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Nonrelativistic wave functions and energy values for the ground state of helium are calculated accurately by
using the conventional Rayleigh-Ritz technique. However, the trial wave functions used are more general than
those used by Hylleraas and others. They contain interelectronic separation coordinates in the exponential
function beside the variational parameters. Groups of three- and four-parameter wave functions are obtained

with comparatively smaller energies. Also, improved wave functions and energies have been obtained by
solving determinants of orders 7, 13, 22, 34, 50, 70, 95, and 125, using a simple model. The last determinant

yields an energy value of —2.903 724 371 a.u. as compared with -2.903 724 370 a.u. obtained by Pekeris by
solving a determinant of order 715. The first determinant (ten parameters) yields an energy value of

,
-2.903425 858 a.u. , as compared with the recent value of —2.9022 a.u. computed by Tweed with the use
of a 41-parameter wave function.

I. INTRODUCTION

The principle given by Coolidge and James' on
the convergence of Hylleraas functions, or any
function, even if no formal solution of the wave
equation exists, has been extended by several
authors to obtain the ground state of different com-
plex atoms. The necessity of improving the ac-
curacy of theoretical prediction for the ground-
state energy of helium was pointed out by Chan-
drasekhar, Elbert, and Herzberg. ' They used a
ten-parameter trial wave function with the Ritz
variation method to obtain more accurate energy.
In order to identify the source of discrepancy be-
tween theory and experiment, Chandrasekhar and
Herzberg' computed the nonrelativistic energy up
to 18 parameters, and they pointed out that the dis-
crepancy originates mostly from the poor conver-
gence of the variational calculation. Kinoshita'
used more general Hylleraas wave functions, up
to 39 terms, to remove most of the discrepancy
stated before. Pekeris' has considered the in-
terelectronic separation coordinate terms for two-
electron atoms and ions. He achieved rapid con-
vergence and was able to calculate measurable
quantities within the limits of the experimental re-
sults.

Recently, Tweed' used trial wave functions up
to 41 terms, taking fully into account the corre-
lation term of the Hamiltonian, to calculate wave
functions for the helium atom. Thomas and Hum-
berston' used the Rayleigh-Ritz principle to gen-
erate a series of systematic helium ground-state
wave functions up to 50 terms.

The use of simple wave functions (few param-
eters} to predict results of scattering experiments
introduces large errors due to inaccuracies in
these simple wave functions. Peterkop and Rabik'

discussed these difficulties for the position-hydro-
gen scattering length. Houston" extended Peterkop
and Rabik's work to calculate the positron-helium
scattering length. The scattering of slow and
zero-energy positrons by helium atoms were dis-
cussed by Houston and Drachman, "and Moussa
and Radi. '2 " These authors concluded that the
use of inexact target wave functions affect the
scattering results. Drachman' presented the
method of models to overcome these difficulties.
He suggested that by using a sequence of improved
forms of the model wave function one can obtain
improved scattering results, provided that the
model wave functions describe well the essentials
of the target state. This has generated renewed
interest in obtaining simple, but more accurate
wave functions.

Though the measurement and theory have reached
such a high precision, it is necessary to improve
the accuracy further, but with a small number of
terms in the trial wave functions. This is carried
out in this paper by choosing a more general trial
function and treating it variationally to obtain the
minimum energy.

II. COMPUTATIONAL METHOD

The most exact results for eigenvalues and ei-
genfunctions of the ground state of helium may be
obtained by means of the Rayleigh-Ritz variational
method. In stationary-state problems the evalua-
tion of eigenenergies E„a denigenfunctions g„of a
Hamiltonian II is obtained from the Schrodinger
wave equation, assuming an infinitely heavy nucle-
us,

[ —2(v', +v22} —2/x, —2/r, 1/+~»]g„=E„g„, (1}

where &, and &, are the distances of the electrons

12 1137

Copyright Oc 1975 by The American Physical Society.



1138 H, M. A. R. AD I 12

Eo & E(4},

where

E(~) =&~ IHl~&/&~ l~&.

(2)

(3)

In Eq. (3}we now substitute a suitable trial function
4' which depends on a number of variable param-
eters c„(p. =1, 2, . . . , n), chosen in such a way
that E is a minimum. This is accomplished by
solving the n equations BE(4)/Bcu=0. The mini-
mum energy determined by this method will be
near to the true ground-state-energy value, if
4 has a form closely resembling the ground-state
eigenfunction g, . Thus E(4') -E, as C- $0

Often, a given atomic structure is represented
by a wave function consisting of a linear combi-
nation of basis function X„as

4 =Nq C~~x~,
p=l

(4)

where the real variable parameter c„"is the pth
amplitude factor for gtheigenvalue, and N„ is the
normalization constant defined for that eigenvalue.
Using the above method, after subsituting Eq. (4)
into Eq. (3), one can obtain the set of n equations

(5)

where

from the nucleus, &» is the interelectronic sepa-
ration, V2, and V', are the Laplacian operators
with respect to the coordinates of the two elec-
trons, and lengths and energies are expressed in
atomic units.

An arbitrary, quadratically integrable, bounded
trial function 4 can be expanded in terms of the
eigenfunction g~(k =g„&„g„). So, the upper bounds
of the ground-state energy satisfy

eigenvectors M are calculated. Following that,
the matrix 8 '~2M is formed and its vectors can
be normalized to form the eigenvectors of C by
the equation

cJ = (S-"le} S-1/2M 2

In this work, double-precision arithmetic compu-
tation was used throughout the calculations.

III. CHOICE OF BASIS FUNCTIONS

Since the Coulomb interaction between the two
electrons plays an important role in the behavior
of the helium atom, the basis function chosen will
contain interelectronic separation coordinates in
the exponential function. (The magnetic interac-
tion due to the spin of the electrons is very small
and will be neglected in the present work. ) It will
be written in the form

X„=(4v) '[I+P»]recur, ur, 'I exp[-(nr, +pr, +yr )],

(8)

where j„,k'„, and l„are non-negative integer val-
ues; o.', P, and y are non-negative variational
parameters; and P» is an operator to exchange
the labels of r, and r, . The sum in Eq. (4), after
substituting with Eq. (8), becomes over all the
values of j„, k„, and l„, such that j„+k„+ l„~M,
and M takes integer values from 1 to 9 giving rise
to determinants of orders 3, 7, 13, 22, 34, 50,
'l0, 95, and 125, respectively, in the case of n=P.
Generally, the variational parameters n, P, and

y are varied to ensure the maximum value of the
energy Eq obta. ined from the solution of Eq. (7).

Hu„=&xulHlx. & and S„.= &x„lx.&.

Equation (5) may be written in the usual matrix
notation form as

HQ=SCE,

(6)

(7)

IV. SOLUTION OF INTEGRALS

The Hamiltonian of the system is

H=T+ V, (9)

where both H and S are real symmetric matrices
and S is positive definite, and E is diagonal.

One has to solve Eq. (7) to obtain the eigenener-
gies E„(q =1, . . . , n), and then pick out the mini-
mum eigenenergy Eq and its corresponding coef-
ficients c„" += 1, . . . , n) The pro. cedure is then to
calculate the eigenvalues and the matrix of eigen-
vectors for the symmetric matrix S." The re-
ciprocal of the square root of each eigenvalue is
formed. The matrix S ' is also formed. The
symmetric matrix H'= (S '~')'H(S '~') is then
formed and the eigenvalues E„and the matrix of

where

T = —a(V2, + V', ) and V= —2/r, —2/r2+1/r».

Then, the Hamiltonian integral H&„defined by Eq.
(6) can be divided into two parts, the kinetic-en-
ergy integral T„„and the potential-energy integral
Vu, . These integrals (including the overlap inte-
gral S „)must be evaluated in analytic form to
maintain the required accuracy of the energy ob-
tained successively until n = 125. The kinetic-en-
ergy integral is given by
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Tr =(2„ITI2„)=]IJdr, dr(de()2)T)„()2)+4„(12)T(.(2))r )„(21)T(,(12)+2„(2))T)„(21)], (10)

where

&„(12)= (4n) 'rgr2~ur'u exp[ (n-r, +pr +yr„)].

Since the operator T is symmetric with respect to
the exchange of the labels 1 and 2, then T&„can
take the form

8 2 8 J f +J 8
V', + V,' = (1 +P22) —+——+

+1 8+1

82 4
+2 2 +

8y'12 F12 8y12
(13)

Pv=2 F1 dT2 fP 12 T &II 12 + ~v 21 12

The operator V1+ V~ has been given by Hylleraas"
as

Substituting this expression for V', + V', in Eq. (12),
exchanging the labels of some integrals to reduce
their numbers, and using some rules of differen-
tiation and algebraic manipulation, the kinetic-en-
ergy integral will take the form

T „= g, 2 2n, 2, 2y j +j„+a„k +k„+b„ l + +c, +J 0.+, n+, k +j„+a„j+k„+b„ l +L„+c,
E=l

(14)

where the values of g, , a„b„and c, (e =1, . . . , 23) for definite values of n, P, y, j, k, l, j„, k„, and

l„are given in Table I. The function Z is defined by

d(p, e, te/j, e, 1)=(ee) 'JJ dr', dr, exp(-(pr +er, +er„)]r(r r,'

This integral is evaluated analytically in the Appendix.
The potential energy integral and the overlap integral can now be easily evaluated to take the following

forms:

and

3
V „=ph, [Z(2n, 2p, 2y/j„+j~+a, , k + k„+b, , lu+ l„+c,)+2(n + p, n+ p, 2y/j + k„+a, , k +j„+b, , l + l, + c,)]

t-1
(16)

S„„=22(2n,2p, 2y/j +j„,k +k„, l +1„)+27(n+p, n+ p, 2y/j +k„, k +j„, l +l„),

where the values of h„a„b„and c, (e =1, . . . , 3) in Eq. (16) are given in Table II.

V. RESULTS AND DISCUSSIONS

As was discussed earlier, the inexactness of the
ground-state helium wave function affects the com-
puted value of the scattering length, "'"as well
as the phase shifts. So, different models with
simple (but more accurate) wave functions and

their corresponding energies are presented to be
used in the scattering problems. In these models,
the variational parameters n, P, and y that appear
in the basis function given by Eq. (8) are varied
to obtain a minimum value of Eo. The variation of
these parameters is very important in decreasing

the eigenvalue of the Rayleigh-Ritz calculation.
However, Pekeris et a/. ,

' in carrying out similar
work past 1000 parameters, have not tried to vary
these parameters in the most simple case when
n =P and y =0 to reduce the numerical computa-
tions. At the outset of our program we decided
to adopt Pekeris's approach, but we were led back
to varying n, P, andy. For this reason, it must
be pointed out that the program is written in such
a way that a great deal of calculation is unneces-
sarily repeated to save computing time.

The final forms of the five models as determined
by this calculation are
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TABLE I. Values ofg~, a, , b, , and c, (e =1, ..., 23)
in formula (14).

a

1
2

3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

-(~'+P '+ 2y')
(j„+k +2l + 2)

+~ (2j~ +l +2)
+P(2k, +l, +2)
-j, (j, +l„+1)
—k„(k~ +lp +1)
+jvlv
+k~l p
+O.l„
+Pl~
-nl ~
-Pl„
+y(j, +k, +4l„+4)

-k
+ jp'Y
+k~y
—QP
-Pv
+ Q"}/

+Pe
—AP
-Pv

0
0

—1
0

-2
0

-2
2
1
0

-1
2
0

-2
2

-2
0
1
0

-1
2

-1
0

0
0
0

-1
0

-2
2

-2
0
1
2

-1
0
2

0
-2

0
1
2

-1
0

-1

0
-2

0
0
0

Model I: 0 =N[c, +c,(r, +r,)+c,r„]
xexp[- n(r, + r, )],

Model II: O' = N[c, + c,(r, + r, ) + c,r„]
x exp[- o. (r, + r, ) —yr» J,

Model III: @=N(1+P„)(c,+c,r, +c,r„)
xexp[ —(nr, + pr, )],

(18e.)

(181)

(18c)

Model IV: +=N(1+P»)(c, +c,r, +c,r, +c,r„)
x xe[p-( or+ pr, )), (18d)

Model V: @=N(1+&»)(c,+c,r, +c,r, +c,r )

xexp[ (ar, + pr +y-r») J, (18e)

where values of the parameters of these wave
functions and their corresponding energies are,
listed in Table III.

I
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TABLE II. Values of h. , a, , b, , and c (e =1, ..., 3)
in formula (16).
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In Table IV the wave functions were checked
for agreement with the virial theorem, which
predicts —(T)/(V)=0. 5, where (T) and (V) are
the expectation values of the kinetic- and poten-
tial-energy operators, respectively. Also ex-
pectation values of various powers of electronic
and interelectronic separation coordinates are
listed in Table IV.

In the second investigation we aimed at achiev-
ing an accuracy in the nonrelativistic energy val-
ues with a comparatively smaller number of
terms. This could be achieved by choosing a suit-
able basis function, similar to the one given by
Eq. (8), and varying o. , P, and y in the trial func-
tion for different values of n. This procedure is
very complicated, especially for a great number
of terms. As a result of that, we simplify the
basis function by taking ot = P and y =0, and apply
the previous procedure with an increasing number
of terms similar to the method discussed at the
end of Sec. III. The general form of the wave
function based on this method is

@=~ g c„(r~~ur,'u+ r,~u r2~u)r,'(exp[ n(r, +-r, )],

(19)

where the energy values corresponding to differ-
ent values of n are listed in Table V. [All the co-
efficients involved in Eq. (19)are available upon
request from the author. ] In this table we have
energy values, for fixed number of parameters,
less than other energy values obtained by different
authors. ""This effeet come s out fr om the
variation of the parameter n. The expectation
values of various functions for Eq. (19), for diff-
erent values of n, are also listed in Table VI.

The maximum value used for n was 125, eorre-

sponding to the relation j&+ k&+ L„» 9. This was
due to memory limitation for the IBM 370 com-
puter system used. But from the convergence
of the energy values of Table V, we can conclude
that if we increase n, we can get more accurate
energies with a comparatively smaller number of
terms.

Nevertheless, the value —2.903 724 371 a.u. ob-
tained by solving determinant of order 125 is very
near to the value —2.903 724375 a.u. obtained by
Pekeris' et al„"by solving determinant of the
order of 1078. Thus, we can conclude that the
present work, with the Rayleigh-Ritz method,
yields reliable results.

One has to note that the energy value of Model
I and the energy value for n=7 in Table V are
more accurate than those obtained by Moussa and
Radi. "'" The reason is the variation of the pa-
rameter u and the use of the double-precision
arithmetic computation in every statment in the
computer program.

is

APPENDIX

The general form of the integral evaluated here

&(p, o, a&/j, k, l)

=(4v) ' dr, dr, exp[ —(pr, +or, +cur„)] r~~r~r'„

. (Al)
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TABLE IV. Expectation values of various operators for the five different models of the ground state of helium.
Values of —(T&/(V& are included to indicate the degree of agreement with the virial theorem

(T)

(1/rq)
(1/rt2&
(r,&

(re&
(r2 )
(1/rtr, t&

(1/r, r y

2.891221 293
-5.782 453 670

0.499 999042
1.689 008 278
0.973 579 512
0.898 707 202
1.377 095 806
1.083 360485
2.347 941846
1.989 643 768
2.791906 287

2.891498 960
-5.783 011015

0.499 998 868
1.689 187 110
0.973 738 533
0.898 000 822
1.373478 122
1.080 963 845
2.331982 726
1.989 922 173
2.793 575 451

Model
III

2.901 726 610
-5.803 222 066

0.500 019916
1.688 157 894
0.949 410 562
0.925 252 288
1.420 338 007
1.181142 249
2.511267 313
1.920 833 814
2.700 163818

2.902 461 973
-5.804 935 506

0.499 999 004
1.689 190 076
0.957 223 984
0.927 917 570
1.421 157 412
1.211443 425
2.475 737 316
1.919051 822
2.694 687 666

V

2.903 272 716
-5.806 543 980

0.500 000 125
1.688 283 375
0.946 57 5 538
0.926 243 473
1.417 651569
1,180 654 250
2;490 200 607
1.918 078 772
2.700 742 108
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Since the integrand of (Al) depends only on the electronic distances r„r„and r», then we can transform
the usual element of volume to take the form

dv, dT, =8p'x, ~,x„dx, dr, dx„,

where the limit of r, andr, is from 0 to ~, and the limit of r» is from ~r, -r, ( to (r, +r, (. Thus, after
some manipulation, the value of the integral @ will be given by

Z(p, o, [0/j, k, l)

j+ 2

+, +,
' p —, [(—1)""I(o—&ol p+ oj/K, J)+ (- 1)"""'I(p—&u, a+&a/O', K)+ G(p +(d/J)G(a+ &u/K)]

2=0

for cu) 0, l) —1

l+
0(a, a, ta/j, p, l)= ){[1-(—1)"]l(a,p/tl fa)a[f —(-1)" ']j(p, a/jr K)} for to=0, 1-—2,

K=0

where J =j+1+c -z, K=k+a+1, and N=j+3+1 —x. The formulas 6 and I used in the above expressions
are

I(o[, P/j, k) = exp( —nx)x'dx exp( —Py)y" dy
0 X

—
] G(o[+P/j+e) if j, k) 0

2-0 e'

(j+k+1)! „j
&+, 'g(-1)" p'[E&~+„+»(o(+ p) -E[„+,+»(p)] if j~0, k(0, and j+k+1)0,

Q i P

where

log(x) if /=1
x' '/(1 —L) if ltl.
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