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Using the ab initio energy-minimization procedure of Bass, Green, and Wood, we determine two potential
parameters, £ and ), characterizing the independent-particle-model potential of Green, Sellin, and Zachor (GSZ)
for atoms and positve ions with 36 < Z < 54. This extends earlier modified-Hartree-Fock (MHF) calculations of
Szydlik and Green and of Green, Garvey, and Jackman. We find that both of the parameters in question
display, to a good approximation, a linear dependence on the degree of ionization Z— N for fixed numbers of
electrons N. The slopes and y intercepts associated with the linear dependence of ¢ display marked shell-like
behavior, while those associated with 7 vary rather smoothly with N. Our determinations of total energies are
usually within 50 ppm of earlier Hartree-Fock calculations for those cases in which such calculations exist.
Using the entire collection of energies and GSZ minimization parameters now available, we reexamine a
modified version of the Thomas-Fermi statistical model (MTF) due to Green, Sellin, and Darewych. We show
that this model is capable of yielding the linear Z— N dependence of the GSZ parameters which we found
empirically in the MHF work. By numerical adjustment of the coefficients of our MTF model, we obtain
energies of stable atoms and ions, as well as GSZ potential parameters which are in good agreement with the

MHF calculations.

I. INTRODUCTION

To formulate a meaningful and accurate treat-
ment of a number of relevant physical problems
involving highly charged atomic ions, it is neces-
sary first to have a realistic quantum-mechanical
description of these ions. For example, it is well
known in astrophysics that highly ionized species
are important radiators in stellar interiors. In
experiments employing heavy-ion accelerators,
many collisional and ionization phenomena arise in-
volving highly charged ions not previously encoun-
tered in the laboratory.’ In the fusion process,
highly ionized trace impurities can act as strong
radiators and thereby constitute important loss
mechanisms. In addition, it is now recognized
that inner-shell vacancies produced by x-ray or
electron bombardment are often filled by Auger
cascade processes which can lead to highly
charged atomic states.

This work was undertaken in recognition of this
need for knowledge of the quantum-mechanical
properties of atoms of all states of ionization. At
the outset, we find the two parameters for the in-
dependent-particle-model (IPM) potential in Green,
Sellin, and Zachor? (GSZ) for atoms and positive
ions with atomic number Z between 36 and 54 and
for a few ions with 54 <Z < 57. In this regard, this
work is an extension of a modified form of Har-
tree-Fock theory (MHF) developed by Bass, Green,
and Wood® (BGW) for neutral atoms, by Szydlik
and Green* for atoms and ions with Z < 18, and
by Green, Garvey, and Jackman® (GGJ) for atoms
and ions with 18 <Z < 36. In each of these earlier
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papers and in the present work, the two parame-
ters of the GSZ potential for a given atom or ion
are determined by the variational procedure of
BGW. To the best of our knowledge, for most of
the ions considered here, our results represent
the first nonperturbative, nonstatistical calcula-
tions of the total energies and associated single-
electron potentials. The single-particle wave
functions which are easily obtained from these
IPM potentials have numerous possible applica-
tions (cf. Refs. 6-16).

II. THE ANALYTIC IPM

In the TPM, the GSZ potential acting upon any
one of the electrons in a given atom or ion is as-
sumed to have the form

Vir)=2[(N-1)T -Z]/r, (1)
where

T=1-9@), (2)
with

Q) =[(n/&)e*” -=1)+1]7, (3)

where N is the total number of electrons in the
atom or ion and Z is the nuclear charge. Here
the parameter £ corresponds to 1/d used in GSZ
and n/& corresponds to H. In the original GSZ
work, it was found that this potential was most
accurate in predicting single-electron energies
if the parameters £ and 7 in the screening func-
tion () were readjusted for each atom or ion
under consideration, and we have adopted such a
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methodology here. The energy was obtained by
a modified Hartree-Fock (MHF) calculation em-
ploying as eigenfunctions a Slater determinant
composed of one-electron wave functions of the
atom or ion, which are obtained from the GSZ
potential. The detailed theory of these energy
calculations has been presented in BGW and will
not be repeated here.

III. PARAMETER VARIATION

To obtain the £ and  which minimize E for a
given atom or ion, we varied £ and 7 five times
in increments of (1-5)% of some initially chosen
¢ and 1, and the resulting energy surface was fit-
ted to a quadratic surface from which the final

Z-N

FIG. 1. The symbols represent the { parameters of
the GSZ potential that yield minimum total energies for
various degrees of ionization Z —N of the ion or atom
under consideration for various fixed values of N indi-
cated on the graph. The solid lines are the correspond-
ing values (£;,) obtained by linear least-squares fits to
the symbols. The dashed lines are the values of £, ob-
tained from the modified Thomas-Fermi (MTF) model
described in Sec. V, using the coefficients in row B of
Table IIL

values of £ and 7 producing the energy minimum
were calculated. Such a minimization technique is
effective, provided the initial guesses for £ and 7
are not too far from the actual parameters £, and
N, which minimize E. We used the GGJ results
as a basis for determining the initial parameter
guesses for a given ion or atom. In examining
the results of their MHF calculations, GGJ dis-
covered a simple linear dependence of both £, and
N OnZ —N for a given N. We can write this de-
pendence as

Em=E,+E(Z =N) (4)
and
Nm=Mo+M(Z =N). (5)

Assuming these linear relationships to be valid

zZ-N

FIG. 2. The symbols represent the 1 parameters of
the GSZ potential that yield minimum total energies
against the degree of ionization Z —N of the ion or atom
under consideration for various fixed values of N indi-
cated on the graph. The solid lines are the correspond-
ing values of 7, obtained by linear least-squares fits to
the symbols. The dashed lines are the values (7}, ob-
tained from the MTF model described in Sec. V, using
the coefficients in row B of Table III.
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for values of Z and/or N larger than those con-
sidered by GGJ, we obtained our initial guesses
for the potential parameters for ions with N < 36
and 36 <Z < 54 by simply taking the relevant GGJ
values for &, &,, n,, and n, and calculating &,
and 7,, from Eqgs. (4) and (5) for the Z and N in
question. For atoms and ions with N > 36, we ex-
trapolated the plots of these four parameters ver-
sus N to higher N and then used Egs. (4) and (5) to
obtain initial guesses for £ and n. Usually, no
more than three runs were necessary to obtain a
true minimum of E for a given N and Z.

In this work we have chosen to stress isoelec-
tronic sequences; consequently, the total energies
of a few atoms and ions have been calculated with
the ion or atom in an electronic configuration
which is not necessarily the one producing the low-
est total energy. Such anomalies occur for atoms
with N between 37 and 46, where Hartree-Fock
calculations indicate the neutrals have their low-
est energy in the configuration in which the 5s
shell is filled, or partially filled, before the 4d
shell, while the ions with such N have their lowest
energy in the configuration in which the 4d shell is
filled before the 5s shell.

IV. RESULTS OF MHF CALCULATIONS

For N < 36 we examined those ions whose elec-
tronic configurations correspond to closed shells
or subshells, i.e., N =2,4, 10,12, 18, 28, 30, 36,
and we also considered ions with N =23, which

1]. (0. u.)

FIG. 3. The symbols are £y and 7, values for various
numbers of electrons N. The solid lines are plots of £,
and 74 vs N obtained from the MTF model using the co-
efficients in row B of Table III, while the dashed lines
are similar plots obtained using the coefficients in row
A of Table IIL

corresponds to a half-filled 3d shell. For each
electronic configuration considered, we chose
four ions with 36 <Z < 54. We found that the lin-
ear behavior observed by GGJ for N and Z < 36
continued for larger Z. We obtained linear least-
squares fits to the cumulative data for a given

N < 36 with the £, and 1, of Eqs. (4) and (5) fixed
to the values obtained by GGJ. The new slopes
obtained here are within 3% of the corresponding
parameters obtained by GGJ, except for a few
casés in which the GGJ parameters had been ob-
tained from just a few “data” points, so that our
results effectively doubled the number of points
determining the straight-line fits, and, in these
few cases, the change in slope is always less
than 8%.

For species with N > 36, we considered atoms
and ions with N =37, 39, 41, 42, 44, 46, 48, 50,
52, and 54 as representative samples of species
with outermost electrons in the 4d, 5s, and 5p
shells. For a given N, we chose four values of Z
between 36 and 54. Again, the values of £, and
N, displayed a linear dependence on Z -N. Em-
ploying linear least-squares fits of the type de-
scribed above, we obtained the slopes of the
straight lines describing the behavior of £, and
N, for 36 < N < 54.

-10.6

fo and o

FIG. 4. (a) The symbols are £, and 7, for various num-
bers of electrons N. The solid lines are plots of £, and
1y v8 N obtained from the MTF model using the coeffi-
cients in row B of Table III, while the dashed lines are
similar plots obtained using the coefficients in row A
of Table III. (b) The symbols are the magnitude of the
reduced MHF energies | E|/Z"/3 plotted vs N for various
fixed values of Z, while the solid lines are the corre-
sponding reduced MTF energies obtained using the co-
efficients in row B of Table IIL
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Examples of the linear behavior of £, and 1,
are presented in Figs. 1 and 2, where we have in-
cluded the GGJ results for completeness. In Fig.
1 we have plotted the values of £, against Z - N
for the various values of N we considered, along
with the accompanying straight-line fits shown by
the solid lines. In Fig. 2, the corresponding in-
formation for 7n,, is presented. These plots are
typical for N> 4. As can be seen, the scatter is
reasonably small and apparently nonsystematic.
For N =2, the energy surface appears to be very
flat, since there is very little screening, and it
is difficult to obtain a definite minimum; conse-
quently, there is appreciably more scatter in the
results in this case. Still, even here, a linear
trend is readily discernible in the data, as can be
seen in the plots for N =2 in Figs. 1 and 2.

The occurrence of this linear behavior of the
two potential parameters allows a particularly
compact presentation of the GSZ potentials of all
atoms and ions with N < 54, consistent with this
energy-minimization procedure. All we need do
is present £, n,, &,, and 71, of the straight lines
associated with £,, and 7,, for N =2-54 [see Figs.
3 and 4(a) and Table I]. Data corresponding to
particular shells have been characteristically la-
beled in Figs. 3 and 4, with circles used to denote
the s shell, crosses the p shell, and triangles the
d shell. We have included the GGJ results for
completeness. There is a marked shell-like be-
havior superposed on a gradual decline with in-
creasing N in both £, and &,. A strong shell-like
dependence associated with the £ parameter of the
GSZ potential has been noticed in earlier IPM
work?'? in which £ and 1 were obtained by fitting
IPM single-electron energy levels of atoms to ex-
perimental values. The shell-like dependence of
the n parameter is much less noticeable, although
the graph of 1, vs N goes through a definite change
of slope near N =14 and a somewhat smaller change
of slope near N =42. This weak shell dependence
in n is also consistent with the results of earlier
IPM work.

The shell-like behavior of all the graphs in
Figs. 3 and 4(a) diminishes rapidly beyond N = 30;
so it is a simple matter to interpolate from these
graphs the values of &, £,, n,, and 1, correspond-
ing to various N between 36 and 54 not given ex-
plicitly in Table I.

The total MHF energies we obtained are usually
less than 50 ppm above the corresponding Hartree-
Fock-Roothaan values of Clementi and Roetti, '” who,
in the range of Z and N we considered, have ex-
amined only the neutrals and singly ionized spe-
cies. This close agreement between the MHF and
Clementi results has been the case in all the ear-
lier MHF calculations for species with N and
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TABLE I. Slopes and y intercepts for the straight
lines §=§(+£,(Z =N) and n=n¢+n(Z ~N). C repre-
sents the configuration of the outermost electron in the
electronic configuration corresponding to a given value
of N.

N (o} ) 10x &y g 10x 7,

2 1s? 2.625 12.996 1.770 11.402

3 2s! 2.164 9.764 1.750 6.821

4 2s? 1.300 6.465 1.880 5.547

5 op! 1.031 4.924 2.000 4.939

6 2p? 1.065 4.800 2.130 4.434

7 2p° 1.179 4.677 2.270 4.143

8 2pt 1.360 4.613 2.410 3.925

9 2p5 1.508 4.602 2.590 3.755
10 2p8 1.792 4.515 2.710 3.671
11 3s! 1.712 3.923 2.850 3.469
12 3s? 1.492 3.452 3.010 3.269
13 3p! 1.170 3.191 3.170 3.087
14 3p? 1.012 2.933 3.260 2.958
15 3p3 0.954 2.659 3.330 2.857
16 3p1 0.926 2.478 3.392 2.739
17 3p° 0.933 2.368 3.447 2.633
18 3p8 0.957 2.165 3.500 2.560
19 3d! 0.964 2.151 3.516 2.509
20 3d? 0.941 2.248 3.570 2.404
21 3d° 0.950 2.324 3.627 2.328
22 3d4 0.998 2.345 3.667 2.238
23 3d° 1.061 2.243 3.709 2.171
24 3d"® 1.138 2.291 3.745 2.187
25 3d" 1.207 2.408 3.803 2.090
26 3d® 1.308 2.391 3.840 2.088
27 3d° 1.397 2.462 3.891 2.048
28 3410 1.455 2.397 3.973 1.925
29 4st 1.520 2.246 4.000 1.985
30 4s? 1.538 2.106 4.050 1.878
31 4pt 1.541 1.988 4.110 2.001
32 4p? 1.512 1.914 4.182 1.897
33 4p8 1.492 1.990 4.230 1.782
34 4p1 1.460 1.857 4.290 1.772
35 4p5 1.407 1.897 4.369 1.686
36 4p 1.351 1.872 4.418 1.611
37 4d? 1.286 1.686 4.494 1.619
39 4d? 1.129 1.784 4.618 1.509
41 4d’ 1.139 1.702 4.680 1.485
42 4d8 1.136 1.694 4.749 1.412
44 448 1.197 1.601 4.769 1.435
46 44" 1.246 1.587 4.829 1.397
48 552 1.205 1.358 4.904 1.414
50 5p2 1.130 1.395 4.990 1.324
52 5p4 1.050 1.354 5.050 1.314
54 5p° 1.044 1.107 5.101 1.316
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Z < 36.

For most of the ions we considered here, no
other previous nonperturbative or nonstatistical
calculations of the total energy or single-electron
potentials exist.’® Table II contains the energies
we obtained for such ions. The parameters char-
acterizing the GSZ potentials describing these
ions can be calculated readily from the data in
Table I and with the use of Egs. (4) and (5).

V. THE MODIFIED THOMAS - FERMI MODEL

We have attempted to gain some understanding
of the origins of the linear behavior of £, and 7,
by examining a modified Thomas-Fermi (MTF)
model. Although such a model cannot predict any
shell-like behavior without the ad Zoc addition of
quantum effects, the model can possibly predict
the general behavior of the two potential param-
eters. The model we used is based on an adapta-
tion of the Thomas-Fermi statistical theory® due
to Green, Sellin, and Darewych® (GSD). In this
MTF model, the total energy of a many-electron
system containing N electrons and Z protons is
given by the sum of E,, the electrostatic energy
of the electron cloud in the field of the nucleus, E,,
the electrostatic interaction energy between the
various electrons, E,, the main kinetic energy of
the electrons, E,, the Weizsicker correction to
the kinetic energy, 2'?? E,, the exchange energy,?
and E,, the inhomogeneity correction®* for the ex-
change energy [see Egs. (4)—(9) of GSD]. Each of
these terms may be written as an integral invol-
ving the radially symmetric charge distribution
n(r), which, from Poisson’s equation applied to
the IPM potentials obtained in the MHF calcula-
tions, we determine to be

_nge' (/& +1) -1

") [/DE —DI ©®

We have ignored the correlation energy,:

which should be a relatively small term and can
be absorbed, in part, into the other energy terms,
particularly E,.

Following GSD, we reexpress each of these en-
ergy integrals with the major dependence on the
parameter n=H/d, which completely determines
the GSZ potential in the important inner region of
the species, written explicitly, and obtain [cf.

Eq. (20) of GSD]

Er=aZNn+BN2n +yN 502 + SN2 - uN*/>ny - TN?/3,
(7

where the six successive terms in Eq. (7) corre-
spond to the density integrals in the six compo-
nents of the total energy of the system. It was

shown analytically by GSD that @ =a, with a,=2,
B =B,+B,£/n with B, =% and B, =3. By numerical
integration of v, the coefficient of the main kine-
tic-energy term, we find we can represent y ac-
curately by

¥ =vYo+v.1£/M +v,(E/0)2, (8)

with y,=0.5045, y,=-0.1019, and y,=0.0853. This
result, which is a much better approximation than
the y =0.487 used by GSD, is crucial to the im-
provements which we have made in the MTF mod-
el. In addition, we use an improved representa-
tion of the exchange-energy coefficient 1, so that

Bo=po+u,E/m, 9)

with u,=0.2810 and u,=0.0757.

The 1/7 singularity in n(r) [see Eq. (6)] prohibits
us from obtaining an analytic form for 6, the coef-
ficient in the Weizsécker correction to the kinetic
energy. However, guided by the form obtained for
v, the coefficient of the principal kinetic-energy
term, we treat the relatively minor term 6 by as-
suming it to have a similar functional form and
write

8=0,+0,£/n+0,(E/0)2. (10)

Since the inhomogeneity-exchange correction
term is relatively smaller than any of the other
energy terms, we assume, with GSD, that 7=7,
a constant. With these parametrizations, Eq. (7)
reduces to a simple biquadratic in £ and p of the
form

Ep=-AE-B(Z)N+Cy* +C £n+C,E?, (11)
where

A= -BN?+u, N, (12)

B(Z) =0y ZN -B,N? +oN*/ +7 N?/2 (13)
and

C,; =y;N*3+5,N . (14)

We can now obtain those potential parameters
&, and 7, which characterize the stable system by
minimizing Eq. (11) with respect to £ and . Such
a procedure leads to expressions for &, and 7,
having precisely the form of the empirical equa-
tions (4) and (5) found by Green, Garvey, and
Jackman with the values of &, £,, n,, and n, now
explicitly given by

EO=[2AC0—B(N)CI]/A, (15)
§=-a,C,N/A, (16)
no=[zB(N)Cz“ACL]/A, (17)

and

771=2a0C2N/A, (18)
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TABLE II. MHF values of the magnitude of the total energies (in rydbergs) of atoms and ions whose energies have

not been calculated previously.

N z | Total energy|/10° N z | Total energy|/103
2 38 2.8407212 29 32 4.1465234
2 45 3.9939705 29 34 4.7873242
2 48 4.5482227 29 36 5.477 027 3
2 52 5.343 2227 30 32 4.1488477
4 39 3.6815752 30 34 4.792 0508
4 43 4.489 0039 30 36 5.4847578
4 47 5.3764336 30 40 7.0181250
4 54 7.1219414 30 46 9.687 066 4

10 39 5.4311250 30 48 10.674 949

10 43 6.6729258 30 54 13.933 086

10 48 8.405183 6 31 34 4.7951211

10 53 10.337 453 31 36 5.4903516

12 37 5.0412617 32 34 4.7973516

12 45 7.6418555 32 36 5.4949531

12 51 9.9469922 32 38 ' 6.243 0859

12 54 11.213566 33 36 5.498 562 5

18 40 6.4967461 33 38 6.249433 6

18 44 7.995 3594 34 36 5.501214 8

18 48 9.6504648 34 38 6.254 6367

18 52 11.462 031 34 40 7.0595508

19 32 3.998 9683 35 37 5.874 3477

19 34 4.5802930 35 38 6.258 7617

19 36 5.182 6250 35 40 7.066 617 2

20 32 4.0257891 36 38 6.2618594

20 34 4.6148711 36 40 7.072460 4

20 36 5.2449023 36 42 7.935558 6

21 32 4.049 6084 36 47 10.322 168

21 34 4.6460859 36 50 11.910 777

21 36 5.284 4180 36 53 13.616734

22 32 4.0705637 37 37 5.8764219

22 34 4.6741055 37 45 9.3382539

22 36 5.320402 3 37 48 10.854 750

23 32 4.0887564 37 53 13.645 723

23 34 4.699 0039 39 39 6.6629531

23 36 5.3529141 39 44 8.8714805

23 39 6.4156133 39 49 11.417 898

23 45 8.8353555 39 54 14.300 422

23 49 10.666 492 41 45 9.364 140 6

23 54 13.200 539 41 48 10.902 199

24 32 4.104 3789 41 53 13.740 082

24 34 4.7209453 42 47 10.382 059

24 36 5.3821016 42 50 12.008 016

25 32 4.1174961 42 53 13.758 563

25 34 4.7400234 44 48 10.921 898

25 36 5.408 082 0 44 51 12.600 297

26 32 4.128 2617 44 54 14.405 742

26 34 4.756 390 6 46 48 10.928 426

26 36 5.4309648 46 51 12.616426

27 32 4.1368320 46 53 13.813820

27 34 4.769984 4 48 50 12.044 066

27 36 5.4509102 48 52 13.216785

28 32 4.1433242 48 54 14.447 816

28 34 4.7815000 50 52 13.221 297

28 36 5.468 0117 50 54 14.456 301

28 38 6.2028203 52 54 14.461531

28 42 7.8169414 52 55 15.103 180

28 417 10.105 305 54 55 15.107 184

28 52 12.694 137 54 56 15.765 691

54 57 16.439 301
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with

A=4CLC,-C2. (19)

The key steps in arriving at these simple results
are the use of Eq. (8) as a more accurate repre-
sentation of the numerically evaluated kinetic-
energy functional y, and the assumption of a cor-
responding representation of the unknown kinetic-
energy-correction functional 6 [Eq. (10)].

VI. THOMAS -FERMI COEFFICIENTS

We next endeavored to determine how closely
the predictions of the MTF model presented in
Sec. V correspond to the results of the MHF cal-
culations, and to determine what numerical ad-
justments of the energy coefficients a,, B;, v,
6;, k;, and 7, might bring the MTF model into
closest harmony with the MHF results. To deter-
mine these numerical adjustments we varied vari-
ous combinations of the energy coefficients so as
to minimize the composite

s%=€,+€, +€;, (20)
where
€b :Z (bm—b:n)gwly Enzz (nm_n:n)g w2’
$ (21)

€ :Z (Em— éin)ﬁwa-

The primes here denote the MHF parameters for
various weights, w,, w,, and w,, which were nor-
malized so that w, +w, +w,=1. In Eq. (21) the
summation is over all species s; b,, and b,, are
the reduced energies obtained from MHF and MTF
calculations, respectively; and the reduced ener-
gy of a species is defined as its total energy di-
vided by Z7/3.2" The mostimportant results of this
minimization procedure are given in Table III.
The columns in that table labeled S.D.,, S.D.,,
and S.D., are the standard deviations for the fits
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of the b, 1, and £ parameters, respectively, ob-
tained in calculating S®.. These standard devia-
tions have been calculated so that they are inde-
pendent of the weights used in calculating S2.

The row labeled GSD in Table III gives the values
of the coefficients obtained by GSD and the stand-
ard deviations we obtained with these coefficients.
The row labeled MGSD contains the coefficients
we obtained with the better representations of y
and . given by Eqs. (8) and (9), respectively. As
the standard deviations for those two rows indi-
cate, neither set of coefficients yields good fits
to &, and n,,.

In row A of Table III, we present the coefficients
that yield the best over-all fit to the three param-
eters that we obtained by fixing the coefficients
a,, B;, and y;, which are related to the dominant
terms in the MTF energy expression, and varying
the correction coefficients 6;, u;, and 7,. Here,
the MTF reduced energies are usually (5-10)%
above the MHF reduced energies. As an indication
of the quality of the fits to the potential parameters
obtained with these coefficients, we have plotted
with dashed lines in Figs. 3 and 4(a) the &, &,, 7,,
and 7, calculated with these coefficients.

In row B, we present the coefficients and weight
ratio that yielded the best of all the over-all fits
we obtained. To determine these coefficients, we
varied all the parameters, including &, B;, and
y;. The quality of the potential parameter fits is
displayed by the solid-line plots in Figs. 3 and
4(a), which are the MTF &,, &, 7, and 7, obtained
with these coefficients. These graphs indicate
that the fits to 7,, are quite good, while the fits to
¢, are somewhat poorer— partly owing to the more
marked shell-like behavior in that parameter, al-
though the general behavior of the MTF £, and &,
reflects that of the MHF values. In Figs. 1 and 2
we have plotted with dashed lines the MTF £, and
M. against Z —N for several fixed values of N.

The quality of the fits to the MHF reduced ener-

TABLE III. MTF energy coefficients for various weight ratios, w. r.=w: Wyt Wg.
Only species with N> 7 were included in the fits.
oy Bo B1 Yo Y1 Yo [N N
GSD? 2.000 0.333 0.167 0.487 oo s 0.270 0.010
MGSD 2 2.000 0.333 0.167 0.504 ~—0.102 0.085 0.270 0.010
A 2.000 0.333 0.167 0.618 -0.150 0.097 0.673 -0.414
B 2.199 0.277 0.336 0.681 ~0.241 0.140 0.785 -0.404
6y Ko By To 8Dy SD., S.Dg w,r.
GvSDai eoe 0.298 oo 1.570 0.103 1.017 3.730 ees
‘MGSDa s 0.281 0.076 1.570 0.092 0.932 4.335 e
A x 0.000 2.164 -0.277 -4.087 0.060 0.180 0.540 10:2:1
B 0.009 0.621 0.445 -1.789 0.008 0.132 0.577 100:3:1

%Here, 6 =64+ 6y1/%.
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gies is displayed in Fig. 4(b), where we have plot-
ted against N the magnitude of b/, which the coef-
ficients in row B yielded for several fixed values
of Z. The corresponding values of 5, obtained
from the MHF calculations are represented by
the symbols in Fig. 4(b), and the agreement be-
tween the two sets of reduced energies is very
good—usually within 1% for species with low N
and within 3% for species with high N.

With the coefficients given in row B, we have a
hybrid statistical atomic model which predicts
the linear dependence of £, and 1,, on Z —N found
in MHF calculations and yields total energies and
values of §,, &, m,, and 1, which are in reasona-
bly good to excellent agreement with MHF results.

VII. SUMMARY, DISCUSSIONS, AND CONCLUSIONS

This work has three main components: (a) de-
terminations of the GSZ-IPM potential parameters
which minimize, in a MHF sense, the energies
of atoms and positive ions with 36 <Z < 54 and
N < 54; (b) a study of the systematics of the ener-
gies and GSZ parameters based upon the accumu-
lative determinations of MHF-GSZ parameters
and energies for 550 atomic and ionic species
with Z < 54; and (c) a refinement and readjust-
ment of a modified Thomas-Fermi statistical mod-
el (MTF) developed by Green, Sellin, and
Darewych (GSD) with the aid of the accumulated
MHF-GSZ energy and parameter determinations.
Let us begin by discussing and summarizing the
third component of this study.

Our basic objective in this third component has
been to find a-better reconciliation of the gener-
alized Thomas-Fermi statistical model with the
Hartree-Fock model. We evaluate the GSZ param-
ters in the MTF model by energy-minimization
procedures analogous to those in the MHF model.
The most successful result of this effort is that
we find in the MTF model an explanation in terms
of the electron-nucleus interaction for the linear
dependence of the MHF-GSZ parameters upon
Z —N which we had found empirically [see Egs.
(4), (5), and (15)—(19)]. Somewhat disappointing
is the fact that when we evaluate the energies and
GSZ parameters from the MTF model, they are
not in good agreement with those of the MHF mod-
el. On the other hand, we can bring the two mod-
els into reasonably good correspondence by mod-
erate adjustments of the coefficients of the ener-
gy terms in the MTF theory.

The fact that we could signficantly improve the

predictions of the MTF model by adjusting these
numerical coefficients may be a way of compen-
sating either for the 1/7 singularity in the number
density derived from the GSZ potential or for
other shortcomings in the shape of this potential
form. Alternatively, the inhomogeneity-kinetic-
energy and exchange components of the TF func-
tionals themselves, which are of uncertain valid-
ity, may be in error. Or, perhaps we are attemp-
fing to reconcile two unreconcilable approaches.
The importance of shell structure in the MHF
model suggests this as a possibility.

Despite these reservations, it is satisfying that
we have developed a version of the statistical mod-
el which provides an energy formula that can yield
total energies within 1% of MHF results for spe-
cies with N > 25 and within 3% for N < 25, while at
the same time predicting with rather good accu-
racy the average behavior and linear Z - N depen-
dence of the GSZ potential parameters character-
izing those species.

Returning to the first component of this study,
it should be noted that our results represent the
first accurate energy determinations for many of
the species we have studied. In addition, our min-
imization method leads to IPM potential parame-
ters which should provide an excellent represen-
tation of the average potential seen by an electron
in these atomic or ionic species.

The second component of this study, which in-
volves the systematics of the energies and MHF-
GSZ parameters, is probably the most useful one.
From this work it is possible to assign £ and 7
values and hence the IPM potential seen by all
electrons in any of the 1485 atomic and ionic spe-
cies with Z< 54. Since our total energies are usu-
ally within 50 ppm of true Hartree-Fock, the ana-
lytic potentials and the other properties derived
from these parameters should be far more real-
istic than the corresponding potential or proper-
ties derived from Thomas-Fermi theory. There-
fore, the results should be useful for a variety of
physical problems which involve atoms in various
states of ionization. Now that we have established
the trends in the systematics of the GSZ-IPM pa-
rameters with Z and N, it should not be very dif-
ficult, albeit tedious, to extend this work to en-
compass all known atoms (i.e., Z < 105) and their
ionic states, which total 5565. It will, however,
be necessary to base such work upon a relativis-
tic Hartree-Fock model to allow for relativistic
effects particularly of the K - and L-shell elec-~
trons.
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