
PHYSICAL REVIEW A VOLUME 12, NUMBER 4 OCTOBER 1975

Independent-particle-model potentials for atoms and ions with 36& Z& 54 and a modified
Thomas-Fermi atomic energy formula*

R. H. Garvey, C. H. Jackman, and A. E. S. Green
University of Florida, Gainesville, Florida 32611

(Received 7 May 1975)

Using the ab initio energy-minimization procedure of Bass, Green, and Wood, we determine two potential
parameters, ( and q, characterizing the independent-particle-model potential of Green, Sellin, and Zachor (GSZ)
for atoms and positve ions with 36 & Z& 54. This extends earlier modified-Hartree-Fock (MHF) calculations of
Szydlik and Green and of Green, Garvey, and Jackman. We find that both of the parameters in question
display, to a good approximation, a linear dependence on the degree of ionization Z—X for fixed numbers of
electrons N. The slopes and y intercepts associated with the linear dependence of g display marked shell-like
behavior, while those associated with g vary rather smoothly with N. Our determinations of total energies are
usually within 50 ppm of earlier Hartree-Fock calculations for those cases in which such calculations exist.
Using the entire collection of energies and GSZ minimization parameters now available, we reexamine a
modified version of the Thomas-Fermi statistical model (MTF) due to Green, Sellin, and Darewych. We show
that this model is capable of yielding the linear Z—1V dependence of the GSZ parameters which we found
empirically in the MHF work. By numerical adjustment of the coefficients of our MTF model, we obtain
energies of stable atoms and ions, as well as GSZ potential parameters which are in good agreement with the
MHF calculations.

I. INTRODUCTION

To formulate a meaningful and accurate treat-
ment of a number of relevant physical problems
involving highly charged atomic ions, it is neces-
sary first to have a realistic quantum-mechanical
description of these ions. For example, it is well
known in astrophysics that highly ionized species
are important radiators in stellar interiors. In
experiments employing heavy-ion accelerators,
many collisional and ionization phenomena arise in-
volving highly charged ions not previously encoun-
tered in the laboratory. ' In the fusion process,
highly ionized trace impurities can aet as strong
radiators and thereby constitute important loss
mechanisms. In addition, it is now recognized
that inner-shell vacancies produced by x-ray or
electron bombardment are often filled by Auger
cascade processes which can lead to highly
charged atomic states.

This work was undertaken in recognition of this
need for knowledge of the quantum-mechanical
properties of atoms of all states of ionization. At
the outset, we find the two parameters for the in-
dependent-particle-model (IPM) potential in Green,
Sellin, and Zachor' (GSZ) for atoms and positive
ions with atomic number Z between 36 and 54 and
for a few ions with 54 & Z & 57. En this regard, this
work is an extension of a modified form of Har-
tree-Fock theory (MHF) developed by Bass, Green,
and Wood' (BGW) for neutral atoms, by Szydlik
and Qreen' for atoms and ions with Z + 18, and
by Green, Garvey, and Zackman' (GGJ) for atoms
and ions with 18 &Z ~ 36. En each of these earlier

papers and in the present work, the two parame-
ters of the QSZ potential for a given atom or ion
are determined by the variational procedure of
BQW. To the best of our knowledge, for most of
the ions considered here, our results represent
the first nonperturbative, nonstatistical calcula-
tions of the total energies and associated single-
electron potentials. The single-particle wave
functions which are easily obtained from these
EPM potentials have numerous possible applica-
tions (cf. Refs. 6-16).

II. THE ANALYTIC IPM

In the IPM, the QSZ potential acting upon any
one of the electrons in a given atom or ion is as-
sumed to have the form

V(r) = 2[(X —1)Y Z]/r, —

where

Y = I -Q(r),

where iV is the total number of electrons in the
atom or ion and Z is the nuclear charge. Here
the parameter ( corresponds to 1/d used in GSZ
and q/$ corresponds to FI. In the original GSZ
work, it was found that this potential was most
accurate in predicting single-electron energies
if the parameters ( and g in the screening func-
tion Q(r) were readjusted for each atom or ion
under consideration, and we have adopted such a
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methodology here. The energy was obtained by
a modified Hartree-Fock (MHF) calculation em-
ploying as eigenfunctions a Slater determinant
composed of one-electron wave functions of the
atom or ion, which are obtained from the CSZ
potential. The detailed theory of these energy
calculations has been presented in BOW and will
not be repeated here.

III. PARAMETER VARIATION

To obtain the $ and q which minimize R for a
given atom or ion, we varied $ and q five times
in increments of (1—5)% of some initially chosen
$ and q, and the resulting energy surface was fit-
ted to a quadratic surface from which the final

and

&.= &. +&,(Z -~)

q„=q, +q, (z x) .

(4)

(5)

Assuming these linear relationships to be valid

values of $ and q producing the energy minimum
were calculated. Such a minimization technique is
effective, provided the initial guesses for $ and q
are not too far from the actual parameters g and

which minimize E. We used the GGJ results
as a basis for determining the initial parameter
guesses for a given ion or atom. In examining
the results of their MHF calculations, QQJ dis-
covered a simple linear dependence of both $„and

on Z -N for a given¹ We can write this de-
pendence as
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FIG. 1. The symbols represent the g parameters of
the GSZ potential that yield minimum total energies for
various degrees of ionization Z -N of the ion or atom
under consideration for various fixed values of N indi-
cated on the graph. The solid lines are the correspond-
ing values ((') obtained by linear least-squares fits to
the symbols. The dashed lines are the values of $ ob-
tained from the modified Thomas-Fermi (MTF) model
described in Sec. V, using the coefficients in rom 8 of
Table III.

FIG. 2. The symbols represent the p parameters of
the GSZ potential that yield minimum total energies
against the degree of ionization Z-N of the ion or atom
under consideration for various fixed values of N indi-
cated on the graph. The solid lines are the correspond-
ing values of q obtained by linear least-squares fits to
the symbols. The dashed lines are the values (g' ) ob-
tained from the MTF model described in Sec. V, using
the coefficients in row 8 of Table III.
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for values of Z and/or N larger than those con-
d b GGJ we obtained our initial guessessider e y

withN& 36f th potential parameters for ions wior e
nt GGJand 36 &Z ~ 54 by simply taking the relevant G

values for $„$„ri„and q, and calculating g„
and q from Eqs. (4) and (5) for the Z and N in
question. For atoms and ions with X& 36, we ex-

t d the lots of these four parameters ver-
N to hi her N and then used Eqs. (4) and ( ) o

11 noobtain initial guesses for & and ii. Usua y,
more than three runs were necessary to obtain a
true minimum of E for a given N and Z.

In this work we have chosen to stress isoelec-
tro ' equences consequently, the total energies
of a few atoms and ions have been calculated with
the ion or atom in an electronic configuration
which is not necessarily the one producing the low-
est total energy. Such anomalies occur for atoms
with N between 37 and 46, where Hartree-Fock
calculations in ica et' d' ate the neutrals have their low-
es et energy in the configuration in w

'hich the 5s
shell is filled, or partially filled, before the 4d
shell, while the ions with such N have their lowes
energy in e cth onfiguration in which the 4d shell is
filled before the 5s shell.

IV. RESULTS OF MHF CALCULATIONS

corresponds to a half-filled 3d shell. For each
electronic configuration considered, we chose
four ions wiith 36&Z ~ 54. We found that the lin-
ear behavior observed by GGJ for N and Z ~
continued for larger Z. We obtained linear least-
squares fits to the cumulative data for a given
N » 86 with the $, and ri, of Eqs. (4) and (5) fixed
to the values obtained by GGJ. The new slopes
obtained here are within 8% of the corresponding
parameters obtained by GGJ, except for a few
cases in which the GGJ parameters had been o-b-
tained from just a few "data" points, so that our
results effectively doubled the number of poin s
determining the straight-line fits, and, in these
few cases, the change in slope is always less
than 8%.

For species with N & 36, we considered atoms
and ions withN =37, 39, 41, 4,2 44 46 48, 50,
52 and 54 as representative samples of species

nd 5wl ou er'th t most electrons in the 4d, 5s, an
lues of Zshells. For a given W, we chose four values o

between 36 and 54. Again, the values of ( and
displayed a linear dependence on Z -N. Em-

p oyinloying linear least-squares fits of the type de-
scribed above, we obtained the slopes of the
straight lines describing the behavior of $ and

for 36 & N + 54.

For N ~ 36 we examined those ions whose elec-
tronic configurations correspond to clolosed shells

and we also considered ions with N = 23, which —I.2
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4FIG. 3. The symbols are $& and g& values for various
b f electrons N. The solid lines are plots of $&num ere o ee

and g& vs N obtained from the MTF model using e
efficients in row 8 of Table III, while the dashed lines
are simi ar p o s'l l ts obtained using the coefficients in row
A of Table III.

FIG. 4. (a) The symbols are $o and go for various num-
bers of electrons ¹ The solid lines are plots of (0 and

qo vs N obtained from the MTF model using the coeffi-
cients in rom 8 o a8 f T ble III while the dashed lines are
similar plots obtained using the coefficients in .row A
of Table III. (b) The symbols are the magnitude of t e
reduced MHF energies ~Ej/Z~~3 plotted vs N for various
fixed values of Z, while the solid lines are the corre-
sponding re uced d MTF energies obtained using the co-
efficients in row 3 of Table III.
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Examples of the linear behavior of g and q
are presented in Figs. 1 and 2, where we have in-
cluded the QGJ results for completeness. In Fig.
1 we have plotted the values of $ against Z —N
for the various values of N we considered, along
with the accompanying straight-line fits shown by
the solid lines. In Fig. 2, the corresponding in-
formation for g is presented. These plots are
typical for¹4. As can be seen, the scatter is
reasonably small and apparently nonsystematic.
For N = 2, the energy surface appears to be very
flat, since there is very little screening, and it
is difficult to obtain a definite minimum; conse-
quently, there is appreciably more scatter in the
results in this case. Still, even here, a linear
trend is readily discernible in the data, as can be
seen in the plots for N = 2 in Figs. 1 and 2.

The occurrence of this linear behavior of the
two potential parameters allows a particularly
compact presentation of the GSZ potentials of all
atoms and ions with N ~ 54, consistent with this
energy-minimization procedure. All we need do
is present $„q„g„and q, of the straight lines
associated with $ and q„ for N = 2-54 [see Figs.
3 and 4(a) and Table I]. Data corresponding to
particular shells have been characteristically la-
beled in Figs. 3 and 4, with circles used to denote
the s shell, crosses the P shell, and triangles the
d shell. We have included the GGJ results for
completeness. There is a marked shell-like be-
havior superposed on a gradual decline with in-
creasing N in both $, and $, . A strong shell-like
dependence associated with the $ parameter of the
GSZ potential has been noticed in earlier IPM
work" in which $ and q were obtained by fitting
IPM single-electron energy levels of atoms to ex-
perimental values. The shell-like dependence of
the g parameter is much less noticeable, although
the graph of g, vs N goes through a definite change
of slope near N = 14 and a somewhat smaller change
of slope near N =42. This weak shell dependence
in g is also consistent with the results of earlier
IPM work.

The shell-like behavior of all the graphs in
Figs. 3 and 4(a) diminishes rapidly beyond N = 30;
so it is a simple matter to interpolate from these
graphs the values of )„f„q„andy, correspond-
ing to various N between 36 and 54 not given ex-
plicitly in Table I.

The total MHF energies we obtained are usually
less than 50 ppm above the corresponding Hartree-
Fock-Roothaan values of Clementi and Roetti, "who,
in the range of Z and N we considered, have ex-
amined only the neutrals and singly ionized spe-
cies. This close agreement between the MHF and
Clementi results has been the case in all the ear-
lier MHF calculations for species with N and

4p 10x $g 10x g)

2

3
4
5
6

1s2
2S
2s
2p
2P2

2.625
2.164
1.300
1.031
1.065

12.996
9.764
6.465
4.924
4.800

1.770
1.750
1.880
2.000
2.130

11.402
6.821
5.547
4.939
4.434

7
8
9

10
11

2p3
2p 4

2p5
2p6
3s'

1.179
1.360
1.508
1.792
1.712

4.677
4.613
4.602
4.515
3.923

2.270
2.410
2.590
2.710
2.850

4.143
3.925
3.755
3.671
3.469

12
13
14
15
16

3S2
3P1
3P'
3p'
gp4

1.492
1.170
1.012
0.954
0.926

3.452
3.191
2.933
2.659
2.478

3.010
. 3.170
3.260
3.330
3.392

3.269
3.087
2.958
2.857
2.739

17
18
19
20
21

3p5
3p6
3d
3d2
3d

0.933
0.957
0.964
0.941
0.950

2.368
2.165
2.151
2.248
2.324

3.447
3.500
3.516
3.570
3.627

2.633
2.560
2.509
2.404
2.328

22
23
24
25
26

3d'
3d'
3d'
3d
3d6

0.998
1.061
1.138
1.207
1.308

2.345
2.243
2.291
2.408
2.391

3.667
3.709
3.745
3.803
3.840

2.238
2.171
2.187
2.090
2.088

27
28
29
30
31

M'I"
4s'
4s
4p i

1.397
1.455
1.520
1.538
1.541

2.462
2.397
2.246
2.106
1.988

3.891
3.973
4.000
4.050
4.110

2.048
1.925
1.985
1.878
2.001

32
33
34
35
36

4p
4p 3

4p 4

4p5
4p6

1.512
1.492
1.460
1.407
1.351

1.914
1.990
1.857
1.897
1.872

4.182
4.230
4.290
4.369
4.418

1.897
1.782
1.772
1.686
1.611

37
39
41
42
44

4d
4d3
4d'
4d'
4d'

1.286
1.129
1.139
1.136
1.197

1.686
1.784
1.702
1.694
1.601

4 494
4.618
4.680
4.749
4.769

1.619
1.509
1.485
1.412
1.435

48
50
52
54

4d"
5s2

5p 2

5p 4

5p6

1.246
1.205
1.130
1.050
1.044

1.587
1 ~ 358
1.395
1.354
1.107

4.829
4.904
4.990
5.050
5.101

1.397
1.414
1.324
1.314
1.316

TABLE I. Slopes and y intercepts for the straight
lines $ = $ 0+ (& (Z -N ) and q = go+ g& (Z -N ) . C repre-
sents the configuration of the outermost electron in the
electronic configuration corresponding to a given value
of N.
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Z&36.
For most of the ions we considered here, no

other previous nonperturbative or nonstatistical
calculations of the total energy or single-electron
potentials exist. " Table II contains the energies
we obtained for such ions. The parameters char-
acterizing the GSZ potentials describing these
ions can be calculated readily from the data in
Table I and with the use of Eqs. (4) and (5).

V. THE MODIFIED THOMAS -FERMI MODEL

We have attempted to gain some understanding
of the origins of the linear behavior of $ and q„
by examining a modified Thomas-Fermi (MTF)
model. Although such a model cannot predict any
shell-like behavior without the ad hoc addition of
quantum effects, the model can possibly predict
the general behavior of the two potential param-
eters. The model we used is based on an adapta-
tion of the Thomas-Fermi statistical theory" due
to Green, Sellin, and Darewych" (GSD). In this
MTF model, the total energy of a many-electron
system containing N electrons and Z protons is
given by the sum of E„ the electrostatic energy
of the electron cloud in the field of the nucleus, E„
the electrostatic interaction energy between the
various electrons, E„ the main kinetic energy of
the electrons, E4, the Weizsacker correction to
the kinetic energy, ""F.„ the exchange energy, 2'

and E„ the inhomogeneity correction" for the ex-
change energy [see Eqs. (4)-(9) of GSD]. Each of
these terms may be written as an integral invol-
ving the radially symmetric charge distribution
n(r), which, from Poisson's equation applied to
the IPM potentials obtained in the MHF calcula-
tions, we determine to be

0g e "
(rl/g)(e "+1)—1

4v r[(q/$)(e'" —1)+1].' ' (6)

We have ignored the correlation energy, ""
which should be a relatively small term and can
be absorbed, in part, into the other energy terms,
particularly E,.

Following GSD, we reexpress each of these en-
ergy integrals with the major dependence on the
parameter q =H/d, which completely determines
the GSZ potential in the important inner region of
the species, written explicitly, and obtain [cf.
Eq. (20) of GSD]

Er = aZÃq +pN'q +yN' 'q'+ 6Nri' —pN'~'q —rN' 'q,
(7)

shown analytically by GSD that n =Ap with Np 2,
P =Po+P, $/q with Po= and P, =-,'. By numerical
integration of y, the coefficient of the main kine-
tic-energy term, we find we can represent y ac-
curately by

v =r. +r, $/n+r, ((ln)', (8)

6 =6o+6,g/q+6, ($/ri)'. (10)

Since the inhomogeneity-exchange correction
term is relatively smaller than any of the other
energy terms, we assume, with GSD, that + 7p,
a constant. With these parametrizations, Eq. (7)
reduces to a simple biquadratic in $ and p, of the
form

Er = —A $ —B(Z)ri+Cori2+C, $q+C2$2,

where

A = PN'+p, N'~', —

B(Z) = n,ZN -p N'+ p, ,N' '+7,N' '

and

C] =y]N5~ +5;N.

(12)

(13)

(14)

We can now obtain those potential parameters
$„and q which characterize the stable system by
minimizing Eq. (11) with respect to $ and p. Such
a procedure leads to expressions for $ and q
having precisely the form of the empirical equa-
tions (4) and (5) found by Green, Garvey, and
Zackman with the values of $o, $„q„and Ii, now
explicitly given by

g, = [2AC, —B(N)C,]/b,
$, = -ctoC, N/4,

qo = [2B(N)C2 -AC, ]/E,

(16)

(16)

(17)

with y, =0.5045, y, = -0.1019, and y, =0.0853. This
result, which is a much better approximation than
the y =0.487 used by GSD, is crucial to the im-
provements which we have made in the MTF mod-
el. In addition, we use an improved representa-
tion of the exchange-energy coefficient p, , so that

P =Pp+P &$/'0,

with p p
= 0.28 10 and p, , = 0.0757.

The 1/r singularity in n(r) [see Eq. (6)] prohibits
us from obtaining an analytic form for 5, the coef-
ficient in the Weizsaeker correction to the kinetic
energy. However, guided by the form obtained for
y, the coefficient of the principal kinetic-energy
term, we treat the relatively minor term 6 by as-
suming it to have a similar functional form and
write

where the six successive terms in Eq. (7) corre-
spond to the density integrals in the six compo-
nents of the total energy of the system. It was q~ = 2QOC2N/b, (18)
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TABLE II. MHF values of the magnitude of the total energies
not been calculated previously.

(in rydbergsj of atoms and ions whose energies have

2
2
2
2
4

4
10
10
10
10
12
12
12
12
18
18
18
18
19
19
19
20
20
20
21
21
21
22
22
22
23
23
23
23
23
23
23
24
24
24
25
25
25
26
26
26
27
27
27
28
28
28
28
28
28
28

38
45
48
52
39
43
47
54
39
43
48
53
37
45
51
54
40
44
48
52
32
34
36
32
34
36
32
34
36
32
34
36
32
34
36
39
45
49
54
32
34
36
32
34
36
32
34
36
32
34
36
32
34
36
38
42
47
52

I Total energy(/lp3

2.840 721 2
3.993 970 5
4.548 222 7
5.343 222 7
3.681 575 2

' 4.4890039
5.376433 6
7.1219414
5.431 125 0
6.672 925 8
8.405 183 6

10 ~ 337 453
5.041 261 7
7.641 855 5
9.946 992 2

11.213 566
6.496 746 1
7.995 3594
9.650 464 8

11.462 031
3.998 968 3
4.580 293 0
5.182 625 0
4.025 789 1
4.614 871 1
5.244 902 3
4.049 608 4
4.646 085 9
5.284 418 0
4.070 563 7
4.674 105 5
5.320 402 3
4.088 7564
4.699 003 9
5.352 914 1
6.415 6133
8.835 355 5

10.666 492
13.200 539
4.104 378 9
4.720 945 3
5.382 1016
4.117496 1
4.740 023 4
5.408 082 0
4.128 261 7
4.756 390 6
5.430 964 8
4.136832 0
4.769 984 4
5.450 9102
4.143 324 2
4.781 500 0
5.468 0117
6.202 820 3
7.8169414

10.105 305
12.694 137

29
29
29
30
30
30
30
30
30
30
31
31
32
32
32
33
33
34
34
34

35
35
36
36
36
36
36
36
37
37
37
37
39
39
39
39
41
41
41
42
42
42
44
44
44
46
46

48
48
48
50
50
52
52
54
54
54

32
34
36
32
34
36
40

48
54
34
36
34
36
38
36
38
36
38
40
37
38
40
38
40
42
47
50
53
37
45
48
53
39

49
54
45
48
53
47
50
53
48
51
54
48
51 .

53
50
52
54
52
54
54
55
55
56
57

I Total, energy[/u)~

4.146 523 4
4.787 324 2
5.477 027 3
4.148 847 7
4.792 050 8
5.484 757 8
7.018 125 0
9-687 066 4

10.674 949
13.933 086
4.795 121 1
5.490 3516
4.797 3516
5.494 953 1

' 6.243 085 9
5.498 562 5
6.249 433 6
5.501214 8
6.254 636 7

7.059 550 8
5.874 347 7
6.258 761 7
7.066 617 2
6.261 859 4
7.072 460 4
7.935 558 6

10.322 168
11.910777
13.616 734
5.8764219
9.338 253 9

10.854 750
13.645 723
6.662 953 1
8.871480 5

11.417 898
14.300 422
9.364 140 6

10.902 199
13.740 082
10.382 059
12.008 016
13.758 563
10.921 898
12.600 297
14.405 742
10.928 426
12.616426
13.813820
12.044 066
13.216 785
14.447 816
13.221 297
14.456 301
14.461 531
15.103 180
15.107 184
15.765 691
16.439 301
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with

6=4C C -C, .

The key steps in arriving at these simple results
are the use of Eg. (8) as a more accurate repre-
sentation of the numerically evaluated kinetic-
energy functional y, and the assumption of a cor-
responding representation of the unknown kinetic-
energy-correction functional 5 [Eg. (10)].

VI. THOMAS —FERMI COEFFICIENTS

We next endeavored to determine how closely
the predictions of the MTF model presented in
Sec. V correspond to the results of the MHF cal-
culations, and to determine what numerical ad-
justments of the energy coefficients n„P;, y;,
6;, p, ;, and 7'p might bring the MTF model into
closest harmony with the MHF results. To deter-
mine these numerical adjustments we varied vari-
ous combinations of the energy coefficients so as
to minimize the composite

(20)

where

&m —&m s 2~

The primes here denote the MHF parameters for
various weights, ~„&„and „which were nor-
malized so that ~, + v, + &u, = l. In Eq. (21) the
summation is over all species s; 5 and 5' are
the reduced energies obtained from MHF and MTF
calculations, respectively; and the reduced ener-
gy of a species is defined as its total energy di-
vided by Z' '." The mostimportantresults of this
minimization procedure are given in Table III.
The columns in that table labeled S.D.„S.D.„,
and S.D.

&
are the standard deviations for the fits

of the b, p, and $ parameters, respectively, ob-
tained in calculating S'. These standard devia-
tions have been calculated so that they are inde-
pendent of the weights used in calculating 8'.

The row labeled QSD in Table III gives the values
of the coefficients obtained by QSD and the stand-
ard deviations we obtained with these coefficients.
The row labeled MQSD contains the coefficients
we obtained with the better representations of y
and p, given by Eqs. (8) and (9), respectively. As
the standard deviations for those two rows indi-
cate, neither set of coefficients yields good fits
to $ andy .

In row A of Table III, we present the coefficients
that yield the best over-all fit to the three param-
eters that we obtained by fixing the coefficients
n„P&, and y;, which are related to the dominant
terms in the MTF energy expression, and varying
the correction coefficients 5;, p, ;, and &p Here,
the MTF reduced energies are usually (5-10)%%uo

above the MHF reduced energies. As an indication
of the quality of the fits to the potential parameters
obtained with these coefficients, we have plotted
with dashed lines in Figs. 8 and 4(a) the $0,
and qy calculated with these coefficients.

In row B, we present the coefficients and weight
ratio that yielded the best of all the over-all fits
we obtained. To determine these coefficients, we
varied all the parameters, including no, P, , and

y, . The quality of the potential parameter fits is
displayed by the solid-line plots in Figs. 3 and
4(a), which are the MTF $„)„q„andq, obtained
with these coefficients. These graphs indicate
that the fits to g are quite good, while the fits to

are somewhat poorer partl—y owing to the more
marked shell-like behavior in that parameter, al-
though the general behavior of the MTF $, and g,
reflects that of the MHF values. In Figs. 1 and 2
we have plotted with dashed lines the MTF ( and

q against Z -N for severa1. fixed values of ¹

The quality of the fits to the MHF reduced ener-

TABLE III. MTF energy coefficients for various weight ratios, cu. r. =u(..~2..~3.
Only species with K& 7 were included in the fits.

Ap Pp

GSD
MGSD
A
8

2.000
2.000
2.000
2.199

0.333
0.333
0.333
0.277

0.167
0.167
0.167
0.336

0.487
0.504
0.618
0.681

-0.102
-0.150
-0.241

~ ~ ~ 0.270
0.085 0.270
0.097 0.673
0.140 0.785

0.010
0.010

-0.414
-0.404

Pp 1 0 S.D.p S.D.~ S.D.g

GSD ~

MGBI)
A
B
~Here,

0 298
0.281

0.000 2.164
0.009 0.621

0 =Op+ Gag/(.

0.076
-0.277

0.445

1.570
1.570

-4.087
-1.789

0,103
0.092
0.060
0.008

1.017
0.932
0.180
0.132

3.730
4.335
0.540
0.577

10.2:1
100.3 1
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gies is displayed in Fig. 4(b), where we have plot-
ted against N the magnitude of b' which the coef-
ficients in row B yielded for several fixed values
of Z. The corresponding values of 5 obtained
from the MHF calculations are represented by
the symbols in Fig. 4(b), and the agreement be-
tween the two sets of reduced energies is very
good —usually within 1% for species with low N
and within 3% for species with high N

With the coefficients given in row 8, we have a
hybrid statistical atomic model which predicts
the linear dependence of g„and q on Z Nfo-und
in MHF calculations and yields total energies and
values of g„g„q„and q, which are in reasona-
bly good to excellent agreement with MHF results.

VII. SUMMARY, DISCUSSIONS, AND CONCLUSIONS

This work has three main components: (a} de-
terminations of the QSZ-IPM potential parameters
which minimize, in a MHF sense, the energies
of atoms and positive ions with 36 & Z ~ 54 and
N ~ 54; (b) a study of the systematics of the ener-
gies and GSZ parameters based upon the accumu-
lative determinations of MHF-GSZ parameters
and energies for 550 atomic and ionic species
with Z ~ 54; and (c) a refinement and readjust-
ment of a modified Thomas-Fermi statistical mod-
el (MTF} developed by Green, Sellin, and
Darewych (GSD) with the aid of the accumulated
MHF-GSZ energy and parameter determinations.
Let us begin by discussing and summarizing the
third component of this study.

Our basic objective in this third component has
been to find a-better reconciliation of the gener-
alized Thomas-Fermi statistical model with the
Hartree-Fock model. We evaluate the GSZ param-
ters in the MTF model by energy-minimization
procedures analogous to those in the MHF model.
The most successful result of this effort is that
we find in the MTF model an explanation in terms
of the electron-nucleus interaction for the linear
dependence of the MHF-QSZ parameters upon
Z Nwhich we -had found empirically [see Eqs.
(4), (5), and (15)-(19)]. Somewhat disappointing
is the fact that when we evaluate the energies and
GSZ parameters from the MTF model, they are
not in good agreement with those of the MHF mod-
el. On the other hand, we can bring the two mod-
els into reasonably good correspondence by mod-
erate adjustments of the coefficients of the ener-
gy terms in the MTF theory.

The fact that we could signficantly improve the

predictions of the MTF model by adjusting these
numerical coefficients may be a way of compen-
sating either for the 1/r singularity in the number
density derived from the GSZ potential or for
other shortcomings in the shape of this potential
form. Alternatively, the inhomogeneity-kinetic-
energy and exchange components of the TF func-
tionals themselves, which are of uncertain valid-
ity, may be in error. Or, perhaps we are attemp-
ting to reconcile two unreconcilable approaches.
The importance of shell structure in the MHF
model suggests this as a possibility.

Despite these reservations, it is satisfying that
we have developed a version of the statistical mod-
el which provides an energy formula that can yield
total energies within 1% of MHF results for spe-
cies with N & 25 and within 3% for N ~ 25, while at
the same time predicting with rather good accu-
racy the average behavior and linear Z -N depen-
dence of the GSZ potential parameters character-
izing those species.

Returning to the first component of this study,
it should be noted that our results represent the
first accurate energy determinations for many of
the species we have studied. In addition, our min-
imization method leads to IPM potential parame-
ters which should provide an excellent represen-
tation of the average potential seen by an electron
in these atomic or ionic species.

The second component of this study, which in-
volves the systematics of the energies and MHF-
GSZ parameters, is probably the most useful one.
From this work it is possible to assign $ and q
values and hence the IPM potential seen by all
electrons in any of the 1485 atomic and ionic spe-
cies with Z» 54. Since our total energies are usu-
ally within 50 ppm of true Hartree-Fock, the ana-
lytic potentials and the other properties derived
from these parameters should be far more real-
istic than the corresponding potential or proper-
ties derived from Thomas-Fermi theory. There-
fore, the results should be useful for a variety of
physical problems which involve atoms in various
states of ionization. Now that we have established
the trends in the systematics of the GSZ-IPM pa-
rameters with g and N, it should not be very dif-
ficult, albeit tedious, to extend this work to en-
compass all known atoms (i.e. , Z ~ 105) and their
ionic states, which total 5565. It will, however,
be necessary to base such work upon a relativis-
tic Hartree-Fock model to allow for relativistic
effects particularly of theK- and I -shell elec-
trons.
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