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Amplifiers based on two-photon decay channels of inverted metastable species are examined
from a rate-equation and practical-feasibility viewpoint. Approximate analytical solutions,
within the rate-equation approximation, predict that resonant parametric generation coupled
with anti-Stokes-stimulated Raman scattering (ASRS) is a strong competitor to straight two-
photon emission. Expressions for initial growth rates indicate that large linear chromatic
dispersion, proper linear absorptions, and resonant enhancements can initially favor two-
photon emission, but that ASRS will ultimately dominate in most practical situations if inver-
sion depletion does not occur early. I'or an amplifier based on degenerate two-photon pro-
cesses, this situation has led to the proposal of running the system as an odd-harmonic gen-
erator, first extracting energy via two-photon emission followed by greater-than-100/p coIl-
version to the third, fifth, seventh, etc. , harmonics. This type of amplifier response has
important potential applications for laser-induced thermonuclear fusion as well as for the
production of coherent vacuum-uv soft-x-ray systems. An examination of practical con-
straints provides further analytical relationships between various physical properties of
prospective metastable species. Combining these results, several two-photon schemes are
pointed out. Based on current technology, atomic iodine, which is inverted to the I'&g2 state,
appears to be the best medium for experiments, but other materials, such as atomic oxygen,
show greater promise if absolute population inversions of high-density material are created
at high efficiency.

I. INTRODUCTION

Quantum amplifiers based on two-photon pro-
cesses were discussed very early in the develop-
ment of nonlinear optics, ' and the first discussions
of multiple-quantum transitions predate the laser
by about thirty years. '

Despite this early history, the development of
practical amplif iers utilizing multiple-quantum
transitions has been slow. Only the possibility
of laser-induced thermonuclear fusion, and its
requirement for very large lasers, has recently
increased the interest in amplifiers based on
multiple-quantum transitions. This interest stems
from several aspects of two-photon systems.
First, one can naively compare two-photon emis-
sion to single-photon emission by considering the
former as an emission process with an instanta-
neous intensity-dependent cross section, as op-
posed to the more usual intensity-independent cross
section of the latter process. Thus, for single-
photon emission, the saturation energy, the maxi-
mum stored energy, and the stimulated gain co-
efficient of the amplifier are related through the
cross section, while for two-photon emission the
corresponding quantities are decoupled. Further-
more, because of the intrinsic nonlinearity of the
amplification process, the output pulse can be
tailored in both time and space. Because amplifi-
cation usually takes place at a frequency different

from that of the input driving laser, many options
for target isolation are now available that did not
exist before. ' As an additional advantage, several
different methods can now be imagined for pro-
ducing frequency-modulated puises (puises whose
center frequency changes simultaneously with its
time-evolution; frequency tailoring), where the fre-
quency change of interest is toward the blue for
increasing time, occurs either continuously or
stepwise, or possibly assumes an even more com-
plicated form. Such a pulse, if it could sweep
from the infrared to the ultraviolet, should have
a very important impact on the successful demon-
stration of laser-induced thermonuclear fusion,
because many implosion symmetry problems can
be alleviated4 by initiating and preliminarily heating
the plasma with infrared light. However, a pro-
gressive increase in laser frequency during hydro-
dynamic shock and adiabatic compression of the
target-implosion cycle implies that laser energy
should be deposited closer and closer to the super-
solidly dense central core, minimizing the diffi-
culties of energy transport and of decoupling the
corona from the center of the pellet, '6 as well as
minimizing energy losses due to superthermal
electrons and ions. '

We will consider two somewhat different but re-
lated two-quantum decay channels: (a) two-photon
emission (TPE), and (b) anti-Stokes-stimulated
Haman scattering (ASHS). The two processes are
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schematically shown in Fig. 1. Both are of the
same order of nonlinearity, involving a polariza-
tion that is dependent on the cube of the optical
electric fields, within the perturbation-expansion
limit for nonlinear polarization. To date, both
spontaneous' and enhanced' two-photon emission
have been predicted and observed, whereas stimu-
lated two-photon emission has not been demon-
strated to our knowledge. Likewise, both spon-
taneous' and stimulated" anti-Stokes Raman scat-
tering have been reported.

We shall take two different approaches toward
examining two-photon amplifiers. First, we will
be dealing with the propagation and pulse evolu-
tion in such an amplifier during both the initial
growth phase and through the unsaturated-gain,
pulse-distortion phase of amplif ication. Of par-
ticular concern will be the competition between
TPE and ASRS and the effect of intermediate states
on this competition. This concern exists because
Manley-Howe energy-balance considerations dic-
tate that an amplifier operating purely in the ASRS
mode has an energy gain limited to &u„s/&ui, where-
as a similar amplifier based purely on TPE is
limited in gain only by the amount of energy stored.
Furthermore, once ASBS dominates, the input
laser field decays and thereby further diminishes
the probability for TPE. This decline in proba-
bility is to be contrasted with TPE that amplifies
both the input laser field and the complementary
field, leading to the possibility of later domination
of ASRS.

The second approach consists of formulating a
series of constraint equations in terms of phenom-
enological parameters and then combining these
constraints to arrive at bounds on the experimen-
tally adjustable parameters, written in terms of
purely material parameters. We thus find some
useful scaling conditions for evaluating prospective
amplification schemes and materials that could be
used as the active media. Several promising ma-
terials will be compared.

Note that systems which display large cross sec-
tions for two-quantum decay generally involve
metastable states'and thus do not decay readily
via the single-photon radiative channel. Therefore,
there is less tendency for these systems to amplify
light of low intensity at any frequency, and more
tendency for resistance to superfluorescent de-
pumping. Intrinsically, we should thus be able to
store more energy per unit volume and to use the
input-driving laser as a trigger for the release of
this energy. These systems are frequently limited
by nonradiative decay channels such as collisional
deactivation or energy-exchange processes, and
these channel rates should thus be minimized.
Furthermore, because light in the visible is

(a) (b)

FIG. 1. Two two-quantum decay channels considered
in this paper: (a) two-photon emission, and (b) anti-
Stokes-stimulated Raman scattering. Here ~& refers to
the input laser, cu2 refers to the complementary two-
photon emission, and ~3 is the anti-Stokes-Raman fre-
quency.

II. PULSE-EVOLUTION RATE EQUATIONS

We begin by writing down the material and field
equations for the simplest case, namely, a two-
level system that is relatively far removed from
all intermediate states. Further, we assume that
single-photon radiative decay rates can be neg-
lected. Therefore, the second-order Bloch equa-
tions describe, within perturbation theory, "the
material system in which the general third-order
susceptibility a is used. Maxwell's equations
describe the evolution of the fields:
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desired, we are, of necessity, dealing with elec-
tronic or vibrational-electronic transitions. As
a final comment, because the light intensities with-
in the amplifying media must be high, other non-
linear modes of response, e.g. , of vibrational,
rotational, or Stark-effect origin, must be mini-
mized.

Finally, we will propose a method of operating
a two-quantum amplifier in which the pulse from
a driving laser is first amplified at its original
frequency and then continues to be amplified while
shifting the pulse-center frequency sequentially
through several odd harmonics. Such an amplifi-
cation system can not only affect the laser-induced
fusion problem, but, if optimized, may well
represent a means of efficiently converting avail-
able lasers into high-power coherent vacuum ultra-
violet and soft x-ray sources;
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where I' is the nonlinear polarizability and is
related to u by the usual relationship P~L =NugQ
The term Q is the amplitude of the driven excita-
tion, which for the case of vibrational Raman scat-
tering corresponds to the amplitude of molecular
vibration. Also, & = +i+i* +0+0* here +0 an
+, are the probability amplitudes describing sys-
tem occupations in the ground state and in the
electronically or vibration-electronically excited
state, respectively. If N is the density of atoms
in the amplifying medium, then N& represents the
difference in the population densities. Finally, I'
and I" are assumed to be the reciprocals of T,
and T, (normal Bloch notation), respectively,
whereas P and y are the optical linear-absorption
coefficient and the time-dependent external
pumping function, respectively.

In the usual manner, "the fields are expressed
in terms of slowly varying complex amplitudes
by
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where the wave vectors and frequencies are chosen
to satisfy conditions corresponding to the con-
servation of energy and momentum, respectively,

(d, +4), =(0„
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where 1~0 is the energy gap between the relevant
material states. The usual dispersion relations
of the electromagnetic waves for a linear medium
further relate k; and &u, , namely, k, =n, m, /c. We
are assuming that a strong field, called the input-
pump laser, at frequency cu, stimulates TPE at
~, and ~, as well as ASRS at co, . The buildup of
+, then further leads to ASRS, being stimulated
at u, . We implicitly ignore any higher-order
ASRS where a =&,, , +n&0, and n is a positive in-
teger greater than one.

To take into account the possible enhancement
of either TPE or ASRS at one of the frequencies
due to a partially resonant intermediate state,
we will generalize Eq. (1) slightly by letting u, &

represent the magnitude of n corresponding to
each pair of photons involved in the specific
coupling terms. Combining these features with
the above, we arrive at the following set of coupled
first-order equations for the complex amplitudes:

(4f)
To simplify Eqs. (4), a change of variables is

made which introduces more physically significant
parameters in terms of stimulated emission,
while simultaneously converting the variables to
dimensionless units:

g =8m'Nu'„uP/c'~ k, F,
g —= (c/8v)' 2(2k a'g )'~'E

z*—= z/2k, a2, t*=ct/2k, a2n, ,

S =4n, /5 (u, (4k', a') g„NI"

The significance of these parameters is easily
recognized. The term g~ is the steady-state
stimulated ASRS gain coefficient in cm/W, scaled
to an anti-Stokes frequency and to the & vector of
the input-pump laser; 8, is then the square root
of the laser intensity, normalized by a diffraction
length and the gain coefficient to be dimensionless.
Therefore, the field 8, becomes the square root
of the log of the steady-state ASRS gain, scaled
to m„&„which occurs over one Rayleigh range.
Because in ASHS the diffraction of the pump light
to twice its initial diameter reduces the log of the
gain by 4, we observe essentially no gain beyond
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the distance 2&,a', where a is the beam radius of
the input pump laser. Hence, 8, is further the
square root of the maximum achievable unsatu-
rated exponential gain coefficient for ASRS. The
term z* denotes the distance propagated down

- the amplifying medium normalized to the pump
diffraction length, whereas t* is similarly made
dimensionless. Further, the linear absorption
coefficient P is normalized to a pump diffraction
length, and transverse derivatives ~2~ are con-
verted to be dimensionless by multiplying this
term with the square of the pump-beam radius.
Finally, we introduce S as a dimensionless satu-
ration parameter whose significance will become
clear shortly.

%'e are introducing the steady-state ASBS pa-
rameters because we will restrict ourselves to

rg, +
I g, I'z*&, = (lnGA, )/I'.

Under these conditions, the magnitude of g is

(6)
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. (do
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Substituting Eqs. (5) and (7) into Eqs. (4), we
arrive at the rate equations for the normalized
electromagnetic fields and at the normalized pop-
ulation difference equation below:

steady-state conditions. Steady state can be ex-
pressed in two ways: In Eq. (4e), steady-state
implies that sq/&«& 31'q, where q is a time-
independent complex amplitude. Correspondingly,
the duration of the laser-pump pulse ~~ is suffi-
ciently long for p to become time independent.
Mathematically, '4 this can be stated as
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Equations (8) will be sufficiently general to en-
compass almost all cases of interest for the rest
of this paper.

The term n; in Eq. (8) represents the refractive
index at frequency +„and the y's take into account
the phase mismatching in the various parametric
processes due to the linear chromatic dispersion
of the nonlinear medium, and are defined as
follows:

III. INITIAL GROWTH OF OPTICAL FIELDS

By using the rate equations derived in the previ-
ous section, we can establish which waves will
grow first. This is significant because, for ASBS,
the energy gain, Gs= ~„,/~t. = Cd3/~„whereas GE
for TPE is limited only by energy storage, as
mentioned in the Introduction. Also, because the
waves at cu, decrease as A@3 grows, ASRS elimi-
nates any possibility of subsequent TPE, while
the reverse is not true. Hence, for a high-gain
system, we shall desire that TPE be optimized
initially. This will lead us to several kinds of
boundary conditions for the fields and for the linear
chromatic dispersion of the medium, as well as for
the effect of resonant enhancements.

Starting from Eq. (8), we first assume that we
are not changing the inversion significantly and



B. r. . CABMAN

$=2 tan '(8 ' ), for It132»z*«ItI,
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that the system is initially totally inverted, or
h=—1 and &6/st*=0. Next, we assume ( SI () i

tt'2
i

»
i $3 i, i b4 i, and that S, = 8,'e'~1. We are then

led to a set of approximate equations which de-
scribe the initial growth, similar to those for
normal Baman scattering. " For Iti =(y2+ 2cpI —923)

and g = (2III2+Ip, —III4), the phase equations can be
approximately solved immediately, namely, y,
= constant and y2 = constant, which implies

k1(d 3=exp ' ', 8,", —p, z* for It '»0, (11c)

and similarily for $4'/84'0. Two solutions exist for
g3'/g3'0 and $4'/84'0 because there are two processes
that can contribute initially: (a) straight ASHS and

(b) the parametric mixing of waves 1 and 2 to pro-
duce either wave 3 or 4. This parametric mixing
is enhanced by the real two-photon absorption
state, and can compete initially with the exponen-
tial gain from optical noise as long as the coher-
ence lengths are sufficient. Note that resonance
enhancement of the mixing is the same whether
the total population is in the upper or lower state.
Finally, note that the parametric process as de-
fined removes no energy from the medium. Its
major contribution is to increase the input to the
exponential-gain ASBS process, allowing ASRS to
compete even more favorably with TPE.

Having obtained the initial growth solutions of
Eq. (11), we can now define a set of distances z;,
which will represent the normalized distance re-
quired for the ith wave to grow by a gain G.
Hence, these propagation lengths are a measure
of the growth rate of each wave. The magnitudes
of these distances are obtained from the following:
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For purposes of describing the initial growth of
the waves, we will approximate Iti and g as
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We can now solve the amplitude equations leading
to the following initial growth solutions:
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Now, the important question to answer, for &,
being the input pump laser„ is whether (d2 or m3

grows first. This can be assessed by taking the
ratio of z, /z, . If this ratio is greater than 1,
TPE initially dominates, whereas if the ratio is
less than 1, ASHS always dominates. For negligi-
ble tI;,

Z" n ' i2 "0 I . n, 8' k &u'
srcsin '-' IG —I)4, '—'„',' sinB —BI for It' =0

Z", n „A lnG I n21 102081'0 kloil,
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We therefore infer that optimum initial dominance
of TPE implies A»1;

» 1 && 1 » 1
Q (d

Ig &31

It thus emerges that it is important to have large
phase mismatches for the parametric mixing pro-
cesses, some input light above usual noise at the
TPE conjugate frequency; a large discrepancy in
the conjugate frequencies where the pump is the
lower of the two; and, finally, some resonant en-
hancement of TPE over ASRS. This kind of reso-
nant enhancement is possible only if the intermed-
iate states lie between the initial and final states,
which consequently implies that the matrix ele-
ment between the intermediate and final states
should be much larger than between the initial and
intermediate states. This ordering is caused by a
desire to avoid premature radiative deactivation
of the initial (inverted) state while making the pro-
duct of the two matrix elements as large as possi-
ble. Linear absorption at &u, (P, W 0) will also help
until absorption saturation occurs.

which was found for the initial growth of I,' in Eq.
(11a). However, by the symmetry of the equations,
we can find a solution for I,'/I, ', of the same form
as Eq. (15).

Even for ASRS gains of e", we reduce the pulse
width only by a factor of 6, in contrast with a case
where, for example, I,'o»I2o and/or (o.»/o. »)'» 1,
and the denominator of Eq. (15) approaches zero
for e'»'*-1, implying very extreme pulse sharp-
ening. Of course, we cannot neglect population-
inversion depletion, under these circumstances
[Eq. (8e)], and such saturation will tend to flatten
the top of the pulse. Thus, by utilizing nonlinear
pulse sharpening and saturation flat-topping, it
should be possible to control the pulse shape with-
in limits set primarily by the reproducibility of
experimental conditions, while pulse shortening
by factors of 20-100 should be feasible, as long
as the pulse duration does not become comparable
tO T2.

V. SPECIAL CASE-DEGENERATE TWO-PHOTON

EMISSION

IV. SOLUTION OF NONDEGENERATE TWO-PHOTON

AMPLIFICATION WITHOUT ASRS OR INVERSION

DEPLETION

1 21 g 2g (14a)

k ('d
2

~g ~2g
BZ+ 0 k (d31 2 1

(14b)

where we assumed n, =n, . The term z* refers to
normalized distance in the coordinate system mov-
ing with the pulse, and diffraction and linear ab-
sorption are negligible. Defining I,', =

~ g, , ~', and
integrating directly, we arrive at the solution

I
/ eI 1pz

(15)I' 1 —R( tfo'+ 1)'

where

10 ™21

We then find the solution for J,', namely,

1 Q31 1 + Q k2(d1I'„2 o.» 1-A(e'&" * —1) k,v,' '

Equation (16) does not show the behavior directly,

Under conditions where ASRS can be neglected,
we can begin with Eqs. (8a) and (8b), letting 8, = g,
= 0. This problem is analytically solvable if inver-
sion depletion is negligible, or if Bb./Bt =0 and b,
—= 1. Equations (8) then reduce to

Because of its special significance, as well as
its qualitative and quantitative differences, the de-
generate system will be treated separately from
the more general case discussed above. In Eqs.
(2)—(4) we must equate waves 1 and 2 as well as
waves 3 and 4 for the degenerate case. Hence,

2(d1 = (do, 2k1 =ko,

(d1+ (do = 3(d1 = (d3 ) k1+kp =k3 q

(d + (d3=(d =5(d1, k +k =k

(17a)

(17b)

(17c)

In addition, for reasons that will become obvious
shortly, we will introduce the second anti-Stokes
mode, which in this case corresponds to the fif th
harmonic of the input laser. Proceeding as pre-
viously from Eqs. (8), we then can find the rate
equations in the limit where a steady state in time
is established for q, namely

q = (i b /21 (uo)(n „E,+ o!o, Eo E,* + n o3 Eo Eo) .
However, we note in passing that the procedure
used in Ref. 14 no longer applies for establishing
the laser-pulse duration [analogously to Eq. (6)]
for which this steady-state amplitude is reached.
The procedure is inadequate because growth or
depletion of the laser input can no longer be ne-
glected. While previously the anti-Stokes or com-
plementary two-photon mode was regarded as
small to establish Eq. (6), we must here treat the
complementary two-photon mode (which is the same
as the input laser wave) as a strong wave. This
problem has been addressed elsewhere for the
case of Raman scattering. "
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Utilizing the rate equations [Eqs. (8)] applicable
for the degeneration Sec. III, we first find the ini-
tial growth response for the degenerate case. For
fg, f»fg3I»fg, f, we find

(21)

similarily leading to 11'=—q1 —6»„z*= (Az*+ B),
whereas

11 g 2 (18a) eg' - k(o' n »Igl I2 PBz+ O' 0)3 1 31
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31 5 I

where again we have neglected diffraction and as-
sumed b, =—1. These equations can be solved analo-
gously to those of Sec. III by assuming $„=$„'8' ~,
Then

1615 I'P1
(o.„/o.„)' Ih'„ I' —8"1"[(o.„/o.„)'Ih,', I' —0,]

and

8 6I1

Bz +

Therefore, if 8', is approximately constant, we ob-
tain in analogy with the analysis performed for the
nondegenerate case,

[sin(A z * + B) —sinB] + 1
83', n3 n„A 83',

for g'=0

3n n
= exp ' "Ih«l' —p3 z* for g'»0.

S3 n31

(28)

Continuing the analogy, the approximate equations
for the 85' wave are

which for P, -0 implies
' 8'8"cos(Cz*+ D),8z* n' n31 5

(24)

1-2(~„/~„)' lh', .I'z *

Letting 0 =—36, —H„we see

(20) g ~5311 z *. We now see two
approximate solutions, depending on the third-
harmonic generation mechanism, namely,

1511,' n„o3, h'„' cos[(A+ C)z*+ (B+ D)] —cos(B+ D)
A+C

+ for g'=0.cos[(A —C) z *+ (B —D)] —cos(B —D)

5n 8'8"

3n 'l8,', I2 —p3 [cos(Cz*+ D) —cos D]+ C[sin(Cz*+ D) —sin D]+1 for g'»0. (25)

Now, from Eqs. (20) and (28), we can obtain the
amplifier length z„" required for the third-har-
monic wave to have experienced a gain 6, where
we will normali2, e to z".

pcs 2 g'—'= —~—'6' 4'= 0
z 3 g' yg

6' lnt" n„ 2 I8'„
f

&31 (8&1/&3) (&»/&3» I&lof' P3
'-

an&

a 115' [' { a~)
g' »0. (28b)

Note that z"/z«»1 implies either h3', /8'„»1
and o.»/e»»1 or the presence of linear absorption
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at 3u„where

P x ~rig' Ia3
pg ~ 10

3 31

and the presence of large linear chromatic disper-
sion, causing short coherence lengths for third-
harmonic generation. " Of course, this latter sit-
uation is subject to saturation of the linear ab-
sorption.

Assuming that conditions for pure degenerate
two-photon amplification can be found, we next
must consider the pulse shortening that occurs in
such an amplification process" as well as the ef-
fects of saturation due to depletion of the popula-
tion inversion. From Eqs. (8a) and (8d), we can

obtain approximate solutions for the case where

y BD c
I" Bt* 2k',a'I" '

The solution for 6 is then

~/r' —1
1+S(n„/n„)'lg', I' ' (27)

sz* 1+ s(n„/n„)'Ig, l' (28)

The solution of Eq. (33) can be expressed analyti-
cally, namely,

An equation for Ig', I
which crudely includes satura-

tion is then

(y/r' —1)z*
g;. Slg;.

~

'2 2S(n„/n„) Ig;, I

(y/r' —1)z ~ 1

Slg„l' 2 2S(n„/n„)'I g,', I' ' S(n„/n„)'I g,', I' (29)

Equation (29) reduces to the more familiar solu-
tion for the case of no saturation given by Eq. (20).
We note that under highly saturated conditions
within the steady-state response, the growth rate
changes from a highly singular type to approxi-
mately linear growth in z*. Thus, while an ap-
parent large potential for pulse shortening in time
does exist for a gain of the form given by Eq. (20),
a saturated gain like that of Eq. (29) will not lead
to this condition, and radical pulse narrowing in
time will no longer occur. For straight expo-
nential-gain processes, the pulse duration of the
SRS scattered light t, will shorten in accordance
with

)
t,(0) t,(0)

s [g m f( rx)~0]&t 2yl/2

For the degenerated TPA, the similar expression
ls

where 0&y +-,', which quantifies the greater pulse-
shortening capability of this very nonlinear gain
mechanism.

We note in passing that for a transient response,
the pulse narrows to a width comparable to 1/r;
the pulse narrowing will then slow down compared
with that implied above. In the transient regime,
the gain experienced by the pulse will be less the
shorter the pulse, leading to a restoring force
that will tend to stabilize the pulse width.

Another case to be treated is that in which both

8, and 83 waves are growing, which modifies the

g, growth rate. Returning to Eq. (22), but substi-
tuting Eq. (20) for g„we then arrive at a new

approximate growth equation for S3' namely,

g;, 3n, lg;, I 1

for g'=0

1 3S1Q31
1 —2(nn/ns~) Igloo I

z + 2'B~ n~~

for $»0.
(30)

Note that for phase matching where 4' =0, and for
the parametric production process, the third-har-
monic wave grows more slowly with z* than the
input laser field 8,', but once the exponential gain
associated with anti-Stokes Raman scattering at
3R1 become s important, the third harmonic grows
faster in z * than 8'„ implying that for a long
enough amplifier, the third harmonic will always
overtake the first harmonic. From Eqs. (18c) and

(25), we also see that the production of the fifth
harmonic will become significant if the third-har-
monic waves becomes sufficiently large. In analo-
gy with Eq. (30), it can be shown that the fifth-har-
monic production rate in the exponential-gain limit
is still faster in z * than that of the third harmonic,
implying that the fifth-harmonic intensity will even-
tually overtake that of both the first and third har-
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monic. We have, of course, neglected numerous
times the feedback energy to prior odd harmonics
in Eq. (8), which occurs when lb, l-lS, l-lh, i, but
we still expect this type of behavior.

These statements apply even if we assume that
the third-order susceptibility is the same for all
photon-production processes. However, as the
photon energy increases, we approach the uv lin-
ear-absorption bands (intermediate states) of the
atomic system, leading in general to an enhanced
cross section for the production of the higher har-
monics.

Two different methods emerge from this discus-
sion for the operation of a degenerate two-photon
amplifier. The first involves phase mismatching
during third-harmonic generation via the paramet-
ric process, combined with linear absorption at
the third harmonic and possibly resonant enhance-
ment of 8', amplification by o'»/o»»1. This only
leads to a degenerate two-photon amplifier and
pulse-duration shortener. The second method con-
sists of allowing the odd-harmonic generation pro-
cesses to dominate, leading to greater-than-100%
conversion of the previous odd harmonic to the
next. If, for example, all odd harmonics are not
absorbed by the atomic system while significant
cancellations in the sum over intermediate states
can be avoided, this kind of amplifier may perhaps
be useful for efficient generation of coherent x
rays. In laser fusion, one can also conceive of
including some linear absorption in one of the
higher odd harmonics, thus terminating the pro-
cess at the preceding odd harmonic. Further, by
combining these two proposed methods, we might
be able to simultaneously amplify while pulse-
shortening an input (driver) laser beam in one am-
plifier, followed by sequential odd-harmonic gen-
eration in a second amplifier, again with both en-
ergy and intensity gain, as diagramed in Fig. 2.
The resultant discretely frequency-chirped pulse
might have most of its energy at 13~,=+», while
the initial rise of the pulse would be at frequency
~„as schematically indicated in Fig. 2.

stable in the absence of reflecting surfaces, we
conclude that

t~ & (lnGNL)/I', (32)

as indicated by Eq. (6). This condition arises from
the desire to avoid higher-than-minimum intensity
levels as well as to minimize the length of the non-
linear medium.

Sufficient energy must be stored in the system
per unit beam area to avoid saturation of the am-
plifier, at least until near the end of the last e-
folding length, or

usable stored energysystem energy gain=- G~ & 1+
laser energy input '

iodine eel I iodine cell

N le /I' & g, = 7,
where oz /I" is the total single-photon cross sec-
tion, I' is the corresponding linewidth, and g, is
the steady-state ASRS gain coefficient.

Note that the radiative-depumping rate is scaling
as the excited-state density times the length of the
medium, which is identical to the scaling of the
total energy storage per unit beam area. Because
large total energy storage per unit area implies
low total-loss rates, it is equally important to
examine nonradiative losses, which usually scale
with some power of the excited-state density ¹

However, because no simple expression can be
written for general applicability, we will just have
to remember that an upper bound exists for the
excited-state dens ity ¹

In a system where the second-order Bloch equa-
tions apply, a steady-state response of the system
implies that the minimum laser-pulse duration is
bounded" and dependent on the magnitude of the
nonlinear gain GNL (representing TPE or ASRS);
for example,

VI. GENERAL CONSIDERATIONS TPA Odd harmonic
generation

Starting from rather simple concepts, we will
attempt to find some bounds on experimentally ad-
justable parameters as well as some quantitative
relationships that will allow us to evaluate ampli-
fying media and relevant schemes. As a first con-
dition, we recognize that the single-photon radia-
tive loss rate must be sufficiently small so that
the required energy can be stored before super-
fluorescent depumping occurs. It is also desirable
to avoid complicated isolation schemes. Because
a gain of -e' is usually assumed as marginally

FIG. 2. Schematic diagram of the possible sequential
operation of two different degenerate-two-photon ampli-
fiers: the first leading to amplification at the input
(fundamental) frequency and the second leading to a
frequency sweep in time from the fundamental through
the thirteenth harmonic.
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leading to the condition

Au, Nl

I~t~(lnGNL)
' (33)

The final empirical relationship relates, e.g. ,
the onset of laser-induced damage to components,
the breakdown in various gaseous media, or large
F-center production rates to the laser energy den-
sity; namely,

I~t~Gs & X~Kn(A. ), (34)

(lnGNL)/I' & t~ & X~„n/I~Gs . (35b)

We can further eliminate the center parameter in
both of the above relationships, to derive two
upper bounds on laser intensity, namely,

where XBKD is a constant depending only on the re-
levant wavelength. This condition is to be applied
only over the pulse-duration range 50 psec & t~& 3
nsec. We are implicitly neglecting multiphoton-
induced processes, such as self-focusing, which
clearly dominate for very short pulse durations
and may be important for the shorter wavelengths,
where two- or three-photon absorption leads either
to resonances with states near the ionization level
or to the ionization continuum.

By simply manipulating the above four conditions,
we can immediately derive two conditions that must
be satisfied:

(G —1)I t (lnGN~)

0

ing, we can find immediately the following two re-
lationships:

and

k,'A co,o, (lnGAS)

16m'g, (Bos/BQ)' (38a)

t & h&u I'k, l &u, /16&2(Bo„/BQ)12(G —1) . (38b)

Finally, Eqs. (38) can then be used to eliminate I~
from all other relationships, leading to the desired
set of bounds on experimental parameters that are
expressed solely in terms of material parameters.
These are summarized in Table I.

We can even go one step further by eliminating
the center parameter in any of the three relation-
ships of Table I to find an upper bound on the ratio
of the single- and two-photon cross sections,
namely,

16&'g,'I co,
k',o~(Gs —1)(lnGA~)' (u,

o, /1
Bo /BQ

16& &s+ QKD

k,'hw, G~(lnG„s)'
'

If breakdown is negligible, this implies

(g,/I')' 4g,'X ,'
Bos/BQ (Gz —1)(lnGAS)'

= 2 x 10 " —o
A. 2(p)

(d 1

8(dog I

I o~(Gs —1)lnGNL)'

x,„,r
G (lnGNL)

(36)

k„
k, (k, +k, )' ' (40)

Thus, large e, and large m, must be associated

16&'(Bo„/BQ)IiNl
As

(d~
(37)

and Bos/BQ is the Raman cross section per unit
solid angle. Solving Eq. (37) for Nl and substitut-

Whether total energy storage or breakdown dic-
tates the limitation depends on whether the ratio
of two parameters, which we shall define as K„., /
XBK» is either less than or greater than unity,
respectively, where X„&=—h(uog, I'/oz(lnGNL).

~tie we succeeded in obtaining bounds [Eqs.
(35) and (36)], those bounds are not given in terms
of material parameters only. By substituting the
pertinent form of GNL, similar limits can be de-
rived in which material parameters appear exclu-
sively. We will demonstrate this possibility for
the case of unsaturated steady-state anti-Stokes-
stimulated Raman scattering, where GN& is given

y14

p~ —1)k' 3or (1nGAs) f g
2 &NL &

16m g I'(8o~/80) (uo err

k 2~ Icu&o~ (lnGAs )

16m 2g (8o~/80)

S~og s
I'2

oi (G~ —1)gnGAs) 2

+BKDI

G@ (1nGAs)

(in&As )
gg~&(I'

16~2g,2 I'(8o~/an)
(GE 1)p 3oI (/nGAS) ~ f

167r g 3CgKD(8o' /Bn)
k &G& gu &o'I (lnGAs)

TABLE I. Constraints for anti-Stokes-stimul. ated
Haman scattering (unsaturated and steady-state) .
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with small or and large BOR/BQ, and vice versa,
leading to the conclusion that infrared lasers and

modest electronic-transition energies will more
readily satisfy the constraints. This finding is in
agreement with the conclusions of the previous
section.

To treat the nondegenerate two-photon emission
problem, we have to use the more complicated
form of the gain (Eq. 15)

2I)p Qpy k
GNL:G~nTp=e 1 + (1 —e )

I~ n, km,

TABLE II. Constraints for degenerate two-photon

amplifier.

(
(G& —1)k fo'I (inG DTp) co f g, r

1— &Nl &
GDTp 327r g I (Bo /BQ)(0 ff/ck 3f) Mo (T

Ncoog~ I'

a~ f~,k', (1—1/G DTp)
OI (Gg —1)(inGDTp)

32% g r(Bg&/BQ}(G ff/G&f) &sKDr

g G& (i~GDTp)

where B is given by

2 80~ I~N n2, u2k2
80 kh)~I Q3f kfk~(d

(41)
327' g r(BO~/BQ)(o. ff/o3f) &~ ]

»GDTp k fo'I (Ge 1)(lnGDTp) (o f GDTp

r ~ tp~(
32m geXBKD(BOg/BQ) (O: f f/n g f) 1

2
1—

Ice fk ffTIGz DTP

and we are no longer using dimensionless units.
This form of gain leads to very similar conditions
on I~, t~, and NL.

Because the degenerate two-photon amplifier
does not involve exponential gain but rather a
more singular gain, we will examine this latter
case more carefully. The gain expression is given
by

~NL ~DIP

32w'(a„/a„)'(Bo„/BA)l Ni)
6(dpI k~

intermediate states will usually complicate the
picture.

In Tables III and IV, we have estimated the rele-
vant material parameters to predict the bounds on
experimental parameters. Note that a CQ, fre-
quency upconverter using excited atomic iodine
('P, g, ) appears feasible, but that an HF upconver-
ter with I* does not appear interesting. Also,
while a degenerate two-photon amplifier using

200

(42) 100- ---- TPE
ASRS

By following the same procedure given earlier for
ASRS and tabulating the resulting bounds, we ar-
rive at the results presented in Table II. Note that
both the minimum intensity and the minimum NI
product have been reduced by a factor of 2 (lnGAS)
&& (1 —1/Gnrp) which for GnTp- G„s-e" amounts to
a factor of -20. Furthermore, the maximum us-
able pulse duration has been increased by the same
factor. However, this result is consistent with the
results of the previous section, because the anti-
Stokes competition is so effective for the degener-
ate TPA, primarily due to the efficient parametric
generation of third-harmonic waves which act as
an input to the exponential gain. Thus, we see that
energy extraction for the degenerate TPE case in-
volves much more desirable experimental param-
eters than the nondegenerate TPE case.

The maximum achievable energy gain G~ vs
wavelength is plotted in Fig. 3 for both TPE and
ASRS for the 'P, ~, -'P, /, transition of atomic io-
dine. As indicated previously, best performance
is achieved for either the degenerate TPE process
or for long-wavelength inputs. The nonresonant
character of this system enables us to plot such
a simple set of curves. For other systems, the

50-
Width of curve governed
by I" in this region

20—

G E 10-

I

learn DEG
TPA

l

sl rig ie
Photon +
Laser

g(loser input)

FIG. 3. Plot of the maximum energy gain realizable
vs the input wavelength for two-photon emission and
first-order anti-Stokes-stimulated Haman scattering
calculated from inverted atomic iodine to the P~/2 state.
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TABLE III. Estimated material parameters for various plausible systems.

Parameter

Apump (mmmm)

A. TpE (mmmm)

~As (mmmm)

A, 2AS (mmmm)

0!ii/G3i

8(Tg /80
I' (s )

(pressure
broadened
with inert gas)

&I /I' (cm2)
@ pump (J)
h~p (J)

GE

gs
+BKD (J/cm )

(3~ )
and CO2

10.6
1.5
1.17
1.054

] p-28

1.9x 10"

2x10 "
1.9x 10-2o

]..5x ] 0-i8

w] 0
e ip

7
~]

Ig (3~ )

and HF

2.75
2.52
0.89
0.67

AJ ]

10 '8

1.9x 10ii

2x 1p
7.3x 1p-2o

1.5x 10-"

tv 7
e"

7

Degen TPA
I*(3S,]2)

2.63

0.877
0.526

rV]

1p-28

1.9x 1p

2x10 "
7.5x 10 2o

1.5x10 '9

100
io

7

Degen TPA
Qg( ig)

1.12

0.374
0.224

Af ]

&3x10 "
1.9x 1P

2x ] p-20

1.Vvx1p '9

3.54x 10 '9

1OO
e"

7
rv] 0

Degen TPA
S+(ig)

1.485
~ ~ ~

0.495
0.297

10-29

1.9x 10"

10-19

1.33x ]0-'8
2.66x 1p '8

1p
eio

7
~]0

N2*(&) and
Nd glass

1.06
0.33
0.2
0.16

~10-4

1p-30

1.9x 10"

3x ]0-22

1.9x1O "
~10-i8

5
e"

7

either I* or excited atomic oxygen ('S, 'D, ) ap
pears appealing, the corresponding amplifier using
excited atomic sulfur ('S, 'D, ) is -not. Of greater
interest is the possibility of using the D, state in
the atomic-oxygen, -sulfur, or -selenium systems
as an intermediate state for two-photon emission
between 'S, and the 'P manifold. " However, ab-
solute inversion is required in these cases.

If atomic iodine is produced by photolysis involv-
ing CF,I as the production mechanism of I*, one
could go one step further. This possibility exists
because the optical absorption of flashlamp light
at -2650 A is nonsaturable, leading to a relation-
ship between the diameter of the system and the
density of initial gas; namely d= 2q/No„„, where

q is the fraction of available iodine inverted to I*
(1—10% typically) and o26» =5.4X10 "cm'.

Furthermore, a relationship exists which guaran-
tees that diffraction will not cause the beam of in-
put diameter d=-2a to increase beyond the diameter
of the tube after traveling through the inverted
medium of length l, namely, d'& 10k. l. The two
above condition on d plus the conditions on the pro-
duct Nl can be used to establish what minimum d
and l and maximum N are possible, namely,

d & 5A. , (N/), .„o26~/q,

f & 2.5(Nl)', „(o„„)9.,/q',

N & 27)'/5 (o26~)'A. , (Nl ),„.

(43a)

(43b)

(43c)

Predictions for the CO, frequency upconverter
and for the degenerate two-photon amplifier are
summarized in Table V for the situation considered
in Tables III and IV where g=0.01.

TABLE IV. Bounds on experimental parameters dictated by Table III,

Parameter

1~ (W/cm2) &

I~ (W/cm )&

tl {psec) &

tl (psec)&
pr$ (cm 2)

NE (cm ) &

l (cm)&

Ig (3~ )
and CO2

1.5x 109

2x 1p'
300

50
5x 10ie

4x 10i8
95d2 (cm)

Ig (3' )

and HF

1.5x 109

1.2x 10
100

50
3.5x 1p

2x 1P'o
365d2

Degen TPA
I&ac (3' )

1p8

vx 10
72
50

3 ~ 5x 10
2.5x 10

380d

Degen TPA
pg (ig)

2x 10'
3x 10

400
50

3.5x 10
4x 10
892d2

Degen TPA
Sg(i g)

4x 109
2x 10'

95
50

Vx 1O"
3.5x 10 8

673d

N2*(A) and
Nd Glass

2x 10"
1pip

100
50

2x 10"
2x 1O"
943d
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TABLE V. Predicted minimum medium diameter,
length of amplifier, and maximum inversion density for
I" production by photolysis of CI'&I, when g = 1%.

COo Degen TPA

1.2 cm
124 cm

3.5x 10 jcm'

1.8 cm
1200 cm

2.1x 10"/cm'

VII. CONCLUSIONS

By liberally utilizing approximations, we have
been able to examine analytically many features
of an amplifier based on a two-quantum transition.
While anti-Stokes Raman scattering appears the
most likely process in. most cases, conditions
seem to exist that might allow two-photon ampli-
fication to dominate. Furthermore, while ideal
amplifying media and driver lasers have not been
identified, a few prospective systems have been
investigated mathematically which appear to be
capable of generating both high-energy and high-in-
tensity pulses for laser fusion application.

In Tables III and V, we see that, theoretically,
atomic iodine appears to be capable of acting in an
odd-harmonic generator mode at an energy gain of
-100 starting with an input 2.63-p. m laser intensity
of -10' W/cm' if inversion densities of 2 x10" are
created in appr oximately a 2-cm diameter by 2-m-
long container. Also, atomic iodine can be em-
ployed as an energy gain 10 "afterburner" on a.

CO, laser system if an inversion density of 3 &&10"

is established in approximately a 1.2-cm diameter
by 1.2-m-long container, if the input CO, intensity
is -10' W/cm'. Both of these proposals appear
quite reasonable. Experiments to verify that this
performance can be obtained are currently in pre-
paration.

Some difficulties which are anticipated in realiz-
ing practical systems are related to ma, intaining
good enough spatial coherence. Some numerical
calculations have been performed indicating that
pulse narrowing in space is to be expected, but it
can be controlled. However, since two-photon
emission and self-focusing are of the same order
of nonlinearity, only careful experiments under

conditions where pulse amplification takes place
will be convincing. Recently, extensive work has
been carried out experimentally on normal-vibra-
tional-stimulated Raman scattering in gases under
geometry and laser-pump conditions which are
close to those required to realize the amplifiers
discussed in this paper. ' Both spatial and tem-
poral breakup of t:he input-laser pulse have been
observed. Most of the observations are in good
agreement with theory, and there are reasons for
optimism that conditions exist where such prob-
lems can be avoided.

Another set of uncertainties which should be
pointed out in connection to this work deals with
the effects of T, dephasing of the inverted atomic
system in times comparable to the duration of the
amplified input-laser pulse, as well as the effects
of inversion depletion through the amplification
process. Furthermore, the details of how the
many odd-harmonic waves interact with each other
at high signal levels and the details of how differ-
ent degrees of phase mismatching effect the high
signal conditions, must be explored. Numerical
solutions to these problems are currently being
found and will be reported elsewhere.

While much emphasis has been placed so far on
atomic iodine, there are certainly other media
with potentially better properties. We have men-
tioned just a few above. Extensive discussions of
these other candidates are not really merited at
this time because even the methods of inverting
any of these media to sufficiently high inversion
densities have not been reported. Because of the
amount of work currently in progress, it is likely
that this situation will change in the not-too-dis-
tant future.
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