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Statistical mechanics of dense ionized matter. V. Hydrodynamic limit and transport coefficients
of the classical one-component plasma

P. Vieillefosse and J. P. Hansen

(Received 24 April 1975}

We study the static and dynamical correlations of density fluctuations in a classical one-component plasma
(OCP}, in the framework of thermodynamic fluctuation theory and linearized hydrodynamics. First we show
that the fluctuations of the local electric field stabilize the OCP against density fluctuations, even when the
compressibility becomes negative for I ) 3, where I is the usual plasma coupling parameter. Then, following
closely the work of Mountain, we compute the dynamical structure factor in the hydrodynamic limit and
show that the thermal Rayleigh peak vanishes in the long-wavelength limit, in agreement with recent
molecular dynamics results. The shear and bulk viscosity coefficients q and f are calculated for large I in

the framework of the "generalized hydrodynamics" formalism, using the known short-time expansion of the
correlation functions. The coeAicient g is found to exhibit a minimum as a function of I and f is found to be
negligible compared to q in the OCP.

I ~ INTRODUCTION

In a recent paper of this series' the spectra of the
longitudinal and transverse current-current corre-
lation functions of a classical one-component sys-
tem of point ions, immersed in a uniform back-
ground of opposite charge (the OCP), have been
computed by the molecular dynamics (MD) method'
over a wide range of the dimensionless parameter
1" = (Ze)2/PRAT, which entirely determines the ther-
modynamic state of the OCP; Ze is the ionic
charge, & the temperature, && is Boltzmann's
constant, and & is the ion-sphere radius, defined
as

y' = (3/4np)'~'

where p =N/V is the number density. & is related
to the familiar plasma parameter A by

A = [4vp(s'/&BT)'1' ' = &3 1'~'

The Debye-Hu'ckel limit is reached for I'«1,
whereas at I'=155, the OCP undergoes a fluid-
solid phase transition. '

The computations in Ref. 1 covered the range
1-I'(155. The main findings were the following:

(a) The velocity autocorrelation function exhibits
marked oscillations in time for I'& 10; the period
of these oscillations is close to 2v/&~, where &~

is the plasma frequency

~, = [4'(Ze)'/m]~'

and m is the ionic mass. The resulting diffusion
constant decreases faster than 1/&.

(b) Near crystallization (I' =155), the spectrum
of the transverse-current correlation function,
C, (q, ~), exhibits a well-defined peak at nonzero
frequency, for reduced wave numbers q =&»1;

this peak is characteristic of propagating "shear
modes. " A memory-function analysis of these
correlation functions yields an estimate of the
reduced kinematic shear viscosity:

q*=q/pme~r'

(c) The spectrum of the longitudinal density (or
charge) fluctuations, as measured by the dynamical
structure factor S(q, &), exhibits sharp "plasmon"
peaks up to reduced wave numbers q of the order
of 2. In the limit of small g, the dispersion rela-
tion of this collective mode was obtained from a
simple moments analysis, as

(2)

where d is related to the coefficient of the q4 term
in the small-g expansion of the structure factor
S(q). Use of the compressibility sum rule' im-
mediately allows d to be expressed in terms of the
isothermal compressibility, Kr ——(1/p)(& p/BP)r,
of the OCP:

K
3r Z

where &~ is the ideal-gas compressibility, K~
= P/p. Zr is given explicitly as a function of 1'

in Ref. 5, where it was found that the compres-
sibility becomes negative beyond I'= 3. It follows
that the dispersion d~/dq, calculated from (2),
also becomes negative beyond I'= 3, in agreement
with the negative shift of the plasmon peak posi-
tion in S(q, &) obtained by the MD computations.
This behavior contrasts with the predictions of
mean-field theory. In particular, the collisionless
Vlasov equation, ' or the equivalent random-phase
approximation (HPA) predicts the following dis-
persion relation:
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~(q) = (v~(1 ~q'/2I') + 0(q'). (4)

Clearly the difference between (2) and (4) is due
to the interionie collisions which are neglected
in the mean-field approximation.

To characterize the importance of collisions, we
estimate a mean time & between two collisions as
follows. A crude effective cross section is cal-
culated from the classical "distance of closest
approach, " &, =Pe', yielding v' = (Pe'}'; from this,
the mean free path X = 1/pa and the relaxation
time v = X/(v')' ' = AP' 'm'~' can be derived F.inal-
ly, the product p is obtained as

I'«1 corresponds to the "kinetic" regime, where
the relaxation time & is much longer than the
period of a plasma oscillation, and hence colli-
sions do not sensibly alter the predictions of mean-
field theory. The Landau' and Balescu-Lenard
equations are well-known examples of theories
which generalize the Vlasov equation to include
the effects of collisions in the kinetic regime.
However, when I'&1, the relaxation time & be-
comes short compared to ~'; this means that
many collisions take place during a plasma oscil-
lation, and the kinetic theories cannot be expected
to remain valid. This range of I' values corre-
sponds rather to the "hydrodynamic" regime of
fluids, characterized by a time scale which is
long compared to &.

The purpose of this paper is to study the density
fluctuations of a very dense plasma (& & 1) in the
limit of large wavelengths. Because we are in the
regime where each ion. experiences many collisions
during the period of a plasma oscillation, we shall
assume local thermodynamic equilibrium.

In Sec. II we calculate the probability of appear-
ance of a density fluctuation, and show that the
fluctuation of the electric field ensures that the
system is thermodynamically stable against such
density fluctuations, even when the compressibility
becomes negative.

Following closely the work of Mountain, "we ob-
tain in Sec. III an explicit expression for the dy-
namical structure factor S(q, &) from the linear-
ized hydrodynamic equations with proper inclusion
of the electric field. The presence of the electric
field completely modifies the structure of S(q, &),
in agreement with the MD results at small g.

Unknown transport coefficients (the shear and
bulk viscosities g and &, and the thermal conduc-
tivity &) appear in the hydrodynamic equations.
In Secs. IV and V we calculate q and g, using the
"generalized hydrodynamics" formalism of Kada-
noff and Martin" and the short-time expansions
of the current-current correlation functions. The

reduced shear viscosity q is found to exhibit a
minimum as a function of I', whereas the reduced
bulk viscosity f* is found to be very small com-
pared to g*. In absolute units, q increases mono-
tonically with density along any isotherm, whereas
along any isochore, p exhibits a minimum as a
function of temperature, not unlike the behavior
in simple fluids. '2

II. THERMODYNAMIC FLUCTUATIONS AND STABILITY

&f(r) = —g &f k exp(ik r)
V

where

efr= f 5f(r)exp(-)e r)d'r.

The local thermodynamic quantities which will
appear in the following are the entropy per ion
s(r}, the number density p(r), the internal energy
per ion ~(r), the temperature &(r), and the pres-
sure P (r). v(r) will represent the local fluid veloc-
ity, and E(r) the local electric field; the equilib-
rium values of these two quantities vanish.

If we choose p and T as the independent thermo-
dynamic variables, the entropy per unit volume,
ps, is, to second order in &p and &1',

ps = p s + —&(pe) — 5P-— (5T)
1 1 P0C„

0 0 T 2 T2
0 0

2~0~0 ~0 r
(8)

where p. o and c„are the equilibrium values of the
chemical potential and the specific heat at con-
stant volume. &(Pe) is the variation of the internal
energy per unit volume; this variation corresponds
to the transformation of internal energy into local
kinetic energy and into potential energy associated
with the local electric field:

& (pc) = -[-,' p, mv~ + (1/8)) )E']. (8)

E(r) is related to &p(r) through Poisson's equation

V E(r) =4))(Ze)&p(r). (1o)

We now express the various functions in (8) in
terms of their Fourier components ('7), make use
of Eqs. (9}and (10), and integrate both sides of

We first generalize the standard thermodynamic
fluctuation theory to the case of the OCP, by
taking into account the local electric field. Let
&f(r) denote the local deviation of a thermodynamic
quantity f from its equilibrium value f, :

f(r) = f, + &f(r).

&f(r) can be expressed in terms of its Fourier
components &f-„:



1108 P. VIEILLE FOSSE AND J. P. HANSEN

(8) over the volume V of the system; this yields

S =SO —
2Ty ~vk'v k- 2Tsy~ t( k

k

1 ~~ 4v(Ze)' 1 sP,Z ~. +— ' ~pk~p »,-(11)
where 8 is the total entropy of the system, S
= fps d'r, and the primes indicate that the terms
k = 0 are to be left out in the summations. The
probability of having a fluctuation described by
v~, &T~, and ~p~ is proportional to t. "~." It is
seen from (11) that, to second order, the velocity,
temperature, and density fluctuations are not
coupled. For the system to be stable against these
fluctuations, the coefficients of vk ' v k, ~

&&k ~',
and ~~pk~' must be positive. This implies the well-
known condition c„&0, which is satisfied by the
OCP for all I'.' However, the usual condition that
the compressibility must be positive is replaced in
the case of the OCP by the condition

4 v(Ze)' 1 sP
k' p Bp

Consequently, the system can sustain density
fluctuations even when the compressibility becomes
negative, i.e., for I'& 3. It is the local electric
field created by the density fluctuation which con-
tributes the term 4v(Ze)~/k' and hence stabilizes
the system, i.e., prevents the density fluctuation
from building up indefinitely.

Expression (11) for the entropy allows us to
calculate the long-wavelength limit of the structure
factor,

S(&) =(Il&)&&p &p ),
the normalized average being calculated with the
weight function 8 &. The result is

(12) and the "exact" computer data' is made in
Table I for I'=1 and I'=155. The agreement is
seen to be remarkable up to q=2, which corre-
sponds to a wavelength of the order of the inter-
ionic spacing f It should be noted that at this wave
number the q' and q4 terms are of the same order
of magnitude. This remarkable agreement is an-
other illustration of the predominantly collective
behavior of the OCP over a wide range of wave
numbers. Finally, it is interesting to note that
Eq. (12) indicates a direct link between the change
in sign of the compressibility, and the onset of
"short-range order, " i.e., the appearance of oscil-
lations in the radial distribution function g(&).
Both phenomena happen at about the same value
of I' (=3), according to the computer-simulation
results. And indeed, according to (12), S(q) has
two poles on the imaginary axis as long as the
compressibility stays positive, implying an ex-
ponentially decaying g(&), whereas for I'=3, the
negative compressibility entails two poles on the
real axis for S(q), i.e. , an undamped oscillatory
behavior of g(&). Previous studies of the onset of
short-range order in the OCP were based on

diagrammatic techniques and predicted a somewhat
lower value of I' for the onset of oscillations in

g(&) (I =1)." A very recent and more complete
diagram summation predicts I'=2.61 for the onset
of oscillations, " in excellent agreement with our
own findings.

III. DYNAMICAL STRUCTURE FACTOR IN THE

HYDRODYNAMIC LIMIT

Following the work of Mountain" for neutral
fluids, we now derive the dynamical structure
factor S(q, &}of the OCP from the linearized hy-
drodynamic equations and the assumption of local
thermodynamic equilibrium. The three standard
hydrodynamic equations express the conservation

i.e., with q =F'4',

q2

3I' yq'(Kor/Kr) (12)

TABLE I. Theoretical structure factor, S (g), com-
pared to the "exact" S(q), for several values of the re-
duced wave number q =kT, at I'=1 and I'=155.

Obviously, (12) can only be expected to be valid in

the smali-q (or hydrodynamic) limit, and must
break down when the reduced wavelength & =2@/q
becomes of the order of the interionic spacing. In
fact, S(q} given by (12) has the correct small-q
expansion, to order q4, provided the exact com-
pressibility Kr is used."' Equation (12) also
reduces to the Debye-Huckel limit when ~-0 and
Kor/Kr-1. However, for «3, S(q) has a singu-
larity, and becomes negative for sufficiently large
q because of the negative compressibility.

A direct comparison between the predictions of

0.4
0.6
0.8
1.0
1.2
1.4
1.8
2.2
2.6
3.0

0.051 34
0.1104
0.1847
0.2683
0.3559
0.4430
0.6052
0.7428
0.8545
0.9435

0.051 36
0.1104
0.1840
0.2678
0.3540
0.4386
0.5908
0.7115
0.8007
0.8638

I'=1, P —=0.7265Bp

Bp
s (e) s(e)

0.000 351
0.000 812
0.001 500
0.002 468
0.003 801
0.005 636
0.01195
0.027 58
0.11152

0.000 352
0.000 817
0.001 513
0.002 492
0.003 827
0.005 627
0.01133
0.022 15
0.044 83
0.1003

I'=155, P
— =-59.82
BP

Bp
S'"(0) s(e)
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i
~ P(r, &)+P,V v(r, &) =0, (13)

mp v(r, t) =-V6P(r, t)+po(Ze)E(r, t)+q&v(r, t)

of mass, momentum, and energy. We assume
that these three equations remain valid in the case
of the OCP, provided a term proportional to the
local electric field is added in the momentum flux
tensor of the Navier-Stokes equation. Extending
the notations of Sec. II to the deviations at time t
of the various quantities from their equilibrium
value, the linearized equations read

g +4@/3
pc„' mp

'(18)

c„' m Bp, mpK,
'

Equation (16) differs from the corresponding equa-
tion for neutral fluids only by the term ~~ stem-
ming from the local electric field. The presence
of the plasma frequency will completely modify the
structure of S(q, &), as compared to the neutral
fluid case.

The time-dependent density-density correlation
function is defined as

+ (g+ 3rl}V[V v(r, t}],

p T 6s(r, t) =zV. [V6T(r, t}].

(14) F(k, i) = 'I&)&6pT, (t)~p-l, (0)&,

where

(19)

Here, g and g are the shear and bulk viscosities,
and z is the thermal conductivity. Equations (13)-
(15) must be supplemented by Eq. (10) relating
E(r, t) to 6p(r, t). Moreover, the electric field is
purely longitudinal, since rotE =0. E and v are
eliminated by taking the divergence of (14) and
combining with (10) and (13). 6P and 6s are ex-
pressed in terms of &p and &T through the usual
thermodynamic relations. The set of equations
(13)-(15)then reduces to two coupled partial dif-
ferential equations for &p and ~T:

B B /c+~' —5 a ——n, 5p(r t)Bt' ~ Bt y

1 BP
rkk ~T (F,t), (16)

P

T B$' B——an. &T(r, t) =- — 6p(r, t),Bt c„Bp ~ Bt

where we have dropped the subscript for the equi-
librium values, and we have defined the following
quantities:

kpr(r)= f exp(-rk r)kp(r, r). (20)

The dynamical structure factor S(k, ~) is given by
the Fourier transform of E(k, t}, or, since this
function is even in t, by twice the real part of its
Laplace transform

S(k, ~) = / F(k, t)e' 'dt=2RS(k, m)

with

S(k, &) = Jf
e' 'F(k, t)dt

=(1P')&~PT, (~)6P g&, (21)

where 6pz(&) is the Laplace transform of (20).
Taking Fourier-Laplace transforms of (16) and

(17), we obtain algebraic equations relating 6p-„(~)
and ~'1™&(&}to ~p-„, 6T-„, and v„, which are the
values at time & =0 of 6p-„(&), &T-„(&}, and v q(t).
Eliminating 6T&(~), we obtain for 6p&(&) the rela-
tion

i~5k'~ —k' (ak' —i&a) —i&A' K &p&(~)
y y

k BP, , y-1krr e iP(ak' —ie)k vr e k' rr (ak' —ie)(kk' —
)) reikk

m BT y

(22)

where use was made of the thermodynamic identity

me„BP ~ BT p y

We now multiply both sides of (22) by 6p q and
take the average with the weight function e & jn
order to obtain S(k, ~). Since &p&, &TI„and v &

are statistically independent, the two first terms
on the right-hand side of (22} will not contribute
to S(k, (u). Defining o(k, ~) by the relation

S(k, &u) =S(k)v(k, co), (23)

we, finally obtain &7(k, &) as a rational fraction, with
real coefficients, in the variable s =i:
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s2+ (a+b)k2s+abk4+k2(y —1)y 'K
o(k, ~) = s'+ (a+b)k's'+ (&'+Kk'+abk4)s +ak'((u~2+y 'Kk') ' (24)

In terms of the roots of the denominator, o(k, &)
can be rewritten as

A. B B*
o(k, ~) = s-o.' s —P s —P*'

The roots are easily determined to order &':

o. = -ak2, p = —2bk2+ i &p[1 + (K/2(u2~)k2].

(25)

(26)

The first root, which gives rise to the thermal
Rayleigh peak, only differs by a factor y in the
OCP case. On the other hand, the two roots P and
P*, which give rise to the plasmon or Bri11ouin
peaks, are essentially different in two respects.
The first difference lies in the imaginary part of
the roots, which determines the oscillation fre-
quency. In the neutral-fluid case, we have a sound
wave the frequency of which goes to zero as &- 0;
the corresponding group velocity, equal to vK,
is independent of & in that limit. In contrast to
this, the frequency stays finite (~- &~) as k-0
in the OCP case; the group velocity is linear in
&, and is thus practically zero for small k. The
second important difference lies in the real part
of the roots, which governs the damping of the
oscillations (remember that s = i&). In the neutral
case the sound damping is due both to thermal
conduction and to viscosity, whereas in the OCP.
case the plasmon damping is only due to the vis-
cosity; to order k' there is no coupling between
thermal and mechanical modes.

It is also interesting to compare the relative
importance of the Rayleigh and plasmon or Bril-
louin peaks. In the OCP case, we find for A and
B in (25)

y —1 K@2

y Cdp

B=-,(1—,
)

—1b

(28)

whereas for the neutral fluid

It is interesting to compare these results with
those obtained for a neutral fluid'P; in the latter
case, one finds

o. = —(a/y)k2, P =-2(b +a —a/y)k2+i MKk. (27)

&,P, +&,(~+ P, )
Q)2 + QI2 ((g) p P )2 +. P2

(30)

which is proportional to 1/k' in the long-wave-
length limit. The total integrated intensities of
the Rayleigh peak and of the plasmon doublet are,
to order &',

Z, y-1 Ku'
S(k) y

Ip y —1 Kk'2

S(k) y
p

(31)

Hence the equivalent of the Landau-Placzek ratio, "
which in the neutral fluid case is y —1, is in the
OCP case

R . 0(k4)
I y —1 K&2

y CO
(32)

In the limit k- 0 this ratio vanishes, showing the
clear predominance of the "mechanical" plasmon
mode over the thermal mode in the long-wavelength
limit. In this limit (30}reduces to

These results are in qualitative agreement with
the MD data' which showed no trace of a Rayleigh
peak for the smallest accessible wave numbers. It
should be noted that (y —1)/y and K are always of
the same sign, and, in particular, change sign
for the same value of I' (=3).'

Finally, it is interesting to compare the dis-
persion relation (2), obtained from the exact mo-
ments of S(bbb, &),' with the relation derived here
from the hydrodynamic equations,

The Rayleigh peak is a Lorentzian centered around
& =0, and of height 2[(y —I)/y]K/a~ ~, 2which is
independent of &. The "plasmon doublet" is the
superposition of two pseudo-Lorentzian curves
centered around & = a&~(1+Kk'/2&2~), of height

2 y —1 Kk2

—1, 1
y ' 2y'

Finally, we obtain for the dynamical structure
factor the expression

(29} where d is given by (3). The two dispersion rela-
tions (2} and (33}are seen to differ by a factor
y = c~/c„ in the bI' term. However, for I' ~ 20, y
differs from 1 only by a few percent, and the dif-
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ference decreases with increasing I"; e.g. , for
I'=40 and 100, y=0.95 and 0.98, respectively.
Consequently, the two dispersion relations are
practically identical for large I' values.

In the I'-0 limit, y and d can be calculated in
the Debye-Hiickel limit:

&3 Z, 5 r~o
d= I 1 —

4
~ ' and y=3+ 2'3I'

Retaining only the dominant ideal-gas terms, (33)
reduces to

602

C, k, ~}= —i R+ Yjko/mp ' (35)

where &oo=k'/Pm. The shear viscosity q is then
pbtained thrpugh the familiar Kubp relatipn

In the hydrodynamic limit, p-„(&) = pv-„(~), which
satisfies the projection perpendicular to k of the
Fourier transform of Eq. (14); the Laplace trans-
form of the corresponding correlation function is

15 q'
~(q)=~ 1+——233l

PlP
g =lim lim 2 s(d+

~~p Q ~p c,(k,~)
(36)

which differs from the Vlasov dispersion relation
(4) by a factor —,y. This difference clearly illu-
strates the limits of the hydrodynamic dispersion
relation: in the I -0 limit, the relaxation time &

is very long compared to the period of the plasma
oscillation, and the fundamental hypothesis of
local thermal equilibrium is no longer valid. In
this limit, a kinetic theory taking into account the
local anisotropy of the velocity distribution func-
tion is expected to be more adequate.

IV. TRANSVERSE CURRENT CORRELATIONS AND

SHEAR VISCOSITY

&), (&) =Q v,.(&) exp[i k r, (t)] (34)

and the transverse-current correlation function

C, (k, t) = (I/2Ã) Tr([kAj), (i)] '[kAj k(0)]).

In this section we shall apply the generalized
hydrodynamics formalism of Kadanoff and Martin"
to the OCP in order to determine the coefficient
of shear viscosity from the knowledge of the short-
time expansion of the transverse-current correla-
tion function. A similar calculation has been made
by Forster et al. in the ease of a neutral fluid
(argon). " Using notations similar to those in Ref.
1, we define the current operator

We proceed by writing the rate of decay of C, (k, t}
as

t
', c,)q1) f +, d1)qM1~'')c, )q,, d) =o,

which defines the memory function M„ taking the
Laplace transform of (37), we obtain

(d2
M, (k, ~) =i)d+

C, (k, ~)
(38)

C, (k, i) = ~'. g (-I)'~;; (39)

The expressions of the three lowest moments ~t
in terms of the equilibrium pair and triplet dis-
tribution functions g and g, have already been cal-
culated in Ref. 1:

C, (k, &), and hence M, (k, &), are related to the
transverse-current-response function through the
fluctuation-dissipation theorem. ' From this rela-
tion, a certain number of important properties of
M, (k, ~) can be derived. " In particular, M, (k, )d))

is an analytic function of + = , + s 2 in the complex
upper half-plane (&, ~ 0), and its real part M„ is
positive for real & (&, =0). The asymptotic behav-
ior of M, (k, &) is governed by the short-time be-
havior of M, (k, t), and hence of C, (k, t), which can
be expanded in powers of t':

od =I l~="o- lG~. (q»

3&4 xv o o I& o o& ( } [G ( }]o
z 4, d& sink/ 3cosk/ 3 sinks

0 0 7/2 0 5/2 0 g4 gg g2g 2 $3@3

d 'Y'„-[g, (r, r') —g(&)g(&')][Sro ' r,'(r, ' ro —z ozo) + 3z' + 3z,"—4]

(40}

x (e $z(z z ) 1 e ll qzeqzz )

In (40) and (41), q =k7 and G, (q) represents the following integral over g(r):

(41)

G. (q)= — q*J xdx[d(x) —1)Il (qx)" '
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where &&(qx} is a Bessel function of the first kind,
and x =r/r. In (41), ro and z, are the unit vector
and its ~ component in the direction of r. Note that
the term (+1) in the last set of parentheses of (41)
is missing in formulas (Al) and (A2) of Ref. 1.

From (39}, we obtain the following asymptotic
expansion for M, (k, ~):

Cu2 (u4 CO4,
(k (g) ~(g 1t + 2t lk

CO4
(42)

+oo

d~M«(k, ~) = ~,', , (43)

Now, since M, (k, &) is analytic in the complex
upper half-plane, M, (k, &) and its real part M«(k, ~)
are related by a Kramers-Kronig relation. It
follows that the coefficients in expansion (42) are
related to the moments of M«(k, &):

mph~ r'
1 37r '' (5/I' —I, )~'

15 2 (17/I'+8I, + ",o H—,+ —,
"

H, )'' '

(50)
Formula (50) expresses q* in terms of the inte-
grals (48) and (49), which can be calculated for
each value of I' from the equilibrium pair and
triplet distribution functions. I, is simply related
to the excess internal energy per particle'

2 U

31

I, has been calculated using the radial distribu-
tion functions of Ref. 5. For large I', I, is very
well approximated by the corresponding bcc lattice
sum;

+

du CPM„(k, e) = &u4, (44) I 2 =0.788466.

402 (46)

@2m 17 81 39
Q)4

45 Z' + -2+10 +10 (47)

where

x" g x —1 dx, n&-1
0

I„=J( x"g(x)dx, n& —1

00 00 ' +g

H„= ( dx dx' d(coso.')P„(cos&)
0 0 -1

x [g;(r, r', n) —g(r)g(r')j.

(48}

(49}

P„ is the Legendre polynomial of order n. Sub-
stituting (45}, (46), and (47) into (36), we obtain
the reduced kinematic viscosity:

Since M«(k, &) is a positive, even function for real
, and since all its moments exist, it has an ex-
ponential character, and it is reasonable to ap-
proximate the function by a Gaussian which is en-
tirely determined by the first two moments (43)
and (44). In terms of these moments, M„(k, ~)
reads

g 1/2 Q)3 (cP - Otalzt xtM„(k,~)= — ~, ~ ~„, sxp —,~ ).2t j.t 2t j t

(45)

In order to determine q through formula (36), we

need only the small-p limit of the moments yt
and ~~, . Expanding (40) and (41) .o order q', we

obtain

The three-body integrals (49) are more difficult
to calculate. Fortunately, H, can be related toI, through the Born-Green- Yvon hierarchy linking
g to g3. The relation is

H, = —',(1/r —I,), (51)

and is only valid in the case of the OCP. Unfor-
tunately, no such relation exists for H„which we
have estimated using the superposition approxi-
mation (SA) for g, . This was also done for H„so
that comparison with the result from (51) gave us
an estimate of the error due to the SA. We found
that H, and H, are both slowly varying functions of
I', and that the error on H, due to the SA does not
exceed 4'. In the perfect-lattice limit (I'-~),
the cubic symmetry implies that H, and H, are
equal, and

H,
"=H", =--',I",=-0.525 644.

The results for the various integrals are shown,
as a function. of I', in Table II. In Table III we
give the results for q*. The values listed have
been calculated with the "exact" H„obtained from
(51). Unfortunately, at high I', the values of q*
are very sensitive to small variations in H, . For
this reason we have also tabulated the values ob-
tained by taking into account the estimated un-
certainty on H, . Finally, we indicate the value of
g* obtained when all the integrals are replaced by
the corresponding lattice sums (I' ~). The most
striking feature which can be seen from Table III
is the fact that g* exhibits a minimum as a func-
tion of 1"; q* decreases rapidly for «10, goes
through a minimum around I' =20, and then in-
creases slowly with I'. This general feature is
independent of the uncertainty affecting the value
of H, . The situation, including the error bars,
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TABLE II. Various thermodynamic quantities and integrals appearing in expressions {50)
and {63)of g* and b*, as a function of I'. The integrals && and I2 are defined by {48). H& is
calculated, using the exact relation {51). The two last columns list the integrals H& and H3,
defined by {49), and are calculated with the help of the superposition approximation. The last
line lists the bcc lattice sums corresponding to the various integrals.

P-Bp
'

Bp
Hj

Super.
H3

Super.

1 0.726
0.384

4 -0.339
10 -2.611
20 -6.493
40 -14.340
70 -26.175

100 -38.037
120 -45.954
140 -53.875
160 -61.800

0.919
1.743

-1.986
-0.2624
-0.107 75
-0.050 026
-0.028 051
-0.019 620
-0.016385
-0.014 086
-0.012 367

-0.3879
-0.4393
-0.4877
-0.5331
-0.555 57
-0.570 53
-0.579 11
-0.583 20
-0.584 91
-0.586 17
-0.587 04

1.814
1.3496
1.108
0.9491
0.8866
0.8494
0.8291
0.8200
0.8160
0.8132
0.8110

-0.543
-0.5664
-0.5720
-0.5661
-0.5577
-0.5496
-0.5432
-0.5400
-0.5384
-0.5374
-0.5365

-0.529
-0.550
-0.554
-0.547
-0.543
-0.543
-0.548
-0.550
-0.554
-0.556
-0.560

-0.315
-0.363
-0.407
-0.458
-0.491
-0.515
-0.526
-0.530
-0.528
-0.525
-0.528

-0.398 191I' -1.674 24/& -0.597 286 0.788 466 6 -0.525 644 4

is pictured in Fig. 1. The MD computations of
C, (q, t) at finite values of q yielded the estimate
q* =0.25 near the fluid-solid transition. ' Bearing
in mind the large uncertainties of both calculations
at high I", this is in semiquantitative agreement
with the present value, g*=0.14. Note that if the
perfect-lattice values of the various integrals are
used, we find q*=0.22, which is remarkably close
to the MD estimate at I' =155, although the agree-
ment may just be accidental.

V. LONGITUDINAL CURRENT CORRELATION

FUNCTION AND BULK VISCOSITY

tion. We start from the longitudinal current cor-
relation function

C, (k, t) = (1/N)([k j-„(t)][k.j -„(0)]). (52)

Its Laplace transform is directly related to the
Laplace transform (21) of the density-density
correla, tion function by

(53)

Introducing the associated memory function
~, (k, &), it follows from (24) that, in the hydro-
dynamic limit,

We now present a calculation of the bulk vis-
cosity, which is in all points similar to the treat-
ment of the shear viscosity in the previous sec-

M(k ') ~ bk'—g, (d p —g, (d + gg

(54)

TABLE III. Reduced viscosities &* and g* as a function of I', calculated with the help of the superposition approxima-
tion for the three-body integral H3. Columns 2, 3, 5, and 6 list the upper and lower limits of b* and g*, if the estimated
uncertainty on the values of H3 is taken into account.

1
2
4

10
20
40
70

100
120
140
160

H3 super.

0.462
0.260
0.161
0.1105
0.104
0.117
0.142
0.159
0.170
0.179
0.188

H3 super. -0.02

0.463
0.261
0.163
0.113
0.109
0.129
0.172
0.211
0.2405
0.274
0.315

0.335

He super. +0.02

0.460
0.258
0.159
0.108
0.100
0.108
0.124
0.133
0.138
0.143
0.147

H3 super.

0.349
0.194
0.120
0.1827
0.0781
0.0881
0.1075
0.121
0.129
0.136
0.1425

H3 super. -0.02

0.350
0.195
0.1215
0.0847
0.0821
0.0972
0.131
0.162
0.1855
0.213
0.246

0.221

H3 super. +0.02

0.348
0.193
0.119
0.0+8
0.0550
0.0812
0.0934
0.1005
0.104
0.108
0.1105
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3-

.2-

residue of M, (k, &) at ~=0, which is hence equalto
&(~~+&k ) in this limit. This residue mustbe included
in the Kramers-Kronig relation between M, (k, &) and
its realpart, M„(k,~), inthe limit of small k. Note
that the contribution of the last term in M,(k, &) is small
at large I', since y is then close to 1.'

From (54) we immediately derive the Kubo rela-
tion for &.

5 . . M(k ~)
2 =lim limP' » (55)

1 24 10 20 40
I

70 100 120 140 160 I"

Except for the simple pole at & =0, M, (k, &) has
the same properties as M, (k, ~). Similarly,
M„(k,(u} is a positive, even function of ~ which
has all its moments, and hence is exponential in
character. Consequently, it seems again rea-
sonable to choose a simple Gaussian form satis-
fying the two lowest-moment sum rules:

FIG. 1. Reduced shear viscosity q~ as a function of i.
The error bars reflect the uncertainties affecting the
values of the three-body integral H3 calculated with the
superposition approximation.

M, (k, ~) has simple poles at ~ =0 and & =-iak'.
In the limit k-0, the second pole contributes to the

1
d ~' M„(k, ~'}= uP„—(~~2 ~Kk'),

+"
d&.' &"M (k ~') = & &u4

with

(56)

(57)

~,', =&u~~3uP+2~~G, &, (q),

~, = ~', +15~', +—", ~',~', + 36~~,'G,I, (q}+4&',G~, (q}+4~',[G~, (q)]'

g(&) 2 sink& 3 coskr 3 sinks

(58)

+
4 2, „[g,(r, r') —g(r)g(r')j (Sro r,'zp,' —3zo —3z02+1}(e '"" ' '+1 —e "' e'" ). (59)

The Gaussian memory function satisfying (56) and
(57) is

ll ~& I
2 ((g4 ~4 )1/2

2l ll

~;, —~;(1+ydq') &'

&+—,n
PlP &p&

1 v 'I' (15/I'+2I, —15yd)+'
15 2 (7/&+ —'; I,+ ", H, + —",H,)'"—

(63)

where d is related to the inverse compressibility
through Eq. (3). Expansion of the moments (58)
and (59) to order q' yields

~;, = ~',[1+—,', q'(15/&+2I, )j, (61)

~4, = ~~[1++q'(37/&+ —", I,+4I, + ", H, + —,H, )]. —
(62)

From (55}, using (60), (61), and (62) we obtain the
final expression for &*:

Equation (63), similar to (50), expresses k~ in
terms of the same integrals I„and H„, which are
tabulated in Table II, together with the values of
d and y —1 taken from Ref. 5. The values obtained
for b* are given in Table III. Again, &* is very
sensitive to the uncertainties affecting H, at large
I", due to the SA. Nevertheless, ~*, like g*,
clearly exhibits a minimum around I" =20.

The most interesting result is the ratio &*/q*.
We find that, contrarily to &* and p* taken sepa-
rately, this ratio is rather insensitive to the un-
certainty on II,. The ratio is, moreover, practic-
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ally independent of I". Within the small uncertain-
ties due to H„we find that b*/ri*= —', for all &.
Since q and f are non-negative, the ratio can only
be -—,. Hence our calculations indicate that the
bulk viscosity f is negligible compared to the shear
viscosity q for all ~.

VI. CONCLUSION

Starting from the usual conservation equations
of macroscopic hydrodynamics and from the ther-
modynamic theory of fluctuations, we have obtained
explicit expressions for the static and dynamical
structure factors of the OCP in a uniform back-
ground, valid in the long-wavelength limit. The
most important result is the disappearance of the
thermal Bayleigh peak in that limit, in qualitative
agreement with the MD results for small but finite

The usual Brillouin doublet of ordinary fluids
is replaced by a plasmon doublet; the correspond-
ing dispersion d~/dq becomes negative for I'-3,
due to the negative compressibility. We have
shown that the fluctuations of the local electric
field renders the OCP stable against density fluc-
tuations in the range where the compressibility
becomes negative.

Using a Gaussian approximation for the real part
of the Laplace transform of the memory functions
associated with the transverse and longitudinal
current correlation functions, we have obtained
explicit expressions for the reduced shear and
bulk viscosity coefficients in terms of integrals
involving the equilibrium pair and triplet distribu-
tion functions. The resulting q* and ~*=/*+ —,q*
plotted versus I' exhibit a minimum around I' =20.
b*/q* equals —, within the uncertainties of this
calculation (about 2 /o for the ratio) for 1 (&-160,
indicating that the bulk viscosity is negligible
compared to the shear viscosity in the OCP. Un-
fortunately, this theory does not yield the thermal
conductivity, since no relation similar to (36)
or (55) can be written down because of the k'

weighting of the Rayleigh peak in the OCP.
In absolute units we have q = q*mz~&'. The

conversion factor is independent of temperature,
so that the behavior of g* as a function of I" re-

fleets the behavior of q vs inverse temperature at
constant density. As & is lowered from the melting
temperature, 'g first decreases to about half its
value at melting, and then rises sharply. The
low-temperature behavior is not unlike that ob-
served in simp'e fluids by Gosling et al." On the
other hand, if q is plotted vs density at constant
temperature, it is found to increase monotonically.
It is interesting to note here that for a "soft-
sphere" system of particles interacting through
an & '2 potential which has scaling properties simi-
lar to that of the OCP, the recent MD simulations
of Ashurst and Hoover" show no indication of a
minimum when the reduced shear viscosity is
plotted vs the dimensionless parameter pr '
which is their equivalent of our I'.

In order to give some feeling for the orders of
magnitude, we calculate q under typical white-
dwarf conditions. We choose a purely He4 com-
position, p = 10' g/cm', Z = 10' K; then & = 5.6,

'

r, =r/a, =640 (a, is the ionic Bohr radius), the
ratio of the thermal de Broglie wavelength ~ over
the ion-sphere radius & is &/x =0.24, so that
quantum corrections are weak. ' (dp = 5 &10' Hz;
the viscosity unit mp(d~ ~' = 7.3 &10' P; q = 7.3
&&10' P, but the kinematic viscosity q/mp =10 '
cm'sec ', which is of the order of magnitude of
simple liquids (e.g. , Ar).

Our calculation of the transport coefficients
can only be expected to be valid as long as the
OCP behaves as a dense fluid, so that frequent
collisions maintain local thermodynamic equilib-
rium. For «1, the collision frequency becomes
of the order of magnitude, or smaller than, the
plasma frequency, and the generalized hydro-
dynamics approach cannot be expected to yield
reliable results, In that range of I', the trans-
port coefficients must be calculated in the frame-
work of kinetic theory.
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