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Large-angle inelastic electron-helium scattering in the unrestricted Glauber approximation*
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The work of Gau and Macek on large-angle inelastic electron-hydrogen scattering in the unrestricted Glauber
approximation is extended to electron-helium scattering. "Unrestricted" in this context means that we do not
make the additional approximation of purely transverse linear-momentum transfer. Once again, we find at
large angles for 1'SO~2'P, collision-induced transitions the electron-nucleus interaction dominates and has a
q

' behavior in the differential cross section, Further, we calculate the orientation parameter 0&".

I. INTRODUCTION

In a recent article Gau and Macek' considered
large-angle inelastic electron-hydrogen scatter-
ing in the unrestricted Glauber approximation. It
was shown that the expression for the scattering
amplitude contains a six-dimensional integral
which can be reduced to a two-dimensional one by
means of parametric differentiation and integra-
tion techniques. Further, it was shown that for
high-energy collisions at a large angle, the domi-
nant scattering mechanism is the electron-proton
interaction. This electron-proton term has a
Rutherford 1/q behavior in the inelastic differen-
tial cross section where q is the momentum trans-
ferred to the hydrogen atom. This behavior con-
trasts with the conventional Glauber approxima-

tion" which predicts a q
' asymptotic dependence'

for the 1s —2P excitation. It is of interest to see
whether this I/q» behavior for the differential
cross section is characteristic of the approxima-
tion or just true for hydrogen.

In this paper the work on the unrestricted Glau-
ber approximation is extended to electron-helium
scattering. ' We confine our efforts to the 1'S,- 2 P, collision-induced excitation. Here, again,
we find the differential cross section has a 1/q'
behavior for high-energy collisions at large an-
gles. The coefficient of this term is evaluated for
two choices of the ground-state wave function.

II, DERIVATION OF INTEGRAL EXPRESSION

The unrestricted Glauber inelastic electron-
helium scattering amplitude" is given by

gK 1 1 2 . '3 1 1 2&(i-f, q) = —— 8'q'P3 +———eR -zn —,+ --—,dg.' uf*ufd'r, d'r2d2r 13 23 3 - -~ r13 r23

where K is the momentum of the incoming electron
relative to the helium atom and 7) = e'/hV. V is the
relative velocity of the incoming electron. Co-
ordinates r, refer to the position of the ith elec-
tron with respect to the helium nucleus. Note fur-
ther that r,, = ~r, —r,. ~, r,' =(x„y„z,'}, and r,', =

~
r,. —r,' ~. Electrons 1 and 2 are bound to helium,

and electron 3 is the impinging electron. u, and u&
are the initial and final states of the helium atom.
q=K —K' is the momentum transferred by the in-
cident electron. The coordinate system is chosen
with 0 along K, g along Kx K', and%' perpendicu-
lar tot and/.

I

In order to evaluate Eq. (1) for states of helium,
we replace u&*u& with the expression

C&,. exp(- pp, + iy, .r, ) exp(- pp, + iy, » r, ) . (2)

The product of approximate wave functions for
this problem can be represented (C&, is the ap-
propriate normalization constant) by a linear'
combination of terms generated by differentiating
Eq. (2} with respect to p, and p,, and the compo-
nents of y, and y, after which y, and y, are set
equal to zero.

The scattering amplitude, Eq. (1), can be writ-
ten as

E(i-f, q) = —(gK/2m)C&; S(1 2)D(p»y~; p2, y2)

e" '3 —+ — ——exp -zg —,+ —,——, dk3'
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S(1 2)D(p, „y„.p,„y,) is the differential operator which generates the required wave functions when oper
ating on Eq. (2). S(1 2) explicitly forms a sum with the proper symmetry between 1 and 2 of the deriva-
tives in D(p„y„p„y,). E(i-f, q) can be written in a slightly different form:

&(f-f, q) =-—, &y S(1-2)D(IJ„y,; u. , y.)

Q Z W

3
x d'x3 e' '3 d'z2 exp —ip "

p p 483 exp —p,2x2+iy2' r2
23 3

1 1 . " 1 1
&& d'r, ——exp —ill —,——, dz,' exp(- pp, +fy, r, )

13 3 oo 13 3

The integrals computed by Gau and Macek can be used to reduce this nine-dimensional integral to a four-
dimensional one. In terms of this problem we rewrite these integrals:

1 1 . " 1 1
d3y, ———exp —ig —,——, dz,' exp(- pp, +iy, r, )

+13 +3 13 3

P'3 Z

d r, e xp —ig —,——, dh, exp(- g,r, +iy, r, )
~~

1 ao 23 3

(5)

(4p~) dX, X,'" 2 A
' exp(-A2r, —icT, r,)(r, -z, ) '".

0 0 X2 ~2 2

In Eqs. (5) and (6) we use the following notation:

A;= [x';(I —,x)' +» x( I—x;)y„x;+ u', x;+y~(I —x&)x;]'",

Qg = zX((I —X))z —y)X( .
Using Eqs. (5) and (6) in Eq. (4), we get a form for E(i -f, q) with seven integrals in it:

&(f-f, q) = [F(,.„)].(nK—)~«S(I —2)D(~„y„e„y.) (4V,)(4V.)

x Jl
did-'" f ~-'

l

dan-'" f +(1 ) ( ) ( ) (x-' — "')—
3

x ' exp[ —(A, +A, )r, +iq" r,](x,—s,) ""
~

f3
(8)

(9)

Here q =q —n, —n, .
The integration over r, is performed using the following integral also from the work of Gau and Macek.

J
3 ' exp[- (A, + A, )x, +iq ~ r, ](r, —z, ) ""=2' ""vF(1—2iq)[(A, + A, )'+q"']""-'( +AA, —zq,")-"".

3

Equation (9) is inserted in Eq. (8) to obtain E(i f, q) in terms of four integrals over X„X, X„and X,:
4 2iq

+(f-f, q) = -
[

. ],C„(qK)m'F(1 —2iq)S(1 —2)D(p,„y,; p„y )(4p )(4~ )

X1 yy y f l X2

x[(A +A ) +2~II ]2i2tl 1(A +A gqlt) 2gg (10)

It is remarkable that F(i-f, q) can be reduced from nine to four integrals in such a straightforward
fashion. No further simplification without approximations or numerical methods appears possible.

The integrals in Eq. (10) may be rewritten in the following convenient form:
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L(g„, p, ;y, y;rl}= dX1/(1 " '
ding

0 0 0 Xg 0 2 1 2

x[F(0,0, 0;1,1,1;1,0) —F(1,1,1;1,1,1;1,0)],

where

F(& b c.d s f.g Ig) Ze(1 ~ )bA cog-(1 )i )eA f[(A -+ A )2+q(22]2iq) g(A + A qe )-2iq) 2- (12)

III. LARGE-ANGLE APPROXIMATION

Up to this point no approximations have been performed except that of the unrestricted Glauber approxi-
mation. Next we investigate high-energy scattering at large angles. We expand parts of the integrand of
E(l. (10) and keep the lowest-order terms in 1/q:

($ + g ) 2iq)-g

[(A +A )2 ~qql2]2iq) g q2(2 i~q)) 1 2~ti (- 1 2

I
q' + O(1/q')

a

[A, +A, —iq.']-'a-"=(-iq,)-""-"(1+ ." (A, +A, +(a„+(a„)+O(1/q'))

The approximate form of F(a, b, c; d, e, f; g, b} in E(l. (12) is F'(a, b, c; d, e, f; g, h) where

(14)

Fq(gi b c. d & f. g tg) ye{1 ~ )&A-cyg(1 )i )eA fq2(212) g)-( i-q ) 2iq)-

(a, +a2) ""' —2ii) —Ig
X 1 ™2q ', ' - 1+ . ~y+~2+~yg+~~2g—Zqg

The second derivatives of F'(a, b, c; d, e, f; g, b) with respect to g2, and ii22can be performed:,

(15)

d 2 d 2 ~ g ) 2iql-g

d~2 d~2 2 2 2 2 2 2 2 16 1 1 2 2 q2
F'((2 b c. d e f g b) ="2+ Re(1 —y )'Xg(1 —)i )' 1 —2q. ' ' q'"'" "{-iq)-'*'-"

z
1 2

a q(q+2)f(/+2)A, * Aq 1+ " -(ia„+ia„))

+ c(c+2)(f l)(f+1)A-'~A-~-'—
1 2

+ (c —l)(c+1)f(f+2)A, ' 'A2g~

I

In order to calculate the 1'80-2'P, transition amplitude, we will need the derivatives of L' with respect
to y,„, y», y„, y,„, y,„, and y„evaluated at y, =y, =o where L' is defined by

ie OO 'd
L = " dg y-if)-1 dy y-i7)-1 X1

2 2J0 0 0 Xy

dX d d F'(a, b, c; d, e, f; g, Ig) .
X2 d P,~ d JIL2

2
d

~

2
~

d
~

2
I

7 j tI t t tj t ~ (17)

Fortunately, E(l. (17) is symmetric in electron 1 and electron 2. Further, E(l. (17) treats &2„ in the
same way as y„. These symmetries mean that only the derivatives with respect to y,„and y„need be
performed. The derivatives with respect to y, , y„, y,„, and y„can be obtained from these two. We
exhibit the derivatives of E(l. (17) with respect to y2„and p„and set 7, =72= 0:

g 1X 7'g=P2W

'
q q'*" "'(-iq ) """(2i2}-g)c(c+2)f(f+ 2)

23

(20 1 1 oi 2'lql g 1

&,X,'" ' dX, X '" ' d){, )(2 d)(', g Xg(l —){,)'(1 —
)( )2X' 1 —2(l ' ' A ' A g '

(18)
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ylz

ic(c+ 2)(c+4)f(f+ 2), „.„„„
24

x dX. A. '" dX X '" ' d}f }(' d}(,}t,k~z(1 —}(z)'(I—}(,)~"Xf 1 —2q ', ' A@~A,~~ .
0 0 0 0

(19)

In Eqs. (18) and (19) the expressions for A„o.'„A„and o.z are evaluated at y, =y, =0.
The [1 —2q (n, + nz)/qz]"" ' parts can now be expanded keeping only the first term without fear of intro-

ducing spurious divergences in 1, or Xz. The integrands are well behaved for the choices of (a, b, c;
d, e, f; g, Iz) prescribed by the E(a, b, c; d, e, f; g, k) in Eq. (11). The integrations produce beta func-
tions which depend on g.

We will write out the derivatives of I of Eq. (11) with respect to y,„and y„keeping only the lowest-
order term. It should be noted that both for dL/dy, „and dI./dy„ the lowest-order term arises from the
F(1,1,1;1,1, 1;1,0) part of Eq. (11). This is the incoming electron-nuclear part of the Glauber scattering
amplitude.

~ ~ ( 'ri — }q""'(- in) ""(u ) " (u ) '" 'B((- in+1)/2, 2+i'/2) (20)
1X ~l -y2-0

x8(1 —i q/2, 1 +i r/) B((- i q y 1)/2, 2 + i@/2)B(- i q/2, 1 +iq),

dl
2g 4 2 -' - ' 1 ~ 5 1 ~ 1 1 ~(-iq ) ""q""'(p, ) '" '(p, )-'"~B(-z~V+1~ z+ zzQ)B(z —zz7, &ri+ I)

x B(( i@+1-)/2, 2 +i ri/2 }B( zip, i ri+ 1) . — (21)
Before presenting our helium wave functions, let us review the coordinate system we have been employ-

ing. The z axis is chosen in the direction K of the impinging electron. The/ axis is along KxK' andP is
perpendicular to P and y.

The approximate wave functions for the 2'P, state of helium are those given by Eckart' in the following
orthonormal basis:

u, ~~ (r„r,) = (Z', 'Z', '/2'z)S(1 2)x„.exp( ——z'Z,x, —Z,r, ) . (22)

Here Z, =0.97/ao and Z,. =2.0/a, . (ao is the Bohr radius of hydrogen. ) Further, j refers to either x, y, or
z. S(1 2) ensures the symmetry between electron 1 and electron 2.

First we use the hydrogenlike approximation with screening in the wave function for the 1 S, ground
state

u, i, (r„r,) = (Zc/z ) exp( —Zcr, —Zcrz},
where Zc = 27/16a, .

The scattering amplitudes are given by

(23)

E(1'S -2'P, „,q) = —i2 '"3z(rid)C&, m[F( i.q)] 'I"-(1 —2iq) p, ' '"pz' "q„(2iri —l)q '"~(-iq, )
z'"

xB((-iq+ 1)/2, 2+i'/2)B(1 —i q/'2, 1+ir})B((-iq+1)/2, 2+ i'}/2)B(-i'/2, I +i g),
E(1'S,-2'P„,q) = —3'x5x2' ""C&;(gK)z' [I'(-i')] 'I'(1 —2ir})(-iq, ) ""q""'(P, '" 'p, "-'+ Iu;«-z~-~~-4)

Z'~'Z'"Z '
. a 4 iC, —

x B( zip+ I, z+ zip) B-((1—i')/2, i r}+1}B((-i@+1)/2, 2+i'/2)B(-iq/2, irj+ I), (25)

(26)

Note E(1'S,-2'P„,q) is identically equal to
zero because from the way our coordinate system
is arranged q, =0. Thus, the only dependence on
y„or y„ in Eq. (10) comes from terms dependent
on y'„or y'„. In the process of taking derivatives
with respect to y„and y„and setting y, =y, =0
these terms vanish. Thus, E(1'S,-2'P», q}=0.

The differential cross section for this large-

2)2—(1'S,- 2'P, }= 0.74 (27)

angle collision is determined by the 1 S0 2 Pl,
part of the scattering amplitude. For K large,
which means rj= mez/O'K is small, we find the
asymptotic differential cross section for this
process:
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Using the ground- state wave function given by
Mott and Massey, ' we find

(1 1S 21P ) P 9P ( P)
dQ o ' '

q4 (28)

As can be seen, these differential cross sections
are dependent upon the choice of approximate wave
functions.

IV. CONCLUSION

In this paper the work of Gau and Macek on the
unrestricted Glauber approximation is extended to
electron-helium collisions. We reduce the origi-
nal nine-integral expression for the unrestricted
Glauber amplitude to one with four integrals. For
the 1 'S0-2'P, collision-induced transition we cal-
culate the inelastic differential cross section for
large angles at high fixed energy. The electron-
nucleus term dominates and gives a q

' behavior to
the differential cross section. From using two

0,"' = —1.8q„/q'a, . (29)

Inasmuch as q„behaves as -K sin0 and q as 2K
xsin(8j2) at large K, 0',"given in Eg. (29) goes
linearly to zero with (18P'- 8) in the backward
direction.
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wave functions for the ground state, we find thai
this asymptotic differential cross section depends
somewhat on the choice of approximate helium
wave functions.

As in the case of hydrogen there is a 90 phase
difference between E(l 'So-2'P, „,q) and E(1'So- 2 'P„,q) in the backward direction giving rise to
a large 0;", the orientation parameter. ' This is
a characteristic of both hydrogen and helium in
the unrestricted Glauber approach. We give the
expression for 0," in the high-fixed-energy large-
angle approximation:
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