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The molecular theory of the smectic B and H phases is extended to the smectic E and VI phases by including
the phenyl-phenyl interaction in addition to the dipole-dipole potential used previously. This phenyl-phenyl
interaction contains quadrupole-quradrupole, dispersive, and exchange terms. The possibility of both dipolar
and "herringbone" order is considered in the self-consistent-field approximation. Four phases are found, all
with a two-dimensional hexagonal lattice assumed: (1) a disordered phase (smectic B); (2) an oriented phase
in which dipoles align (smectic H); (3) a herringbone phase with phenyl groups ordered (smectic E); (4) and
a herringbone phase with both phenyl groups and dipoles ordered (smectic VI). In the phases with dipolar
order the director is tilted with respect to the normal to the plane. The transitions vary in order. The
temperature dependence of the order parameters, entropy, and specific heat are computed.

I. INTRODUCTION

It has been known for almost a century that cer-
tain organic molecules have additional phases be-
tween the usual isotropic-liquid phase and the
crystalline phase. The phases are usually called
the liquid-crystal phases.

The least ordered of the liquid-crystal phases
is the nematic, in which the long axes line up
parallel to a preferred axis in space, the director.
Maier and Saupe' introduced a molecular model for
the interactions between anisotropic molecules,
and solved this model in the mean- or self-con-
sistent-field appr oximation.

In the smectic A phase, the long molecular axes
lies parallel to an axis in space and the molecular
centers lie .on equidistant planes perpendicular
to this axis (Fig. 1). Given the nature of this
order, Kobayashi' and McMillan' have been able
to formulate microscopic theories in terms of
intermolecular potentials. In addition, there are
also Landau theories of the smectic A phase. ''

In the smectic C phase, the director is tilted
with respect to the smectic plane normal.
DeGennes' has proposed a Landau theory using
the tilt angle as the order parameter. McMillan'
has formulated a microscopic theory using the
molecular dipole-dipole interaction and permitting
orientational order of the dipoles. The oriented
phase is tilted and has the physical properties of
the smectic C phase. The parameters of the mod-
el can be approximately related to those of the
molecular structure. This orientational order has
been confirmed experimentally by recent NMB
measur em ents. '

The smectic B and H phases are characterized
by a two-dimensional hexagonal lattice within each
smectic plane. In the H phase the director is
tilted, while in the J3 phase it isn' t.' In a recent
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FIG. l. (a) Molecular order in the smectic A phase.
Molecules are free to rotate around the long axis. (b)
Molecular order in the smectic C phase with dipoles
aligned.

paper McMillan and the author'o proposed a model
of the & and H phases based on a soft-core repul-
sive potential and a dipole-dipole intermolecular
potential, allowing both translational or orienta-
tional order. As in the theory of the C phase, the
dipole term can be related to molecular structure.

Recent x-ray studies" have shown that a phase,
the smectic VI phase, is characterized by a two-
dimensional hexagonal lattice and tilting of the
long molecular axis with respect to the plane nor-
mal. Unlike the H phase, however, this substance
exhibits herringbone symmetry (see Fig. 2). This
herringbone pattern was previously proposed for
the & phase. " There is also evidence, " that the
smectic E phase has a two-dimensional hexagonal
lattice and herringbone pattern, but untilted di-
rector.
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estimate for the coupling constants is given. In
Sec. III the theoretical model is presented and
solved within the mean- or self-consistent-field
approximation. The self-consistency equations
for the order parameters are derived and the en-
ergy, entropy, and free energy found in terms of
the order parameters. Section IV presents the
method of numerical solution for the order param-
eters and the results of this calculation. In Sec. V
we discuss the shortcomings of the model.

II. INTERMOLECULAR FORCES

(c)

FIG. 2. (a) Hexagonal aligned structure of the smectic
H phase. In the smectic B pha, se the dipoles a,re un-
aligned. (b) Ordered structure of the smectic E phase.
The line represents the "axis of symmetry" perpendicu-
lar to the plane of the molecular phenyl rings. The di-
poles are randomly oriented. The bvo types of sites are
labeled. (c) Molecular order in the smectic VI phase.
Both dipoles and phenyl groups are ordered. (d) "Anti-
ferroelectric" phase which may result when dipoles are
separated by less than a critical distance.

A typical liquid crystal molecule, TBBA, is
shown in Fig. 3(a). This material has smectic A,
C, H, and VI phases. In this paper we will use
the TBBA molecule as a basis for the discussion
of intermolecular forces in organic crystals.
Throughout this section terms independent of angle
of rotation in a smectic plane will be dropped.
Phenyl-phenyl interactions between a molecule
and its six equidistant nearest neighbors in a layer
will be considered. Dipole-dipole interactions will
be kept to third-nearest neighbors. Interplanar
interactions are ignored throughout this paper.
The validity of this is discussed by deGennes and
Sarma. '4' "

A. Multipole-multipole interactions

McMillan' has discussed the permanent dipole
moments p. associated with the nitrogen in each

In this paper a microscopic theory is presented
which includes the smectic E and VI phases, in
addition to the & and H phases. The smectic B
order is assumed well established; i.e., the hexa-
gonal lattice is well defined, the director is nor-
mal to the plane, and the molecular centers sit
on the plane. We assume an intermolecular poten-
tial due to a dipole-dipole interaction, and a
phenyl-phenyl interaction. Interplanar interactions
are ignored. These have been considered by other
investigator s." "

The model predicts three ordered phases in ad-
dition to one disordered phase. The transitions
vary in order. Many of the physical and optical
characteristics agree with experiment. "' "

The plan of this paper is as follows. In Sec. II
we discuss the relevant intermolecular forces,
i.e. , the multipole-multipole, Van der %aals, and
exchange interaction. The relation to molecular
structure is discussed, and an order-of-magnitude

TBBA

FIG. 3. (a) The compound terephthal-bisbutyl aniline
(TBBA) exhibits smectic A, C, H, and VI phases. The
all-trans structure is shown. The actual configuration
is not known. (b) Molecular model: a. cylindrical shape
of length L and diameter D, the two dipoles p are a dis-
tance d& apart, and the phenyl groups are separated by a
distance d&.
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Schiff's-base linkage in TBBA. There are also
other strong multipoles in the molecule. Each
phenyl group contributes a large quadrupole mo-
ment 9. The magnitude of this quadrupole is not
known. It could be estimated by the value of the
benzene quadrupole. Unfortunately, the value of
the benzene quadrupole is subject to controversy.
Probably the best value is that of Hae and Mason, "
9 = —8.8 & 10 "esu.

If the aliphatic chains at each end of the molecule
were ordered, these would also contribute a
permanent quadrupole moment. There is evi-
dence, " though, that these chains rotate around
the single bonds, and so make no contribution.

The multipole-multipole interaction as usually
shown in the literature"'" is given by

U'nlultipOle ~"D-D UD g UD g
&&2 1&2 2, 1

where

~...= p, p, A '[2 cos8, cos8, +sin8, sin8, ],
U. ..= ~ p. ,e, A '[cos8, (3 cos'8, —l)

+ sin8, (2 cos8, sin8, )J

~P,".= —:e,+,& ' [l —5 cos'8, —5 cos'8,

+ 17 cos'6), cos'8, + 2 sin'8, sin'8,

+losin8, sin8, cos8, cos8, ] .

The angles 8, and 8, are defined in Fig. 4(a). For
computation it is more convenient to define all
anglesfroma fixed direction in the plane, as shown
in Fig. 4(b). The benzene-ring angles give the
position of the axis of the ring, as is usual in the
literature cited.

The distance between neighbors D is less than
the distance between dipoles an the same molecule
d, and between quadrupoles d„so thai interactions
between multipoles of the same order on different
levels may be neglected. The dipole-quadrupole
interaction can be shown to vanish when the sum
over neighbors is done.

8. Van der Waals interactions

The Van der %aals or dispersive interaction
has already been used by Maier and Saupe' to ex-
plain the alignment of the long axes of organic
molecules in the nematic phase. The dispersive
force will also contribute io rotational alignment
of molecules within a smectic plane.

Again, the aliphatic tails probably make little
or no contribution to the interaction because of
their random rotational motion. The phenyl or
benzene groups make the major contribution to
angular order in a smectic plane.

The dispersive interaction between two cylin-
drically symmetric benzene rings has been dis-
cussed by Banerjee and Salem. " The interaction

FIG. 4. (a) Coordinate system usually used in litera-
ture. For phenyl interactions the arrow lies along the
axis of "cylindrical" symmetry of the ring. {b) More
convenient coordinate system fixed to hexagonal lattice
vectors a and b.

can be written as

U ""=-A 'C(8 8 )

where

C(8„8,) =(& —2&+ C) [4 cos'8, cos'8, +sin'8, sin'8,

—4»n 8, cos 8, sine, cos8, ]

+3(&—C) (cos'8, +cos'8, ) +(2B+4C) . (3)

The angles in the smectic plane 6), and 8, are de-
fined in Fig. 4(a). From Banerjee and Salem we
calculate A =2.67&10', &=4.36&10', and C =7.33
x10' a.u.

C. Exchange interaction

The interaction between two molecules due to
exchange of electrons from one molecule to an-
other is both the strongest, and the most difficult
to handle, of all the interactions discussed. An
exact treatment is extremely difficult even for
simple molecul. es.

A phenomenological potential of the form U;&

=A;, exp(-r;, /'p;, )has be. en p. roposed for the ex-
change interaction by williams"''~ and
Kitajgorodsky. "'" In this potential the atom i
belongs to molecule 1 and atom j to molecule 2,
x;,. being approximately the interatomic distance.
The total intermolecular potential is due to the
sum over all atoms in each molecule. The con-
stants A. ;z and p;& depend only on the nature of the
two atoms. For example, we have A~~, &c„,A„„.
Williams" has found values of the A's and p's by
a statistical fit of 77 equations for 9 aromatic
hydrocarbons. Unfortunately, quadrupole and
other multipole terms are combined with the ex-
change term; this makes this treatment ques-
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tionable.
For TBBA we should get sizable contributions

to exchange interaction energy, at fixed distance
between the two molecules, from the three ben-
zene groups, and from the two Schiff's-base link-
ages. The three benzenes have a total of 12 inter-
acting hydrogens and 12 interacting carbons from
each TBBA molecule, while we only get two hydro-
gens and two nitrogens contributing from the
Schiff's-base linkages. All interactions being
equa, l, the Schiff's-base linkages would only con-
tribute —,'4 as much to the interaction energy as the
rings. Actually the contribution may be less. The
Schiff's-base contribution will be ignored.

It is easy to approximate the actual interaction
by dropping all C-H terms. In general, this isn' t
valid, but Williams has shown that the energy of
rotation around a, para-axis across the benzene
ring is mainly determined by the H-H terms, only
20% of the energy coming from C-H terms. After
dropping C-H terms and doing the sums of all C-C
and H-H over two benzene rings constrained to
rotate in a plane, with axis of rotation for each
ring through opposite carbon atoms, the potential
can be approximated by

U,'"'2 = C, cos'0, cos'8, + C, (cos'8, +cos'9, )

+ C3 sin ~1 sin

The number s C„C2, and C3 can be found by flttlng the
numerical data, . The term C, sin' 0, sin' L9» with
%=13, is a hard-core repulsive term, C, being
-10' times as large as the other coefficients.
This hard-disk term is only important when the
two benzene rings are approximately coplanar.
At other angles, C, and C, determine the energy.
Numerically, C, -1x10 "„C,-- lx10 ", a,nd

C, -2 x 10 " erg at an intermolecular distance of
5.2 A. The fit can probably be improved by adding
other terms to the potential.

In this section the various contrlbutlons to the
intermolecular potential in organic hydrocarbons
have been briefly discussed. The importance, and
even the form of each of the three contributions,
is still a matter of controversy and research.
They ha.ve been mentioned here for two rea. sons:
(i) the coupling constants of each of these terms
in determining the angular orientation of liquid-
crystal molecules within a, smectic plane are ap-
proximately equal. Estimates of the important
coupling constants are all on the order of 10 "
erg; (ii) to motivate the form for our average or
mean field operating on each molecule. These
reasons will become clearer in the next section.

III. THEORETKAL MODEL

We consider one plane of a perfectly ordered
smectic & liquid crystal, call it the xy plane. In

this plane the rodlike molecules have their long
axes aligned, and the molecular centers are ar-
ranged in a two-dimensional hexagonal lattice in
the xy plane. The rotational phase transitions of
the two-dimensional hexagonal smectic phases
will be explored.

Consider the following model of a liquid-crystal-
forming molecule, which is a modification of the
model proposed by McMillan' in his theory of the
smectic C phase, and used by Meyer and
McMillan" in a. theory of the smectic & and H
phases [see Fig. 2(b)]. The molecule is assumed
to be a long rod with oppositely oriented dipoles
tilted at an angle on opposite sides of the molecu-
la,r center. Along the axis are a number of phenyl
or benzene groups, which are assumed to be all
eoplanar. The relative positions of these elements
are fixed; i.e. , all internal rotations are frozen
out. The validity of these assumptions will be
discussed in Sec. V.

The intermolecular potential is taken to be

U multipole-multipole + U'disp + U cxc
12 12 12 12

where the contributions of (5) are given by Eqs.
(I), (2), and (4), respectively. Only nearest-
neighbor interactions are treated in the phenyl-
phenyl term. The hard-disk term in Eq. (4) will
be ignored. This term is discussed in Sec. V.

We now wish to solve the model within the self-
consistent-field approximation. To do this we first
assume that each molecule moves in an average
potential V at its site. This is complicated in
this case by the fact that, although all sites are
equivalent in the smectic & and &phases (see Fig.
2), there are two different kinds of sites in the
smectic E and VI phases (see Fig. 2). Label these
sites type A and & as shown in the figure.

Qn all A sites, assume the molecule feels the
average potential

Vx(Q, ) =+ V,~(cos'g, ——,'-) + V, n cosp, sing,
—VP cosg, —V& sing, . (6)

Make the further assumption that V& and V& are
related by

The order parameters a and y show the degree of
"herringbone" order, and are nonzero in the
smectic E and VI phases [see Figs. 2(b) and 2(c),
respectively]. If we just consider the upper di-
poles on a smectic layer, the order parameter
P gives the degree of "ferroelectric" order in the
a direction [see Fig. 2(a)] . Because of the lower
dipoles, there is no net moment. The order pa-
rameter & reflects the degree of "antiferroelectrie"
order in the b direction [see Figs. 2(c) and 2(d)J.
The order parameter P is nonzero in the smectie
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H and VI phases, and & is nonzero in the smectic
VI phase only.

With the one-particle potentials given by Eqs.
(6) and (7), the (unnormalized) one-particle dis-
tribution functions of the two types of sites are

give

and

V, =-7.05 p,'D ' (12b ')

and

f„(P,) = exp [- V„(P,)/k TJ (Ba)

fs(Q, ) =exp[ —Vs(Q, )/ATJ (Bb)

The average value of a function G((t)„p„p) at a,

site of type I can be defined by

Gy(lt, ) =& 'Q d4. G(y„4., $.)f.((t.), (B)

where the sum is over neighbors of type n around

I, and where

de, f.(e,) = de.f.(e,),

and the angles Q„Q„and $ are defined in Fig.
4(b). Also define

(G(pn)) =Z exp(- V~($2)/kTJ G($2) dP, .

Using the two-body potentials (1), (2), and (4),
expressed in terms of $„(t)„and (, the average
potential which one molecule feels is calculated
from the two-body potential by averaging over all
the neighbors:

y.(e, ) eg f ee=n, , (e„e'( ).r (e.)., . . .
(10)

The generalization of Vs((|),) is obvious. If we cal-
culate the nearest-neighbor dipole-dipole contribu-
tion to V~((t), ) from Eq. (10), we find

V„(P,) = —BED' cosP, (cos, (t',)

—10Ll,'D ' sing, (sing, )

In this equation there is a factor of 2 due to two

dipoles per molecule.
The dipole qua-drupole term in Eq. (1) vanishes

when we do the sum over neighbors.
For self-consistency of Eqs. (11) and (6), we

must set

The formulas for the order parameters are un-

changed.
The relatively long range of the dipole-dipole

interaction makes it necessary to include these
second- and third-nearest-neighbor terms to get
a reasonable phase diagram. In fact, if V3 & —V„
as predicted by Eqs. (12a) and (12b), the H phase
will be unstable and the stable phase will be an
"antiferroelectric" phase, as shown in Fig. 2(d).
This should happen when d/D is smaLLer than a
critical value (d/D)„, but for a complete discus-
sion of this, the entire two-dimensional lattice
sum must be performed. This "antiferroelectric"
phase is untilted and biaxial. The necessary lat-
tice sums are not performed here.

The dispersive, quadrupole-quadrupole, and

exchange interactions contribute terms of the
form (cos'6, + cos'6, ), cos' 8, cos'O„and
cos 0, cos 8, sin0, sin 6, . The dipole-quadrupole
term vanishes completely when the sum in Eq. (9)
is performed. The other terms contribute two
terms which are nonvanishing. When expressed
in $„4)„and g, these are of the form

PPheny(-Phenyl A cos2(

+ A, cos (4$) cos(2(I)l + 2 p, ) . (5a)

This could be viewed as a phenomenological
phenyl-phenyl interaction. When the lattice is not
truly a two-dimensional hexagonal array, an
additional term

U, ",'""""= A, cos(2 $)(cos2 $, + cos2(()),) (5b)

is nonvanishing due to lack of symmetry, and
must be added to the phenyl-phenyl potential. This
resembles an "external field" fixed to the lattice.
The self-consistent treatment of such an external
field is given by McMillan and will not be dis-
cussed here.

Ne will evaluate the contribution to V„due to
U "'"" "'" ' for nearest neighbors on}y, due to the
short range of the interaction involved:

V =6p'D 3,

V~ = —10@.'D ',
P =(cos(t),),
6 = —(sing, &

(12a)

(12b)

(12c)

(12d)

I'„(P,) = 6A, (cos'P, ——,') (cos2&,)
—(2A, +BA,)(cos4)l sing, )(sin2p, ) .

For self-consistency of the equations above Eq.
(6), it is necessary to set

If we now include the contribution of the second-
and third-nearest neighbors to V, and V„we find
that Eqs. (12a) and (12b) are modified slightly to

and

o. = -(sin2y, )

y = (cos2y. ) .

(13a)
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The coupling constants are given by Vp:6&y and

Vy 2Ay + 8A, . Spe cifical ly, for the quadrupole-
quadrupole term

use y«p. Ignoring all y terms in the p [Eq.
(12c)], we find

p = (2kT/V, ) [2(V,/kT) —1p" (19)

(14b) 'V (20)

V, '~ =-'—,'nR '(A —2B+ C],

V,"~ = —~~nR 6{A —2B+ C],

(15a,)

(15b)

where A, B, and C are defined in Eq. (3). Esti-
mates of A. , B, and C based on the work of
Banerjee and Salem" for benzene give Vp~"P = -8.4
&10 ' erg and V," =-3.4~10 '~ erg. Note that
these coupling constants are both negative.

Finally, the exchange interaction in the form
of Eq. (4) gives

Vexc Vexc
0 1 2 (16)

where A is determined by fitting Eq. (4) to the re-
sults of a sum of interatomic potentials. An esti-

gives Vexc Vexc 4 y 10 -13
erg

The smectic B-E and smeetic B-H transitions
are both second order, and the transition tem-
peratures may be easily calculated on the basis
of theself-consistency equations(12c), (12d), and
(13).

The smectic B-E transition is easiest to calcu-
,late because there is only one nonzero order pa-
rameter a in the smectic E phase. If we compute
(2cosg sing) we find, keeping only terms of sec-
ond order in both numerator and denominator,

n = [4(V,/kT) —1]'"(4kT/V, ),
so that

kT,'-' = —,'V, . (16)

Note that no B-E transition can take place for a
purely dispersive interaction.

The smectic B-H transition ean be calculated in
the same way, except that in the smeetic H phase
the parameters P and y are both nonzero, while
@=5=0. We can simplify the calculations if we

where 9 is the mean quadrupole moment of the
phenyl group, treated as if the ring were cylin-
drically symmetric, and n is the number of
ordered phenyl groups per molecule. If a phenyl
group is free to rotate within the molecule, it
doesn't contribute to n.

If the approximation of cylindrical symmetry
isn't valid, 8 may be replaced by (8„„—8„).
This also extends the validity to cases where more
complex ring structures occur in the molecule.
For 8=9x10 "esu, the value of Bb,„„„,calcu-
lated by Rae and Mason, we find V~-~ = 8.4
&10 ' erg and V, =6.8x10 "erg for TBBA.

The Van der %aals contributions are

Similarly, the y equation gives, to the lowest
orders in both P and y,

y = -~~(Vo/kT) + 8P'(V, /kT)'. (21)

Clearly, y-P'-(Ts "-T)".
In order to determine which phase is stable at '

a given temperature, we must calculate the free
energy of the system. The entropy per molecule
of a type A site is given by

TB„=kT—(Inc "&~~r) —kTlnZ

=.-2N '( V~(Q)) —kT lnZ (22)

The internal energy is just the thermodynamic
average of the two-particle interaction

This gives the internal energy per molecule

& 'Ug = 4y'Vo —~o"V, —aP'V2+ z~'V~ (23)

The free energy is given by I'„=U~ —TS„. The
self-consistency equations (12c), (12d), and (13)
can also be found by minimizing the free energy
with respect to the order parameter.

Finally, the specific heat at constant volume is
given by

(24)

Now we have everything we need to calculate the
thermodyna. mic behavior of the model.

McMillan' has derived an expression for the
tilt angle as a function of temperature for the
smectic C phase. A simila. r expression ean be
derived for the smectic II and VI phases. If third-
nearest-neighbor terms are kept, from Eq. (9)
we can evaluate the average x component of the
electric field on an A site and find E„=—3.96gPD '.
Then the torque to tilt the molecule in the x di-
rection is 2.64P8kZ~ ". There will be a restoring
torque proportional to the tilt angle. Equating
torques, we find the tilt angle to be
2.64PHkT, K ', where 8 is the deviation of the
dipole moment from perpendicular to the molecular
axis, and K is an elastic constant characteristic
of the material.

The coupling to dipoles on different levels has
been ignored throughout this section. McMil. lan'
has shown how the effects of dipoles on other
levels can be included.
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By considering the angle of rotation of the
molecules in a smectic plane, it can be shown
that the smectie VI phase of the model is optically
biaxial, while the E phase is optically uniaxial.
However, distortions of the two-dimensional hex-
agonal lattice can make the E phase of the model
weakly biaxial.

In summary, in this section we have treated the
intermolecular interaction U» in the mean-field
approximation, and have found the four order
parameters of the model. It has been shown that
the transition temperatures of the B-E and B-H
transitions are easily given in terms of the cou-
pling constants of the effective one-body poten-
tials. The energy, free energy, entropy, and
specific heat have been found in terms of the order
pa, ra.meters.

IV. NUMERICAL RESULTS

In this section we will solve the self-consistent
equations [(12c), (12d), and (13)] for the order
parameters. As we saw in Sec. III, it is an easy
step from there to find the entropy, free energy,
energy, and specific heat.

In order to solve the four coupled self-consistent
equations, we only need to be able to perform the
integrations over Q. These were done numerically
using Simpson's rule and keeping 100 points in the
interval fx'om —w to m'.

Since the smectic VI phase has four order pa-
rameters, this is the most difficult to solve, and

wi)l be described here. All other phases can be
solved by simplifieations of this process. The
procedure is essentially the Newton method in
four dimensions. First, choose values of all the

coupling constants and a fixed value of the reduced
temperature t=T/T, s (in this section we will
always use the reduced temperature). Then choose
trial values of er/t, P /f, yr/f, and 5 /t. The
self-consistency equation can now be cast in the
form

—,—,—,—,t =g, —,—,—,— — —t=0,

(25a)

(25b)

and similarly for y and 5.
For the trial values of the arguments, Eq. (25)

will not be sa.tisfied. Each trial value will be
related to the true root of the equations by

(n/t) = n/f —&, ,

(P/f)' = P« (26b)

and so on. We have four linear equations in four
unknowns

(27)

where i= 1, . . . , 4.
This gives us a set of four equations in 6,

e„and e, ." These can be solved, and a new set
of trial solutionsg~und from Eqs. (26). This
process can be iterated until the desired self-
consistency is achieved. Commonly, only three
iterations are necessary to get order parameters
good to seven to ten decimal places. The deriv-
atives in Eq. (27) are easily evaluated numerically.

Given the order parameters, the energy, entro-
py, and free energy are ea.sily evaluated using the
results of the previous section.

The process ean be repeated at a different tem-
perature and the specific heat evaluated by Eq.
(24). Near the transition temperature we must
compare the free energy to establish which phase
is stable.

Define the garameter R = V,/V, . Since our
intermolecular potential is a mixture of multi-
pole-multipole, Van der Waals, and exchange
terms, we don't know the value of R. In this sec-
tion we choose A =0.12, the value for a pure
quadrupole-quadrupole interaction, for conven-
ience. The results are not significantly changed
for other values of A. The values of U, and U,
are those found by including out to third-nearest-
neighbor terms in the dipole-dipole interaction.

The transition temperatures as a, function of
V,/kT "are shown in the pha. se diagram in Fig.
5. The smectie B-H and B-E transitions are
always second order, while the B-VI and E-VI
transitions are always of first order. The smec-
tic-II-smectic-VI transition may be of either
order, and the theory predicts a tricritical point.
To illustrate these behaviors, we plot in Figs.
6-9 the order parameters, entropy, and specific
heat vs t for A=0. 12. In each case, the values
of V,/kT "are chosen to represent typical phase
transitions corresponding to different orientational
order of the two-dimensional hexagonal lattice.
In Table I the order parameters of the phases are
summarized.

In Sec. V we will give a discussion of the proper-
ties of the model and discuss the approximations
and problems inherent in the model.
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which neglects short-range order and the effect
of fluctuations of the order parameters. (ii) We
have assumed a model of rigid molecules which
means, in effect, that we have assumed that the
internal motions of the molecules are not affected
by phase transitions. (iii) The hard-core part of
the exchange interaction has been ignored insofar
as it affects the orientation of the molecules.

Assumption (ii) has been shown to be wrong by
experiment. We now know that the aliphatic end
chains of the molecule show decreasing order as
the temperature is raised, "'" The ordering of
the end chains will increase the entropy changes
of the phase transitions. However, the end chains
will probably not appreciably effect orientational
ordering of the molecules.

A difficulty with the model of the Q phase' is
that there is no a Priori coupling between the tilt
direction, or direction of dipole alignment, and
the basis vectors of the two-dimensional hexagonal

I.I5 I.20 I.25 I.50
Reduced Temperature t

FIG. 9. Order parameters, entropy, and specific heat
vs reduced temperature, showing the second-order
smectic B-E and first-order E-VI transitions, for
y /ar ~=5 0

lattice. This difficulty remains in the present
treatment in that the slowly varying part of the
phenyl-phenyl interaction (we exclude the hard-
core part) also does not couple the dipole orienta-
tion or tilt direction to the hexagonal lattice. Ex-
perimentally, the molecule tilts toward the a vec-
tor of the lattice. " (deVries" has correctly point-
ed out that Fig. 1(e) of the paper of McMillan and
the author" mistakenly showed the dipoles oriented
along the b axis of the lattice. ) The hard cor-e
term in the exchange interaction [ignored through
assumption (iii)] makes it energetically unfavor-
able for the molecules to tilt along the b direc-
tion, since the "hard disk" of the rings has a di-
ameter of 6.7A, while the b translation vector has
a length of -5.2A for TBBA." Thus the hard-core
term gives preference to tilt in the a direction.
For a non-hexagonal lattice the term discussed
in Eq. (5b) will couple the tilt to the lattice. This
is similar to the "anisotropy field" of the anti-
ferromagnet discussed by Ziman. " In the smectic
VI phase, the coupling of the dipoles to the lattice
occurs naturally. It is more favorable energetical-
ly to have tilt along the a than the b axis, even for
a pure hexagonal lattice.

ln summary, we have presented a molecular
model and shown that, within the mean-field ap-
proximation, the model exhibits four phases:
smectic B, E, II, and VI phases. The smectic
FI phase is described by two order parameters,
p = (cosp) and y = (cos2$) . In the smectic E
phase we have one order parameter o. = (-sin2$) .
The smectic VI phase has n, P, y, and also
5=(-sing). The self-consistency equations for
these parameters were derived and solved to
find the temperature dependence of n, P, y, 5,
the entropy, and the specific heat. There is not
sufficient thermodynamic data presently for com-
parison to the theory.
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TABLE I. Summary of the description of the phases.

Smectic B

Smectic E

Smectic II

Smectic VI

P=y=5=0; e &0

P&0, y&0, +=0, 6=0

u&0, P&0, y&0, 6 &0

No order on the lattice

Phenyl groups ordered in herringbone pattern

Angular order of dipoles on lattice

Dipoles ordered and phenyl groups ordered
in herringbone pattern
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