Wigner per-
turbation theory" and (ii) the Sinanoglu-type clus-
ter functions. '9 In this theoretical approach the
resulting effective matrix elements are dependent
on energy as well as on the valence-bond config-
urations of the remaining electrons. On the basis
of these two dependences Freed deduces some gen-
eral properties of the semiempirical parameters,
e.g. , how these parameters change with the elec-
tronic state, or with the degree of ionicity of the
state. In the present communication we shall use
another approach for construction of the effective
Hamiltonian, namely, the one based on the dia-
grammatic QD-RSPT, S where both dependences of
the effective matrix elements are completely re-
moved. Therefore, the above-mentioned conclu-
sions of Freed may be premature; they seem to
be only an artifact of his method which was used
for the construction of the effective Hamiltonian.

Standard nondegenerate diagrammatic perturba-
tion theory"" has been used in order to obtain a
simple approach for the introduction of effective
interactions of atomic systems. "" Although this
theoretical construction of the effective interac-
tions is very simple and straightforward for study-
ing complex atomic systems, we are afraid that
it is applicable only for monocentric atomic sys-
tems, where the atomic orbitals used are auto-
matically identical to an orthonormal set of one-
particle functions. Furthermore, such effective
interactions are valid only for nondegenerate one-
determinantal trial wave functions, wherewith the
above-mentioned simple approach can be obtained
as a limiting case of the presented more general
method, where a trial wave function is taken as a
linear combination of Slater determinants.

The outline of the present communication is as
follows: In Sec. II the full original Hamiltonian in
the second quantization formalism is constructed.
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In Sec. III the effective Hamiltonian will be con-
structed by the diagrammatic QD-RSPT.

II. CONSTRUCTION OF THE ORIGINAL FULL
HAMILTONIAN

In this section we introduce the notations and
concepts that are necessary for the further devel-
opment of the diagrammatic perturbation theory of
the semiempirical effective Hamiltonians. First
of all we shall introduce a nonorthogonal set of
normalized atomic spin orbitals (ASOs). Follow-
ing our recent communications'+" concerning the
many-body theory of the intermolecular interac-
tions, we construct an orthonormal set of the one-
particle functions from the previous nonorthogonal
one by the Lowdin symmetrization procedure. "
Finally, the second-quantization formalism will
be introduced, in which the creation and annihila-
tion operators are defined with respect to this
orthogonalized set of ASOs.

Let us have a set of ASOs (strictly localized on
the individual nuclei of the given molecular sys-
tem) which forms the column vector

Starting from intuitive quantum chemical assump-
tions, this set of ASOs can be divided into three
disjoint subsets, namely, (i) the core orbitals
f~ p,);i E Cj, (ii) the valence orbitals (~ rp&); i E- Vj,
and finally, the excited orbitals (~y, ); i E E). Uni-
fying these first two subsets, the minimum basis
set of ASOs is obtained, which is the basic con-
cept of all semiempirical theories. "" The ma-
trix of the overlap integrals between individual
elements of (1) is defined as follows:

ized by the equality
~ p, ) =

I y,.), which is fulfilled
merely when the overlap between different ASOs
is neglected [an analog of the zero differential ap-
proximation (ZDOA)], i.e., S,&

=0.
After these introductory remarks, let us now

turn our attention to the construction of the orig-
inal full Hamiltonian describing the given molecu-
lar system. In the second-quantization formalism
this Hamiltonian can be written in the form" "

H = Q k (i & j)X;X) + 4 Q g (ij & kl)X; X)X(X» &

ig f jA'1
(4)

where the X,. (X~) are creation (annihilation) opera-
tors defined on the orthonormal set of ASOs O)j),))
introduced by (3). One- and two-particle matrix
elements from (4) are determined by

&ec
(6)

g(ij, kl) = t $&*(1))j)&*(2)g(l&2)(1 —P~2)tf)»(1))j)&(2)d1d2,

(6b)

where P» is a transposition operator, g(1, 2) is
the two-particle operator for the interaction be-
tween electrons, and k(1) is the one-particle oper-
ator (Hamiltonian) describing motion of an elec-
tron in the field of the fixed molecular skeleton
(the Born-Oppenheimer approximation is used).

For further considerations it is appropriate to
introduce an unperturbed ground-state vector of
the "core" subsystem, '

A =1+5—= (A&& =5,&+S;» i j =1,2, . . . J&

s, , =(1 —6,,) (v, Iw,). .

Let us now introduce the column vector"

e=(1+S)-"'C -=(~y, ); i =1, 2, . . .],

(2a,)

(3a)

where the product index runs over all core ASQs,
and ~0) is the normalized vacuum state vector.
Then, using Wick's theorem, ""the original full
Hamiltonian (4) can be rewritten in the normal
form

H = go +H(~ +H(2) .
elements of which form an orthonormal system,
i.e. , 4 t4 = 1, or (P& ~ )j)&) = 5;& for all possible i,j
=1, 2, . . . . Assuming that all the absolute values
of the eigenvalues of the matrix A = 1+5 are less
than one, "the rhs of (3a) can be expressed as a
power series" in S,

The scalar quantity $0 is defined by

8, = Q k (i, i) + —, Q g (ij, ij) .

The one-particle part H&„of (7) is given by

4 = 4 —2 S&f& + 8 S 4—1

or in component form,

(3b)
II(,) = i,j X X) X~

IP~) = Iv~) —2 Q Sip IPJ)+Tl g Slfsj»Iq») — " .
(3c)

here l)l [ ~ ] is the normal product" defined with
respect to ~Co), and the f(i, j) are determined as
follows:

We then have a one-to-one correspondence between
the elements of the column vectors 4 and 4 real- f(i,j) =k(i, j) + g g(ik,jk).

)tee
(10)
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In this connection it is interesting to note that the
matrix elements f (i, j) may be formally interpreted
as matrix elements of the Hartree-Pock operator
constructed with respect to ~4, ). Finally, the two-
particle part H(» of (7) has the form H0= ajar Xj X; (17a)

is neglected.
The operator H, from the rhs of (15) (called the

unPexturbed Hamiltonian) is given by

H(» = 4 g g ('Lj) kl)N[XtXJ X)Xki
jgkl

e, =f'"(i, i), (17b)

When (3c) is substituted into E(ls. (5), the power
series for the one- and two-particle integrals can
be easily obtained,

where the e, =f'o'(i, i)'s play the role of one-parti-
cle (Hartree-Fock) energies.

Finally, the operator H, (called the Perturbation)
from the rhs of (15) has the form

k(i, j) = P k«(i, j),
n=0

(12a)

(12b)

H, = 1 —~n o&jg &~g N XiX
ig n=0

+ —,
' g g g' (ij, kl)N(X~tX~X, X,)j.

jgkt n=0 (18)
where h"'(i, j) and g" ()ij, kl) are determined by

h' '{(,j) =f g f(l)h(1)y&(()dl, (13a)

g(N(ij, kl) = (p,*(l)pre*(2)g(1, 2)(1 —P„)
xy„(1)cp, (2)d1 d2, (13b)

and for n ~ 1 the individual contributions to the
rhs of E(ls. (12) are products of n overlap inte-
grals S,&

and an original (nonorthogonalized) one-
particle (13a) or two-particle (13b) integral. Then,
these matrix elements (for n ~ 1) are identically
equal to zero when Sj& =0, i.e. , when the original
basis (~ cp,)) of ASOs forms an orthonormal system,
the following simple relations are true: h(i, j)
=h( '(i, j) and g(ij, kf) =g( '(ij, kl). Similarly, the
matrix elements f (i, j) defined by (10) can then be
expressed as follows:

The perturbation H, contains one-particle (first
summation) as well as two-particle (second sum-
mation) terms, the diagrammatic interpretation of
which in the framework of the Hugenholtz graphol-
ogy'"" is presented in Fig. 1. Let us note that
the perturbation H, describes two effects: (i) the
correlation between electrons, and (ii) nonorthog-
onality effects. These last effects are canceled
when the original basis set (~ y,)}of ASOs forms
an orthonormal system. From the property of the
normal product, (4 o ~

N[ ~ ] ~ 40) = 0, it follows that
matrix element of H, between two ~4, ) is zero,
x.e., &4. ~H, (4, ) =0.

The one-particle core states contained in
~ 4, )

are called hole states, and either valence or ex-
cited one-particle states, Particle states (cf.
Fig. 2). The eigensystem of the unperturbed Ham-
iltonian H, can be generated from

~ 4, ) in the fol-
lowing way:

f(i, j) = Qf«(i, j),
n=0

f '"'(i, j) =h"'(i, j) + g g'"'(ik, jk) .
kGC

(14a)

(14b) where ~40) =X~~,X~~, X„,X+ ~4)0), and Zo

(19a)

(19b)

Thus, the Hamiltonian (7) can be rewritten in the
final form appropriate for an application of the
diagrammatic perturbation theory:

n

H = 80+H0+H~ (15)

where the scalar part h, defined by (8) can be ex-
pressed, analogously to Eqs. (12), as an expansion

g g(0) + ~ g(n) g(0) +0 0 ~ 0 0 0
n=1

(18)

Here $'00) may be interpreted as an unperturbed
(zero-order) ground-state energy of the "core"
subsystem, when the overlap between core ASOs

FIG. 1. Diagrammatic representation of the individual
terms of the perturbation H& defined by Eq. {18).
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III. DIAGRAMMATIC PERTURBATION THEORY
OF THE EFFECTIVE HAMILTONIAN

For the construction of the effective Hamiltonian,
we use the diagrammatic quasidegenerate Rayleigh-
Schrodinger perturbation theory (QD-RSPT). 8'M' "
Its main features have recently been given'
(cf. also Refs. 38 and 39), and therefore they will
be repeated here only in a rather sketchy form.

Let us assume that the perturbed and unper-
turbed eigenproblems have the form

(21a)

H,P, (K) =E,'"P,(K),

where H and H, are the original full (perturbed)
and unperturbed Hamiltonians determined by (15)
and (17a); Pz, Pa(K) and Ez, Ez+' are perturbed and
unperturbed eigenprojectors and eigenenergies,
respectively. We shall assume that the perturbed
eigenenergies Ez's (in contrast to E«@"s) are non-
degenerate, i.e. , Tr(P&) =1 and Tr[P, (K)] =d« ~ 1.
Let us introduce a d-dimensional model space 00
defined by the projection operator

P, = g P,(K),
K& 3'0

(22a)

ic C

ic V a

P„P2).. .&V+K,
and h„h2). . .~C

Using the Goldstone-Hugenholtz linked-cluster
theorem, ' '" the diagrammatic expression for the
exact ground-state energy of the "core" subsys-
tem (described in the zero-order approximation
by ~C, &) is obtained (see Fig. 3):

1z;""=h, (@,IIH, H,
0

1 1
+H~ H~ H~+ ~ ~ ~C ),

0 C

(2O)

where the subscript C means that only connected
ground-state diagrams contribute.

Tr(P, ) = Q d«=d,
K&X0

(22b)

Qo =f ~
4 «&; for all po ssible K E Xo], (23)

where the "configuration" index K is taken from
the finite set X0 of all possible p-particle config-
urations

I@«& -Keg'a, ' ' Ka, I C'0'&.

Here, ~C, ) is the "core" unperturbed state vector
defined by (6), and the "configuration" index K is
determined as follows:

(24)

K-=(k, &k,« k,),
k, » k2» ~ ~ . »k~ & V.

(25a)

(25b)

In other words, the model space 00 is spanned by
all Possible N-electron Slater determinants (~C«)
in the x representation) with fixed "core" (q-parti-
cle subsystem), and the remaining P electrons
(N=p+q) occupy merely the valence ASOs. In the
Freed terminology, " this model space 00 is equiv-
alent to his "chemical sea. " The unperturbed
state vectors ~4«&'s, introduced by (22), form an
eigensystem of the unperturbed Hamiltonian (17a),

Ho =PPoPo =HOPO =PRO = Q E«'Po(K), (22c)
K63',0

where the summations run over all unperturbed
states K taken from the fixed finite set 3',0. If we
assume that H, is an "analytical perturbation, "
then there exist d perturbed eigenenergies
(E„,, E„,, . . . , E~ ) =—(E„, X H X) tending to some
unperturbed eigenenergy E«@' from (E«'; K G Xo)
when the perturbation H, is "switched off," i.e.,
when Hy

After these introductory remarks concerning a
one-to-one correspondence between the perturbed
and unperturbed eigenenergies, let us focus our
attention on the actual construction of the model
space 00 in the case when the unperturbed Hamil-
tonian is defined by (17) and its eigensystem can
be generated according to expressions (19a) and
(19b). We introduce this model space as a sub-
space spanned by all Possible P-particle (where P
is the number of the occupied particle-valence
states) unperturbed state vectors, i.e.,

ic V

ie E

Ioar ticte lines

Ho I@'«& = E«' I@«& ~

h2

+ 2 p

(26a)

FIG. 2. Diagrammatic convention for the hole and
particle lines, where (A.) is the hole line, (B) is the
particle line either for valence or excited one-particle
state, (C) is the particle line for the valence state, and
(D) is the particle line for the excited state.

n, n'-o

FIG. 3. Diagrammatic expression "up to the second
order" (cf. Ref. 41) for the exact ground-state energy
of the "core" subsystem.



12 PERTURBATION THEORY OF EFFECTIVE INTERACTIONS FOR. . .

(26b)

P, (Z) = (e,&&C, (.
Now, we are ready to introduce the model eigen-
Pxoblem completely defined in the model space
(23), which is the basic concept of the diagram-
matic QD-RSPT,

HLc I((()X) =&HZ
I O'Z) ) (28)

where ~cp~) HQ, for all possible X&X. The per-
turbed eigenenergy F.& is defined by

+ ~core (29)

Here, Eo"" is the perturbed (exact) energy of the
"core" subsystem which in the framework of the
diagrammatic nondegenerate perturbation is de-
termined by (20). Following our recent studies,

E =f +E +' '+fK

Then, the unperturbed eigenprojector Po(K) ap-
pearing in (21b) and (22a)-(22c) may be expressed
as

P))

LC 2( LC LC) ' (30)

Here, H« is the non-Hermitian model Hamilto-
nian determined, up to the third order, as follows:

the model Hamilfonian HLc from the lhs of (28)
can be exactly determined by an expression which
has (i) a proper counterpart in the formal QD-
RSPT, and (ii) a simple diagrammatic interpreta-
tion compatible with the Brandow' folded-diagram
approach. Unf ortunately, this simple possibility
has one serious drawback; namely, the resulting
model Hamiltonian is a non-Hermitian operator.
This is a very unpleasant feature for its further
applications. Therefore, in the following theoret-
ical considerations, concerning the construction
of the effective Hamiltonian, we shall use an ap-
proximate straightforward possibility" to obtain
a Hermitian model Hamiltonian HL~ by a simple
symmetrization of the non-Hermitian model Hamil-
tonian of the above-mentioned theory. Thus

i

1-I'0 1 po 1 PoK));=PQJ ).(P)K,P) + P IPJI, )) K H,P (Kl + g PQ)) K,, )) K,P (K)I
KG&0 IC KcXp

'&K -&0 EK -&0 ' '
LC

1 —I
IP+, ( )) K )( )) )K P (K'))),P (K)I +' ' '

~

K, K~~X, &K -Ho ~K -Ho . LC

KCXO

(32)

The model eigenproblem (28) can be rewritten in
the matrix form

The subscript I.C means that only those terms
contribute which are in the Hugenholtz graphol-
ogy"" denoted as linked and connected. The high-
er-order terms appearing in the rhs of (31) can
be constructed by a simple recurrence formula. "
Let us note that the terms from the rhs of (31)
which have an intermediate state between two per-
turbations (vertices) from the model space [see
for example the last term in (31)]can be properly
interpreted by Brandow's folded diagrams.

Since the model eigenproblem (28) is complete-
ly defined in the model space, the eigenfunctions

~ yz) should be determined as a linear combination
of the unperturbed state vectors ~4»), i.e.,

(C, fH„/C, )=-(C, /X„, fe,). (34)

In the second-quantization formalism X,«can be
expressed in the following form (the principal re-
sult of this section):

(t)jeff ~ eff s (35a)

f l...t t 6V ) l ~ .j tE.V'

I

Iv(/) I ~ ~

off(tl ' ~ ~ Zt)21' ' ' Jt)

xN[gt .Xtx ~ X ].ft fl

(35b)

Here, the matrix elements it('f)f(i, . . .i„j,. . .j,)
from the t-particle operator K('f)f are defined [in
accordance with (30)] as follows:

v(t) i ~ ~

tff(tl ' 'tt) jl' ' 2t) ~tl tl5il, tl,
HL~c) =AF-) c (33) (t) r ~ ~ ~+ 2 [veff (t 1 ' ' ' t 21t' )' ' j t)

where HLc is a Hermitian matrix (dxd type) built-
up from the matrix elements (C» ~(HLc ~4L), and c),
is a column vector of cK& coefficients. Because
the model Hamiltonian contains only linked-con-
nected contributions, it is possible to introduce
an effective Qamiltonian $C,«by the following de-
fining identity:

(t) +I ~ ~ ~

veff ( jl ~ ~ ~ Jt)tl' ' '

(36)

where the t-particle matrix elements
v", (i,f.f. .i„j, . j,) express. a, su.mmation of all
Possible linked-connected diagrams with outgoing
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(incoming) valence particle lines indexed byi„.. . ,i, (j„.. . , j,); cf. Fig. 4. The diagram-
matic expression up to the second order4' for the
matrix elements v', ff(ipj) and v f'f(i,i„j,j,) are pre-
sented in Figs. 5 and 6, where, for the sake of

simplicity, for the last two-particle matrix ele-
ments only the basic diagrammatic skeletons are
presented. Using the rules of the Hugenholtz gra-
phology, ""we get for the matrix elements
v.ff(' j)

a=0

Ip
f'"(i P)f'" (Pi) g f'"'(h, i)f" '(i 1) ~ + g' (hi, P, P)g'" '(Ph. , h i)+2

Eh —6 ~ Eh +E —E
n, n'=0 pCE h&C ie2 y 2 P& C V + E h y EC Py P2

g'"'(If,h2p P, j)g'" '(P,i, h,h2) ~ g f'"'(h„P,)g'" '(iP(p If, j)
2

E +6 —E —f +E
hy h26C PyE' V+ E hl "2 t 1 hyE. C Py6V+E

g'"'((h„h, i)f'" '(P h )

E'h, —fp
h~~C &~&V+E

(37)

A similar expression may also be obtained for the
matrix elements v f'f(i,i» j,j,). Unfortunately,
these expressions are slightly more complicated
than (37). They can be obtained directly from Fig.
6 by prescribing to outgoing and incoming valence
lines all the possible combinations of indices i„i,
and j„j„respectively. This procedure can be
easily extended for the construction of the three-,
four-, . . . , P-particle matrix elements
v(gf)f(i, . . . i„j,. . .j,) by taking into account all
possible proper diagrammatic contributions.
From the detailed inspection of these perturba-
tion expressions for the matrix elements
v(f)f(i,i„j,j,), one may conclude that these con-
tributions can be divided into two main classes:
(i) The zero-order contribution with n=0, i.e.,

the nonorthogonality effects not considered, and
(ii) the mixture of the correlation and nonorthog-
onality effects. This last class of the diagram-
matic contributions contains the zero-order (with
n ~ I) as well as the higher-order diagrams. Thus,

v(1)
(2 j) —(I g )f(0)($ j) +1) (D(z j) (38a)

v~ (i j)

v ff(2122) jl j2) g (2122) jlj2) + (2122p jl j2) 1 (

and for t~3

ff(21. . . igp j1.. .jg) =6' '(if. . .if, j, . . .jg), (38c)

where b, 's denote the mixture of the correlation
and nonorthogonality effects. In the "zero-order"
approximation, the matrix elements h(gf)f(. . . p. . . )

v
(( (i,j)(~) i I

n-0

n,
un

P Jtp . . p
n, n'-o

~t

'-. J2
Jg

FIG. 4. Schematic diagrammatic interpretation of the
individual matrix elements of the effective Hamiltonian
defined by Eq. (35). The blocks represent the summa-
tion of all possible proper linked-connected diagrams.

FIG. 5. Diagrammatic expression "up to the second
order" (cf. Ref. 41) for the matrix elements v, ~&~ (i, j).
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defined by (36) may be written as follows:

=h'"(i, j) + Q g'"(ik, jk), (39a)

ff( 1 2$ jlj2) M ( 1 21jlj2}1
s(t) l ~ ~ ~ ~ l n
jeff Kl g ~ + l f))] ~ ~ ~ )g] —v )

(39b)

(39c)

IV. SUMMARY AND DISCUSSION

First, a few remarks about some general fea-
tures of the diagrammatic QD-RSPT, which is
taken as a theoretical background in our approach
for constructing the effective Hamiltonian: The
diagrammatic (quasi-} degenerate RSPT has been
initially developed and widely used in the "micro-
scopic" theory of nuclei' ~ as a powerful "ma-

FIG. 6. All possible "first" and "second" order skele-
tons of the diagrams contributing to the matrix elements

for 3 ~t &P. This means, that in the "zero-order"
approximation the effective Hamiltonian X,« is
equal to the full original Hamiltonian (15) when its
nonorthogonality terms are neglected. Accepting
the above-mentioned approximations (39), the solu-
tion of the model eigenproblem (28) is then equiv-
alent to a solution of the original Schrodinger equa-
tion in the model spa, ce 00 defined by (23)-(25),
where the perturbed energy of the "core" subsys-
tem is equal to h',~' from (16), and the orthonor-
mality of the original set of ASOs is assumed.

chinery" for a theoretical treatment of "open-
shell" nuclei as well as for an introduction of ef-
fective interactions. This last problem is closely
related with attempts to support and establish
firmly the shell model of nuclei. Unfortunately,
applications of the diagrammatic QD-RSPT are
limited, up to now, by the fact that, in this meth-
od, an exact theory of the model Hamiltonian ex-
ists only for its non-Hermitian form. As has been
mentioned in our recent work, ' the formulation of
a diagrammatic QD-RSPT with Hermitian as well
as non-Hermitian model Hamiltonians should be
realized hand in hand with the formulation of its
formal (without diagrammatic interpretation) theo-
retical counterpart with simPle recut~ence rules
for the construction of the individual perturbation
contributions. Some progress in this direction
has been made, "but unfortunately, its further
generalization to a diagrammatic version will be
a rather complex problem, probably. Therefore,
let us turn our attention to the possibility of con-
structing the approximate diagrammatic Hermitian
model Hamiltonian resulting from the surprising
observation" " that, up to third order, the formal
Hermitian model Hamiltonian can be obtained by a
simple symmetrization of the non-Hermitian mod-
el Hamiltonian. This observation can be general-
ized to fourth order in the case of the degenerate
RSPT.~ 4' A similar approximate possibility was
discussed by Brandow" and Sandars' as a proper
and probably accurate resolution of the above-
mentioned difficulty. Generally speaking, the dia-
grammatic Hermitian model Hamiltonian may be
taken as a well established method of the many-
body theory, and some additional difficulties of
its construction are of more computational than
theoretical significance. To conclude these re-
marks we note that the present approximate pro-
cedure for the construction of the Hermitian dia-
grammatic model Hamiltonian has been success-
fully used for the direct calculation of low-lying
ionization potentials" and excitation energies, "
respectively, and also for construction of a one-
particle pseudoeigenvalue problem determining
the Brueckner and/or generalized natural orbit-
als. 4'

Following the up-to-date results obtained in the
"microscopic" theory of nuclear effective inter-
actions, 9 "we believe that in quantum chemistry
also (or generally, in the quantum theory of many-
electron systems} a complete and tractable theory
of the effective Hamiltonian, starting from first
principles, should be founded only on the diagram-
matic QD-RSPT with a Hermitian model Hamilto-
nian. Recently, this approach for the construction
of the effective Hamiltonian has been criticized by
Freed" on the following two points: (i) A depen-
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dence of the model Hamiltonian on some reference
energy E„and (ii) the necessity for the selective
summation of certain classes of terms to all or-
ders of perturbation theory. The first of Freed's
objection is in our case irrelevant, because we
have used such quasidegenerate RSPT, where the
appearance of the reference energy E, is complete-
ly removed. The origin of this reference energy
can be explained as a result of some straightfor-
ward approach for constructing the quasidegener-
ate RSPT. Here, the unperturbed eigenenergies
{E«i"; KHZ'. are suppressed" to some reference
energy E„' then, of course, some additional terms
depending on Ep in the perturbation appear. The
second critical objection mentioned by Freed is
of a very serious nature. We accept that the ne-
cessity of taking into consideration the infinite
summations of some preselected (presumably dom-
inant) diagrams may cause some theoretical as
well as computational difficulties. Nevertheless,
following the recent results obtained in connection
with the direct many-body calculation of the ion-
ization potentials, ' ' it seems that the infinite
summations of the diagrams is a problem which
can be resolved, at least in an approximate way.
The main advantages of the present approach (the
diagrammatic QD-RSPT with Hermitian approx-
imate model Hamiltonian) for the construction of
the effective Hamiltonian are the following: (i) The
matrix elements (36) of the effective Hamiltonian
K ff are indePendent of the energy, and (ii) this ap-
proach allows a di, ect construction (without an
intermediate calculation) of the effective 1-, 2-,
3-, . . . , P-particle matrix elements (36) in the
terms of the one- and two-particle integrals (13a)
and (13b), and overlap integrals S,&.

In Sec. II the original full Hamiltonian of a given
molecular system was constructed in the second-
quantization formalism. We emphasize in this
connection that because the set (1) of ASOs is a
nonorthogonal one, some formal difficulties should
be surmounted. A direct introduction of the sec-
ond quantization formalism"" with respect to
this nonorthogonal set of ASOs leads to many for-
mal complications, because the corresponding
creation and annihilation operators do not obey the
well-known anticommutation relations. Bazilevsky
and Berenfeld' and others' " in their studies of
the general many-body theory of intermolecular
interactions have circumvented this difficulty by
the formal assumption that an original one-particle
basis forms an orthonormal system, and by adding
to the Hamiltonian some new terms describing the
"overlap effects. " A similar idea has also been
used in the construction of our original full Hamil-
tonian (15).

In Sec. III the effective Hamiltonian 3C,«was con-

structed by the diagrammatic QD-RSPT with the
approximate Hermitian model Hamiltonian. One
of the basic concepts of this powerful many-body
theoretical approach is the d-dimensional model
space 0,. In our special case of interest, this
model space is spanned by all possible unperturbed
state vectors

~ C«) generated by prescriptions (24),
(25a), and (25b). Thus, these vectors are built-up
from a "frozen core" identical for all ~C«)'s from
Qo, and the valence one-particle states{k, «k~)
=K. Then, the model eigenproblem (28) and (33)
may be understood as a comPlete configuration
interaction realized in the d-dimensional model
space with either model Hamiltonian H~~ or effec-
tive Hamiltonian 3C,« Icf. identity (34)], because in

the present method the "core" subsystem contained
in each vector

~ 4«) H 0, should not be explicitly
treated.

Our approach of the construction of the effective
Hamiltonian K,«can be very profitable for an ab
initio physical establishment of semiempirical ef-
fective Hamiltonians. " ' We shall not xePeat the
main reasons for it here, since they have recently
been Presented in an exhaustive form in the excel
lent PaPers of Freed. '4 " We only note that the
well-known three semiempirical parameters z, ,
P,.&, and y,.» appearing in almost all semiempiri-
cal methods, may be determined as follows:

Qi —h c«(z p 1) p

p'J h ff(i, j), for i ej
ri J h~pff (ij, ij)

(40a)

(40b)

(40c)

where i, j H V. This means that in the semiempiri-
cal methods the remaining two-particle and all
three- to P-particle effective matrix elements are
neglected. Consequently, if we have selected some
actual basis (1) of ASOs, then we may by using
(37) calculate (up to the "second order") values for
the Coulomb o.; as well as resonance P;& integrals.

To conclude this section, we stress that the pre-
sented diagrammatic theory of the effective Hamil-
tonian might be of value in an alternate attempt to
solve the ab initio calculation (or generally, ab
initio theory) of the semiempirical parameters,
which is a basic problem of present quantum chem-
istry. While some theoretical and computational
problems and questions remain, we believe that
the present approach represents a very serious
introductory step in this field.
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