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The moments S(u) and L(u) = dS(u)/dp for —6 < u < 1 are derived from comprehensive Hartree -
Slater oscillator-stength distributions for He through Ar. For p < —2, these moments are governed

by valence excitations only, and therefore exhibit a pronounced periodic variation that repeats in each
row. Inner shells begin to contribute appreciably to S(—1), which retains a periodic variation superim-
posed upon an over-all increase with increasing atomic number Z. For p > 0, the Z dependence of
the moments becomes dominated by inner-shell contributions; as u increases, the over-all increase with
Z becomes more rapid. Another perspective of the voluminous data is gained by plotting log S (u) vs
. The plot reveals three classes of behavior—*“tight,” “intermediate,” and “loose” atoms. Comparisons
with experiment and more detailed calculations are made where possible.

I. INTRODUCTION

Many important atomic properties, such as
polarizability, total inelastic scattering cross
section, and stopping power, depend on moments
of the dipole oscillator-strength distribution.*?
With the advent of realistic atomic potentials,®
it is now a routine matter to generate atomic
dipole oscillator-strength distributions in the
framework of an independent-electron model and
to separate the contributions from individual sub-
shells. Indeed, this approach has been employed
frequently over the past few years to study atomic
properties, primarily partial photoionization
cross sections*!° and photoelectron angular dis-
tributions.’***> Unfortunately, the body of data
resulting from these calculations is either not

.comprehensive enough or otherwise inappropriate
for our present purpose. Specifically, the sum
rules we investigate are rigorously defined only
in the dipole approximation. Hence, “oscillator
strengths” that include the effects of higher mul-
tipoles®~!° or of retardation, while presumably
suitable for the photoeffect cross section, do not
suit our needs. Also, in view of the ease of per-
forming Hartree-Slater model calculations, we
find this preferable to the dipole oscillator-
strength distribution based on the less realistic
Thomas-Fermi model.®* There are, of course,
many data based on the Hartree-Slater model and
the dipole approximation. However, such
studies® =" usually omit the discrete part of the
spectrum, and one®!* of them utilizes a mathe-
matical approximation which distorts the Harteee-
Slater oscillator-strength distribution in an un-
predictable way.

Therefore, we have calculated a comprehensive
set of partial dipole oscillator strengths and the
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related moments for the atoms of the first two
rows of the Periodic Table. The motivation for
systematically computing these quantities within
the independent-electron approximation is twofold:
(i) Owing to the ease of computation, we can treat
all atoms in the same way, thus filling in the huge
gaps left by experiment and more laborious theo-
retical calculations. This body of data will ex-
hibit reasonable over-all accuracy (5-30%) and
shell effects missing from hydrogenic or Thomas-
Fermi®® calculations. As we show below, one gains
a distorted view of the behavior of atomic param-
eters by considering only the rare gases, which
are the most accessible experimentally. (ii) Our
scheme also exposes systematic variations in each
quantity, which, when analyzed according to its
shellwise contributions, reveals the region of
space (or the region of the spectrum) that influ-
ences the quantity most strongly.

The paper deals with the moments of the oscil-
lator-strength distributions. The distributions
themselves, as well as side products of our cal-
culation such as phase shifts for electron scatter-
ing by positive ions, are tabulated elsewhere.'®

II. BACKGROUND AND METHOD

Within the independent-electron model, the
spectrum of oscillator strength of each atom
results from the sum of contributions from all
permitted transitions by each of its electrons.
The characterization of one-electron states and
description of other assumptions inherent in this
model are amply described in Secs. 4.2-4.9 of
Fano and Cooper.?2 We shall merely list the basic
formulas upon which the calculation is based.

The expression for the oscillator strength per
electron of a subshell nl is
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Flnl~ n'1")=5mk 2(Eyr, —E,) (1 +1'+1)
X(21+1)7[R(nl,n'l")]?, (1)

where E,; is the initial-state energy, the final-
state energy E,.,» belongs to either a discrete or
continuous part of the spectrum, and R(nl,#'1’)
is the radial matrix element

R(nz,n'l')=f°° VP ()P yay (7) dr. (2)

The radial wave functions P,,,(r) are solutions
[with the condition P,,(0)=0] of the Schrodinger
equation

P, | 2m L ) But=
_d;:g- + = <E",—V('r)—l(l +1)2m,},2 Pnl('r)'o’

)

and are normalized to unity for E,, <0, and per
unit energy range for E,; =0. For this work, V()
is a Hartree-Slater potential taken from the tabu-
lation by Herman and Skillman.®

The spectral distribution of oscillator strength
per electron for a given subshell is

(L) =3 foant Vol -B-B), @)

where E is the excitation energy Zw. The total
oscillator-strength distribution is obtained by
summing Z,,;(df/d E),;, over all occupied subshells
of the atom, where Z,, is the occupation number
of the subshell.

The moment S(yu) of the total oscillator-strength
distribution and the moment L(y) containing the
additional weight factor In(E/R) are defined by

S(u.)=f<§)u d—dg dE, (5)
O (B o

where df/dE without the subscript zl denotes

the fotal oscillator strength, and R is the Rydberg
energy. The integration sign in Eqgs. (5) and (6) is
used here to include a summation over all allowed
discrete transition to unoccupied levels. Note that
the exclusion of “virtual” transitions to fully occu-
pied levels is not inherent in the independent-elec-
tron model and must be added as a physical con-
straint.

In this work we restrict the value of u to the
range —6 < us1. This restriction arises on the
one hand because S(u) and L(u) diverge for
u=2.5. The divergence follows from the (non-
relativistic) asymptotic behavior of the spectral
density of oscillator strength for large £

df/dE~E "% (7)

provided that the atom contains an s electron. In

addition, the scheme we used to extrapolate
df/dE to high energy proved too inaccurate

to give a reliable S(2), which depends primarily
on the high-energy part of the spectrum. On the
other hand, S(u) for u< -6 are related to mea-
surable quantities only in their minor role in
the frequency-dependent refractive index and the
Verdet constant [see Eqs. (2.29) and (2.30) of
Ref. 2], and hence we truncate at u=-6. No
application of L(u) for  <-2 is known.

Notice that L(u) is the derivative dS(u)/du
when S(u) is considered as a function of continu-
ous variable u. For the most part, we consider
S(u) and L(u) for integer values of u only; how-
ever, we discuss in Sec. IV S(u) as a continuous
function of u.

The independent-electron model has the advan-
tage that the quantities S(u) and L(u) can be de-
composed into contributions from individual sub-
shells or even into contributions from different
processes. For example, we will discuss the
anatomy of the total sums in terms of shellwise
contributions to these sums, i.e., S,;(u) and
L, (1) which may be defined by replacing df/d E
by (df/dE),, in Eqgs. (5) and (6), respectively. It
should be pointed out, however, that in the inde-
pendent-electron model, shellwise sum rules are
defined, but only by including virtual excitations to
all occupied levels. (See Secs. 4.9 and 5.2 of Ref.
2.) We have used S,,(0) to check the accuracy of
of our numerical work, but since the virtual transi-
tions do not actually occur owing to the exclusion
principle, we have excluded them in the partial
sums we discuss.

The apportionment of S(u) and L(u) into the
shellwise contributions is a useful concept for
qualitative understanding, but becomes imprecise
as soon as one goes beyond the independent-
particle model and considers (intershell) electron
correlation effects. The schematic nature of the
shellwise contribution should be borne in mind in
every quantitative application. (See Sec. 4.9 of
Ref. 2.)

Another useful set of quantities distinguishes
between contributions to S(u) and L(u) resulting
from the discrete, autoionizing, and pure-con-
tinuum part of the spectrum. We define the
discrete contribution, S,(u) and Lp(y), as that
part of the total sums due to discrete transitions
of the valence electrons (outermost subshell).
The contribution due to autoionizing transitions
S4(u) and L,(u) may be taken as the sum of all
other discrete transitions. Finally, the sum of
the continuum contributions from each subshell
is denoted by So(u) and Lo(n). These quantities,
taken individually, obey no sum rules, but never-
theless afford an interesting insight into the syste-



104 J. L. DEHMER, MITIO INOKUTI, AND R. P. SAXON 12

matic variation of S(u) and L(u) discussed below.
A few remarks about the evaluation of the mo-
ment sums are warranted. Because the shell-
wise contributions to the sums are of interest in
themselves, the moments S(u) and L(u) were
actually evaluated by first computing S,,(x) and
L, (1) and then summing them. A consistent set
of numerical conditions was used for the calcula-
tion of the partial oscillator-strength distributions.
In each case, the oscillator strength for discrete
transitions up to the tenth Rydberg level was cal-
culated. The contribution of the remainder of
the Rydberg series was evaluated by use of the
single-channel quantum-defect theory. For each
subshell, the oscillator strength in the continuum
was determined at values of the excitation energy
spaced closely enough to ensure numerically ac-
curate evaluation of the integrals in Eqgs. (5) and
(6). The oscillator-strength distribution was
extrapolated to infinite energy by fitting the func-
tional form CE~® (where C and B are positive
constants) to the two highest energy values. This
form was chosen for numerical convenience and
represents no constraint of physical significance.
Except for u =2, the spectral range of this extra-
polation contributed a negligible fraction to the
total sums. The energy range of actual numerical
evaluation of the continuum oscillator strength was
chosen so that each subshell satisfies the criterion
S,;(0)=(1+£0.001)Z,,. For this purpose, S,,(0) in-
cludes contributions from virtual transitions.

III. RESULTS

The results of our calculation are summarized
in Tables I and II, where we list the total moments

S(u) and L(p) for —6 < u<1. The breakdown into
contributions from individual subshells or into the
quantities Sp(u), Su(1), Sc(u), ete., would be too
lengthy for presentation here. Rather, we will
treat these more detailed quantities when they
illuminate the systematic behavior of a particu-
lar total sum.

The present section is organized into six sub-
sections. In each, a closely related subset of the
data in Tables I and II is discussed from three
points of view: (i) Which region of the spectrum
of oscillator strength dominates the moment?

(ii) Which subshell(s) dominates this region of
the spectrum, and how does this account for the
observed Z dependence? (iii) How well does the
present calculation agree with other calculations
and with available experimental data? The sub-
sections are organized in the following order,
based loosely on the amount of comparison data
available: IITA, S(-2), related to static dipole
polarizability; IIIB, S(-1), L(-1), related to
the total cross section for inelastic scattering;
IIIC, S(0), L(0), related to the Thomas-Reiche-
Kuhn sum rule and stopping power; IIID, S(1),
related to total electronic kinetic energy, and
L(1), related to straggling; IIIE, S(-3), related
to nonadiabatic interaction of a charged particle
with an atom; and III F, S(-4) and S(-6), related
to the frequency-dependent refractive index and
the Verdet constant.

This list is extensive but not exhaustive. For
instance, by convoluting moments for two atoms,
one can compute the van der Waals C, coefficient
from our data.’*~'® We do not include such appli-
cations in the scope of this work. Otherwise,
parameters not discussed explicitly, such as

TABLE I. Moments S(1), ~6<p=<1. The format A+~ means Ax10%*",

¥4 S(-6) S(-5) S(=4) S(=3) S(=2) S(=1) S(0) S(1)
2 5.049-2 8.097 -2 1.332~1 2.273-1 4.112-1 8.221~-1 1.999 7.709
3 8.904+4 1.274+4 1.824+3 2.614+2 3.772+1 5.865 3.000 2.122+1
4 4.112+3 1.081+3 2.842+2 7.490+1 1.993+1 5.671 4.000 4.089+1
5 3.741+2 1.342+2 5.098+1 2.052+1 8.844 4.399 4.999 6.734+1
6 3.826+1 2.012+1 1.121+1 6.687 4.394 3.498 5.999 1.012+2
7 5.888 4.208 3.202 2.644 2.468 2.900 7.000 1.430+2
8 1.216 1.121 1.108 1.205 1.519 2.482 8.001 1.936+2
9 3.166—-1 3.617~-1 4.459 -1 6.142 -1 1.003 2.175 9.003 2.539+2
10 9.751-2 1.343~-1 2.008 -1 3.408 -1 6.990 -1 1.940 1.000+1 3.160 +2
11 7.304+4 1.124+4 1.730+3 2.665+2 4.132+1 7.584 1.100+1 3.950+2
12 8.726+3 2.131+3 5.209+2 1.275+2 3.139+1 8.619 1.200+1 4.824+2
13 8.374+3 1.685+3 3.716+2 9.165+1 2.555+1 8.673 1.300+1 5.808 +2
14 8.250+2 2.745+2 9.778+1 3.759+1 1.570+1 7.706 1.400+1 6.799+2
15 1.314+2 6.362+1 3.252+1 1.763+1 1.022+1 6.853 1.502 +1 7.986+2
16 2.938+1 1.903+1 1.292+1 9.233 7.011 6.127 1.601+1 9.289+2
17 8.220 6.776 5.836 5.275 5.055 5.559 1.701+1 1.072+3

18 2.664 2.706 2.872 3.196 3.768 5.086 1.802+1 1.259+3
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TABLE II. Moments L (1), ~6=<p <1. The format A +n means A x 10%".
z L (-6) L (-5) L (-4) L (-3) L (-2) L (-1) L (0) L (1)
2 2.335-2 3.915-2 6.841-2 1.271-1 2.603-1 6.304—1 2.097 1.367+1
3 -1.731+5 -2.477+4 -3.544+3 —-5.740+2 -7.265~1 -9.920 2.749 5.610+1
4 —-5.497+3 —1.444+3 -3.794+2 -9.969+1 -2.614+1 —-6.392 4.173 1.297+2
5 —3.944+2 -1.337+2 —4.789+1 -1.805+1 -7.031 —-2.346 6.407 2.404 +2
6 ~2.564+1 -1.238+1 —-6.199 -3.179 —-1.546 -1.412-1 9.101 3.937 +2
7 -2.138 -1.292 -7.578 -1 -3.701-1 4.330-2 1.050 1.212+1 5.945+2
8 -1.334-1 -5.617 -2 3.336 -2 1.761-1 5.064 -1 1.733 1.542 +1 8.505+2
9 3.266-2 6.030 -2 1.148-1 2.412 -1 6.083 -1 2.142 1.896 +1 1.169+3
10 2.815-2 4.775-2 9.164 -2 2.076-1 5.917 -1 2.394 2.267 +1 1.488 +3
11 -1.367+5 -2.103+4 -3.237+3 —-4.982+2 -7.639+1 —-9.648 2.427 +1 1.930+3
12 -1.230+4 -3.004+3 -7.337+2 -1.793+2 —-4.364+1 ~8.825 2.625+1 2.433+3
13 -1.374+4 —-2.631+3 -5.419+2 -1.228+2 -3.095+1 -7.090 2.876+1 3.015+3
14 -9.331+2 -2.932+2 —9.731+1 -3.444+1 -1.294+1 -3.708 3.176 +1 3.591+3
15 -9.863 +1 -4.447+1 -2.089+1 -1.025+1 -5.147 —-1.285 3.509 +1 4.322+3
16 -1.340+1 -7.830 —4.683 —2.848 -1.651 4.079~-1 3.863+1 5.143+3
17 -1.758 -1.165 —-7.354~-1 -3.938-1 -1.709 -2 1.599 4,232 +1 6.062 +3
18 -1.326-2 1.000-1 2.370-1 4.252-~1 7.665—-1 2.467 4.622 +1 7.370+3

L(-2), are not known to be related to physical
quantities.

A. §(-2)

The quantity S(-2) is directly proportional to
the static dipole polarizability «, i.e., S(-2)
=a/4a3. Figure 1 shows the variation of S(-2)
with atomic number, together with the contribu-
tion due only to Sp(~2), which denotes valence
excitation or discrete excitation from the outer-
most subshell. A two-order-of-magnitude varia-
tion in each row of the Periodic Table is apparent.
The lowest values correspond to the compact,
“hard,” rare-gas atoms, and the largest values to
the diffuse easily polarizable alkali-metal atoms.
S(-2) is completely dominated by the contribution
from the outer shell. For the alkali metals and
alkaline earths, nearly all of the contribution
comes from the valence excitations of the outer s
subshell. For boron and aluminum, Sp(-2) (now
confined by definition to the singly occupied p sub-
shell) decreases. The nonvalence part, S,(-2),
is due to discrete, autoionizing excitations of the
outer s subshell. From these Group-III atoms to
the rare gases, both the valence excitation and
nonvalence excitation contributions decrease as
the atom shrinks and becomes less polarizable.
Hence, although the total oscillator strength in-
creases, S(-2) decreases as the oscillator-
strength distribution shifts to higher excitation
energy. Two general remarks follow from Fig.
1. First, S(-2) is very similar for atoms in the
same column of the Periodic Table. This is to
be expected since only the valence shell is im-
portant and its properties repeat in successive

rows of the Periodic Table. From this we can
predict that similar variations will be found
throughout the periodic system when s or p sub-
shells are filling. Second, the same qualitative
behavior can be expected for S(u) with u<-2
since these moments also depend exclusively on
low-energy excitations. This is observed in
Table I.

The theoretical and experimental determination
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Fig. 1. Moment S(—2) of the oscillator-strength dis-
tribution based on the Herman-Skillmann model, plotted
as a function of atomic number Z. The contribution from
the discrete excitations of the valence subshell is shown
by the light line with crosses, the total S(—2) being rep-
resented by the solid line with dots.
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of static dipole polarizabilities is the subject of
a vast literature. The most recent and extensive
compilation in this field is by Teachout and Pack.'®
Figure 2 compares our results with values of
S(~2) determined from polarizabilities recom-
mended by Teachout and Pack,® and from those
calculated by Stevens and Billingsley®® from
coupled-multiconfigurational self-consistent-field
(CMCSCF) wave functions stated to give polariz-
abilities accurate to within 5%. We consider the
agreement with experiment and more accurate
calculations to be good and the systematics ex-
hibited by our calculations reliable.

In Table III we compare our results with the
calculation by Stevens and Billingsley®® and with
a selected subset?'~*° of results from Teachout
and Pack. We have chosen to compare five
classes of values: (a) The present calculation,
which is equivalent to first-order perturbation
calculations in a Hartree-Slater basis. Effect
of higher-order perturbations are discussed by
Hameed.?! (b) The approximate uncoupled Hartree-
Fock results, denoted by SCF (as in Ref. 19) in
Table III. We include these quantities in our com-
parison because, owing to the comparative ease
of computation, they are available for all atoms
in the Periodic Table. (c) Coupled Hartree-Fock
(CHF) results. These calculations have been done
in relatively few cases (in all, for six atoms in
the first two rows). (d) So-called “accurate” re-
sults. The CMCSCF results of Stevens and Bill-
ingsley for the atoms Li through Ne which are
very refined calculations including effects of con-
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Fig. 2. Values of S(—2) selected from various sources,
plotted as a function of atomic number Z. The results of
the present work are denoted by solid dots, connected
by a solid line. Open circles represent CMCSCF results
from Ref. 20; “best” values, adopted by Teachout and
Pack (Ref. 19) are represented by asterisks.

figuration mixing. The variation-perturbation
results® on He are of comparable quality. Com-
parison of these results with CHF results repre-
sent the importance of configuration mixing for
S(-2) evaluation. (e) Experimental results. The
“preferred” experimental data from Teachout
and Pack are listed for comparison.

The data in Table III show that the Hartree-
Slater results are systematically larger than
those from the other souces listed. The only
exception is for Li, where the HS value is larger
than the experimental and SCF values, but smaller
than the CHF and CMCSCF results. Therefore,
the HS “atoms” are less stable when acted on by
a perturbing electric field than those from the
other theoretical models. Comparison of HS and
SCF values indicates that the latter tend to be
more accurate except for the alkali metals. The
general superiority of the SCF values may be at-
tributed to the proper treatment of exchange in
computing the SCF wave functions. For the CHF
treatment, the agreement with experiment is best
for the alkali metals and rare gases. The devia-
tions are largest for the alkaline earths, and
decrease steadily as the valence p shell fills.
This observation is explained by the comparison
of CHF and CMCSCF calculations, which indicate
the importance of configuration interaction for the
evaluation of S(-2). This effect is largest for Be
and Mg, in which the np® configuration strongly
admixes with the valence ns® configuration. For
succeeding atoms with increasingly filled np or-
bitals, the difference between CMCSCF and CHF
values diminishes.

B. S(-1)and L(-1)

The total cross section o, for inelastic scatter-
ing of fast charged particles by an atom®? is gov-
erned primarily by S(-1), and also depends on
L(-1) as well as on certain nondipole properties.
Because we have fully reported elsewhere®? the
evaluation of o, for all atoms up to Ar, we shall
present below only a few additional remarks on
S(=1) and L(-1) themselves.

The sum rule

SED=3 3 &z ®)

i=1j=1

is well known,"? where () denotes the ground-
state expectation value, x; a Cartesian-coordinate
component of the ith atomic electron, and a, the
Bohr radius. Therefore, S(-1) is roughly the
squared radius }3,(x3) of the atom, modified by
correlation terms {x, x;);.,. The quantity >, (x3)
is proportional to the diamagnetic susceptibility,
and its value has been computed within nonrela-
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TABLE IIl. Comparisoun of S(—2) values.

Atom S (-2) a (A% Source Atom S(=2) a (&%) Source
He 0.411 0.244 Present F 1.00 0.593 Present
0.371 0.220 SCF? 0.903 0.535 SCF?
0.3307 0.1960  Coupled HF? (P state) 0.79 0.47 Accurate
0.345 792 0.204 956 Accurate ©
0.3489+ 0.0003 0.2068+0.0002 Experiment d Ne 0.699 0.414 Present
. 0.666 0.395 SCF?
Li g; 'Z) iz‘g é’é;saent 0.5895 0.3494  Coupled HF!
42:5 25:2 Coupled HF® 0.592 0.351 Accur?,tee j
42.80 25.37 Accurate® 0.666 0.395  Experiment
37+3 22+2 Experiment Na. 41.3 24.5 Present
Be 19.9 11.8 Present 31.4 18.6 SCF?
13.1 7.77 SCF? 40.8<S5(~2)<41.2 24.2<a<24.4 Experiment 8
11.4 6.76 Coupled HFP
9.13 5.41 Accurate © Mg 31.4 18.6 Present
9.04<S(-2)<11.2 5.36<a@<6.62 Experiment® 23.8 14.1 SCF? .
20.31 12.04 Coupled HF!
B 8.84 5.24 Present 11.843<S(-2) 7.041.8<a  Experiment*:!
5.79 3.43 SCF <12.5:3 74218
(P state) 4.81 2.85 Accurate © :
Al 25.6 15.2 Present
C 4.39 2.60 Present 18.6 11.0 SCF?
2.95 1.75 SCF?
('s state) 2.99 1.77 si 15.7 9.31 Present
(1D state) 2.85 1.69 Accurate © 11.5 6.81 SCF?
Cp state) 2.80 1.66
N 2.47 1.46 Present P 10.2 6.05 Pres;ent
1.75 1.04 SCF2 7.46 4.42 SCF
(%s state) 1.70 1.01
@D state) 1.81 1.07 Accurate © S 7.01 4.15 Present
@P state) 1.77 1.05 5.82 3.45 SCF?
1.91+0.10 1.13+£0.06  Experiment?
Cl 5.06 3.00 Present
fo) 1.52 0.901 Present 4.40 2.61 SCF?
1.23 0.732 SCF?
(s state) 1.20 0.71 Ar 3.77 2.23 Present
(D state) 1.18 0.70 Accurate © 3.36 1.99 SCF? )
CP state) 1.16 0.69 2.649 1.570 Coupled HF!
1.30£0.10 0.77+0.06  Experiment? 2.770 1.642 Experiment’

2 Approximate uncoupled Hartree-Fock calcula-

tions in Ref. 21.

Coupled Hartree-Fock calculations in Ref. 22.
®Perturbation-variation method in Ref. 23.
dDielectric-constant measurements in Ref. 24.
®Multiconfigurational SCF calculations in Ref. 20.

Atomic~-beam deflection measurements in Ref. 25.

tivistic and relativistic Hartree-Fock models for
every atom,34-36

The quantity S(-1) is shown in Fig. 3, together
with the contribution due to valence excitations
only and the contribution due to all discrete transi-
tions Sp(-1). Consistent with Eq. (8), S(-1) is
the smallest for rare-gas atoms, and largest in
the vicinity of the alkaline-earth elements. The
local maximum in this region is expected to re-
peat in subsequent rows since barium is known
to be the largest atom. Thus, S(-1) shows the

€ Analysis of oscillator-strength sums in Ref. 26.

N Analysis of optical interferometry data in Ref. 27.
f Coupled Hartree-Fock calculations in Ref. 28.

J Analysis of index of refraction data in Ref. 29.
kArxa.lysis of oscillator-strength sums in Ref. 30.
ISee note added in proof.

same qualitative behavior as S(-2).

Differences do arise, however, because of the
increased importance of higher excitation ener-
gies in Eq. (5). One difference is a net increase
with Z; S(-1) reflects an increase in the number
of electrons, which is manifest in higher excitation
energies in the oscillator-strength distribution.
Another difference is seen in the contribution of
nonvalence excitations. Even for the alkalis, the
continuous spectrum contributes about 10%. At
Z=5 and 13, the valence-excitation part is small,
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Fig. 3. Moment S(-1) of the oscillator-strength dis-
tribution based on the Herman-Skillman model, plotted
as a function of atomic number Z. The contribution
from the discrete excitations of the valence subshell only
is shown by the light line with crosses, the contribution
from all discrete excitations by the light line with tri-
angles, and the total S(—1) by the solid line with dots.
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Fig. 4. Values of S(—1) selected from various sources,
plotted as a function of atomic number Z. Note that both
horizontal and vertical scales are logarithmic. The dots
connected by lines represent values from the Herman-
Skillman model. The squares show results (Refs. 17, 33,
40, 41) computed as ground-state expectation values [Eq.
(8)] in the Hartree-Fock model. The open circles show
accurate results based on ground-state wave functions
including configuration interactions (Refs. 32, 47). The
triangles represent values (Ref. 37, 38, 47, 48) derived
from experimental or semiempirical oscillator-strength
distributions.

being comparable to the continuum part and
smaller than the autoionizing part (arising from
discrete excitation of the outer s subshell), As Z
increases from the Group-II atoms to the rare
gases, the autoionization part decreases and the
continuum part increases; S(-1) thus decreases
less dramatically than S(-2).

Figure 4 compares our Hartree-Slater results
with Hartree-Fock calculations,'”3® and experi-
ment.3%® The difference between the solid circles
(Hartree-Slater) and the open circles (configura-
tion-interaction) can be attributed to correlation
effects. Note that this figure includes data for
Z >18 and indicates the extension of the periodic
structure to higher Z.

According to the Thomas-Fermi model,*® S(-1)
or »J;{x%) should be proportional to Z*/3; thus,
the gradual increase of S(-1) apart from the super-
imposed periodic variation is understandable. Yet
the Z dependence of S(-1) for rare-gas atoms is
roughly Z'2 as opposed to the TF prediction, Z'/.

Clearly, any picture based on the TF model or
rare-gas data could mislead an attempt to predict
the value of S(-1) for other atoms. The systemat-
ics seen in Fig. 4 give a much better guide,
although the behavior of transition-series atoms
may very well be complicated because of partially
filled d shells.

Figure 5 illustrates the dependence of L(-1) on
Z. This curve is similar to that for S(-1) but is
inverted because the In(E/R) weight factor is
negative for low E/R<1. Moreover, In(E/R)=0
for the range of excitation energieswhich embraces
much of the autoionization region. Hence, L(-1)
depends almost entirely on valence excitations, as
does S(-2), and shows no over-all increase with Z.

Table IV shows comparison of our results with
values selected from the literature, ?!7%3%3337%.40-53

Understandably our S(-1) values are close to
HF values, because the HS model we used is an
approximation to the HF model. The trend that
the HS values are smaller than the HF values and
thus happen to be closer to CI (configuration-inter-
action) or empirical values except for He and B
(the latter of which is not included in Table IV)
warrants no serious concern, as we have explained
elsewhere.%

Our S(-1) values agree with better values,
either from CI calculations or from empirical
oscillator-strength distributions, within 10% for
most of the atoms we treated. For Ar, as an
exception, the agreement is within 20%. There-
fore, it is probably safe to say that our data are
sufficiently realistic to reveal gross systematics
for all other atoms for which no better are avail-
able.

Turning to our L(-1) values in Table IV, we
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Fig. 5. Quantity L (1) for the oscillator-strength dis-
tribution based on the Herman-Skillman model, plotted
as a function of atomic number Z. The light line with
crosses shows the contribution from the discrete ex-
citations of the valence subshell only, and the heavy line
shows the total L(-1).

find that they agree even better with accurate
values than our S(-1) values do. Hence, our L(-1)
values for other atoms should be reasonably reli-
able. Our L(-1) value 2.47 for Ar agrees fairly
well with the empirical value of 2.85, but is
strongly incompatible with the moment-theory
bounds given by Langhoff and Yates.** We attribute
the discrepancy to the use of an inaccurate S(-1)
value 5.3 in the moment-theory analysis; although
the moment theory is mathematically sound, it

can yield misleading results unless input data

are highly accurate.

C. S(0) and L(0)

The sum S(0) is shown in Fig. 6, together with
ionization, valence excitation, and total discrete
contributions. The breakdown of S(0) is interest-
ing since it is an unweighted sum of the oscillator
strength and indicates directly the contributions
of ionization and discrete excitations to the oscill-
ator strength. Figure 6 shows that the ionization
part increases linearly with Z and represents the
bulk of the oscillator strength. Of the remaining
part, the valence excitation is significant for the
alkali metals and alkaline earths and autoionizing
transitions are significant when the p shell begins
to fill.

Figure 7 shows the shellwise contributions.
Here all subshells contribute roughly in proportion
to this occupation number Z,,. However, this is
not strictly adhered to, and the s=p and p—~s
channels exchange oscillator strength among them-

1417 o |ONIZATION
+ VALENCE EXCITATION
& ALL DISCRETE EXCITATION

S(0)

(¢} 2 4 6 8 10 12 14 16 18

Fig. 6. Moment S(0) of the oscillator-strength distri-
bution based on the Herman-Skillman model, plotted as
a function of atomic number Z. The total S(0) is denoted
by the solid line. Also shown are contributions from all
discrete excitations (4), discrete excitations of the va-
lence subshell only (+), and ionization (O).
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Fig. 7. Contributions from individual subshells to the
moment S(0), plotted as a function of atomic number Z.
Because the 2p—d contribution is ‘gQ per 2p electron ac-
cording to Eq. (4.22) of Ref. 2, the horizontal line for
Z =10 lies at #=6.67. The excess of this value above 6
is exactly compensated by the (negative) 2p—s contri-
bution inclusive of the 2p—1s and 2p—2s transitions.
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TABLE IV. Comparison of values of S(—1) and L (-1) selected from various sources.

Atom S(-1) Sources L (-1) Sources
He 0.822 Present work 0.6304 Present work
0.7899 HF 2P
0.7525 Accurate © 0.6382 Semiempirical
osp d-e
0.646£0.0015 Moment theory f
0.647+0.007 Moment theory 8
Li 5.865 Present work —-9.920 Present work
6.189 HF?
6.037 cr?
5.97 Semiempirical OSD 9+1
6.085 Variation-perturbation
theory
Ne 1.941 Present work 2.394 Present work
2.023 HF'’
2.027 HFX
1.881 ci!
1.885 Semiempirical OSD 41 2.360 Semiempirical
osp 4.1
1.924 cr® 2.431 Semiempirical
osD d+k
1.95 Adopted value™ 2.49+0.08 Moment theory f
2.48 £0.22 Moment theory &
1.897 Semiempirical OSD 9:n
1.96 Semiempirical OSD ¢+°
1.94 Semiempirical OSD dih
1.922 Theoretical OSDP
2.35+0.24 Variation-perturba~
tion theory ¢
Mg 8.619 Present work -8.825 Present work
9.18 HF'
9.194 HFK
9.19 HF?
Ar 5.086 Present work 2.47 Present work
5.502 HF)
5.474 HF?
5.455 HF*
4.437 Semiempirical OSD ¢:0
5.3 Adopted value ™ 4.34+0.74 Moment theory 8
4.268 crk 2.85 Semiempirical OSD 9+¥
4.409 Semiempirical OSD %+ 2.843 Semiempirical OSD 4%

2References 33 and 17; the Hartree-Fock
results given in these two references are
the same within a few tenths of a percent for
every atom He through Ar.

bReference 41.
CReference 42.

dThe acronym “OSD” stands for oscillator-

strength distribution.
¢Reference 32.
f Reference 43.
8Reference 44.
hReference 45.

i.Reference 46.
J Reference 40.
KReference 47.
1 Reference 48.
MReference 2, Table II.
"Reference 49.
Reference 50.
PReference 51.
9Reference 52.
' Reference 53.
S Reference 37.
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selves. The p-d chamnels, on the other hand,
behave hydrogenically since there are no bound d
orbitals and the [ =2 wave functions are largely
governed by a nearly hydrogenic field outside the
ion core. During the transition-metal series,
these partial cross sections will also exchange
strength with the other subshells and will no
longer appear perfectly linear.

The stopping power for fast charged particles
depends on L(0). Indeed, L(0) is the only nontriv-
ial target property contained in the Bethe asymp-
totic formula.’*5® In this context, one traditionally
discusses the mean excitation energy I, defined
by

In(Z,/R) = L(0)/5(0) = L(0)/Z. (9)

The contributions to L(0) from different shells
are seen in Fig, 8. First of all, notice that the
ordinate there represents the ratio L(0)/Z. The
contributions from every subshell to L(0) itself
increases with Z—a consequence of the universal
displacement of subshell oscillator strengths to
higher E owing to tighter and tighter binding. For
the lightest atoms (Z <6), the 1s —p transition
dominates. For succeeding atoms, the 1s-p
transition becomes relatively less important,

« TOTAL

1 1 1 1 1 1 L l_
O 2 4 6 8 10 12 14 16 18
z

Fig. 8. Shellwise contributions to the quantity L (0)/Z
plotted as a function of atomic number Z. The meaning
of the different symbols is shown in the insert.

while 2p —~d and 2s-p contributions rapidly grow
with the filling of the L shell but eventually flatten
out. The 2p — s transition contributes to L(0) only
modestly, because its oscillator strength is much
smaller than the 2p —d strength (as seen in Fig.

7) and is chiefly distributed at E near R, for which
In(E/R)=~0.

For the second-row atoms, the 1s-p contribu-
tions remain substantial, but keep declining. The
2p ~d contributions are now flat, but still amount
to over 50% of the total L(0)/Z. A remarkable
contrast to the second-row atoms to the first-row
atoms is that the 3s—~p, 3p—~d, and 3p—s con-
tributions are fairly small and comparable among
themselves. This observation means that much
of the oscillator strength of the M electrons reside
at fairly low excitation energies at which In(E/R)
is inappreciable.

The relative importance of the different shell
contributions seen in Fig. 8 serves as a general
guide for accurate evaluation of L(0), say, from
empirical (or otherwise accurate) oscillator-
strength distributions of various atoms and mole-
cules. For instance, the role of the 1s—p transi-
tion is invariably appreciable for any molecule
composed of atoms in the first two rows, despite
the relatively small number of K electrons. This
is so because the K-shell oscillator strength is
concentrated at high E.

It is apparent from the above discussion that I,
defined by Eq. (9) is roughly proportional to Z, as
Bloch®® pointed out on the basis of the Thomas-
Fermi model. Therefore, it is appropriate to
consider the ratio I,/Z as a function of Z, as
shown in Fig. 9. There we see a periodic varia-
tion mainly due to the valence-shell structure,
whereas the approximate constancy of I o/Z (ex-
cept for H and He) reflects the important role of
inner-shell excitations.

Table V shows comparison of our results
with earlier data selected from the litera-
ture 374041,444648,5257-68 Theoretically, L(0) or
I, has been evaluated (a) directly from a com-
puted or semiempirical oscillator-strength dis-
tribution 37457586366 (1) vig a variation-pertur-
bation theory, or (c) through a fitting?o44344.6162
of S(u) data by use of the relation

_ds(u)

L(O) d(ﬂ-) L=0 '

Our values of I 0/Z agree reasonably well with
accurate theoretical values obtained by methods
(a) and (b) for rare gases and for Li, and appear
in harmony with values from the S(u) fitting
[method (c)], except for a few instances. One
exception is Be, where our value 7,=38.6 eV is
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Fig. 9. Mean excitation energy I, for stopping power.
The vertical axis represents the ratio ,/Z measured in
eV, and the horizontal axis the atomic number Z. The
line with dots shows present results from the oscillator-
strength distribution based on the Herman-Skillman mod-
el. The open circles show accurate values derived from
semiempirical oscillator-strength distributions or from
theory. The triangles are values derived from stopping-
power measurements. The open triangles show data by
Turner and co-workers (Ref. 64), the filled triangles
those by Bichsel and co-workers (Refs. 65,67,68). The
dot-dashed line represents values from the local-plasma
model (Ref. 70). The horizontal dashed line represents
the result of the Thomas-Fermi model (Ref. 13).
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much lower than the 66.1 eV of Dalgarno,®* who
fitted Hartree-Fock values of S(u) for u=2, 1,
-1, and S(-2) from an experimental polarizability
to an analytic expression. For Be, the importance
of electron-correlation effects, missing from our
model, is well known.*® Since our S(-1) value is
close to the HF value, apparently Dalgarno’s

use of the experimental S(-2) is crucial for the
better I, value. However, the situation remains
unsettled, since the experimental I, of Table V is
derived from solid-state measurements.

Attention may be drawn to some discrepancies
from the values of McGuire,* who started with
the same Herman-Skillman?® potential V(r) to com-
pute df/dE and thence I,. He introduced a
piecewise linear approximation to »V(») to facili-
tate wave-function calculations, while we have
accurately solved the radial Schrddinger equation
with the numerically tabulated V(#). Thus, his
results should have been in complete agreement
with ours, if his mathematical approximation
were totally adequate.'® Actually, his values of
I,/Z are seriously discordant with ours for Z =8,
and exhibit a maximum for F rather than for Ne—
a trend that is hard to explain from physics.

Chu and Powers™ used the local-plasma model
of Lindhard and Scharff,” who had suggested set-
ting

Inl, =Z“f In[y# w ()] p(r)4ny? ar, (10)

where y is a constant and w,,(r) is the plasma fre-
quency

w,(7) =[47 & p(r)/m] /2 (11)

TABLE V. Comparison of L (0) and I, values selected from various sources.

Atom L (0) I, (eV) 1y/Z (V) Source
He 2.097 38.82 19.41 Present work

2.245 41.8 20.9 Semiempirical OSD ?*P
2.268 42 .48 21.14 Semiempirical OSD ?*¢
2.254 42.0 21.0 Variation-perturbation theory 4
2.26 42.1 21.1 Variation-perturbation theory ©
2.240 41.7 20.85 Su) fitf
2.11 39 19.5 S(u) fit8
2.26 42.19 21.1 S(u) fith

2.26+0.015 42.0+0.36 21.0+0.18 Moment theory !

2.28+0.03 42.1+1.3 21.05+0.65 Moment theory’
2.196 40.8 20.4 Theoretical OSD 2k
2.361 44.3 22.15 Experimental !
2.223 41.35 20.68 Experimental ™

Li 2.749 34.02 11.34 Present work

2.68 33 11 Variation-perturbation theory "
3.14 38.8 12.9 S(u) fit

2.66+0.30 33+3.5 111 S(u) fith
2.765 34.2 11.4 Theoretical OSD?*¥
3.03 37.4 12.5 Experimental !
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TABLE V. (continued)

Atom L (0) Iy(eV) 1,/Z (eV) Source
Be 4.173 38.62 9.65 Present work
6.323 66.1 16.5 S(u) fit
4.167 38.6 9.64 Theoretical OSD 2
6.047 61.7 15.4 Experimental !
B 6.407 49.00 9.80 Present work
6.457 49.5 9.90 Theoretical OSD2+¥
C 9.101 62.01 10.33 Present work
9.253 63.6 10.6 Theoretical OSD 2K
10.73 81.3 13.55 Experimental !
N 12.125 76.91 10.99 Present work
12.13 77.0 11.0 Theoretical OSD?*¥
12.58 82.1 11.7 Empirical OSD° of N,
13.19 89.6 12.8 Experimental !
12.22 78.0 11.14 Experimental ™
(o] 15.42 93.50 11.69 Present work
15.89 99.2 12.4 Theoretical OSD 2K
16.04 101 12.6 Experimental !
15.34 92.6 11.6 Experimental ™
F 18.96 111.8 12.43 Present work
19.30 116.1 12.9 Theoretical OSD 2 ¥
Ne 22.67 131.3 13.1 Present work
24.00 150 15.0 S(u) fitP
22.10 124 12.4 Theoretical OSD?*¥
23.06 136.5 13.65 Semiempirical OSD?+8
22.2+1.0 125+ 12 12.5+1.2 Variation-perturbation theory *
22.03x1.5 12320 12.3+£2.0 Moment theory !
22.50+2.6 129 + 38 12.9+3.8 Moment theory!
22,72 132 13.2 Experimental !
22.53 129.5 12.95 Experimental ™
Na 24.27 123.6 11.23 Present work
23.21 112 10.2 Theoretical OSD 2k
Al 28.755 124.3 9.56 Present work
32.28 163 12.5 Experimental !
32.60 167 12.8 Experimental *
Si 31.76 131.5 9.39 Present work
35.60 173 12.4 Experimental °
Cl 42.32 164.0 9.65 Present work
43.52 176 10.4 Experimental !
Ar 46.22 177.4 9.85 Present work
50.10 220 12.2 S(p) fitP .
37.8+8.5 111+61 6.2+3.7 Moment theory!
47.36 189 10.5 Experimental!
46.68 182 10.1 Experimental *
46.354 178.7 9.93 Semiempirical OSD?+"

2The acronym “OSD” stands for
oscillator-strength distribution.

PReference 57.
°Reference 58.
9dReference 59.
®Reference 60.

Reference 61.
8Reference 41.

T‘Reference 62.
! Reference 43.
I Reference 44.
kReference 63.
I Reference 64.
MReference 65.
"Reference 46.

%Reference 66.
PReference 40.
9Reference 48.
"Reference 52.
S Reference 67.
Y Reference 68.
UReference 37.
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corresponding to the local electron density p(#) at
distance 7 from the nucleus. This procedure
amounts to taking

LL ~(o(E-yho), (12)
where the brackets denote the ground-state expec-
tation value. Chu and Powers used the electron
density tabulated by Herman and Skillman® and

set y=2'%. This suggestion of Lindhard and
Scharff is based upon intuitive arguments rather
than a mathematical deduction from the standard
definition [Eqgs. (1) and (4)] of df/d E.

With this qualification in mind, we compare the
I,/Z values of Chu and Powers with ours and find
a remarkably similar trend. Either set of data
shows maxima for rare gases and minima in
the middle of each row of the Periodic Table.
However, the minimum in the second row is much
shallower in the data by Chu and Powers. The
most important difference is the absolute magni-
tude; the results of Chu and Powers are consis-
tently larger than ours by 20 to 30%.

Ball, Wheeler, and Fireman®'® have recently pub-
lished the dipole spectrum of the TF model, an
ultimate solution to the problem posed by Bloch.%®
The TF spectrum yielded I,/Z =4.95 eV, as indi-
cated by the dashed line on Fig. 8. Clearly, the
value is too small to be realistic (even for atoms
beyond Ar), and exemplifies a defect in the TF
model.

Experimental values of I, are customarily
deduced from fits of the Bethe formula (some-
times with modifications as noted below) to mea-
sured stopping powers at different charged-
particle velocities. Even though the stopping
power is now measured precisely and accurately
in many materials, the data analysis involves
considerable intricacies, as fully discussed by
Turner™ and by Bichsel.” For example, the fit-
ting expression often requires an additional term
commonly called inner-shell corrections,**"»7
which remain incompletely understood at present.
Thus, different tabulations®%7>™ of experimental
I, sometimes present discordant values. On pre-
paring Table V and Fig. 9, we chose as represen-
tative values the data given by Turner et al.®*
and by Bichsel and co-workers.®®¢"% (In doing so,
we by no means imply that the quoted values
should be recommended; critical evaluation of
the stopping-power data is beyond the scope of
the present paper.)

An additional qualification is that the experi-
mental I, values, except for those on rare gases,
stem from measurements on molecules and solids,
while our theoretical values pertain to free atoms.
It is true that the effect of atomic aggregation

upon I, should be accessory (as is implicit in the
Bragg additivity rule®®) because I, is largely
governed by inner-shell excitations. Neverthe-
less, a conclusive assessment of the atomic-
aggregation effect has so far been hampered by
lack of realistic I, values for free atoms. Our
data are meant to fill exactly this gap of knowledge.

For rare gases, our theoretical values are in
satisfactory agreement with experimental values.
The largest discrepancy from the value of Turner
et al.*® for He is not serious; the other experi-
mental value®® is virtually identical to accurate
theoretical values and indicates that our value is
a slight underestimate.

Our results for N and O agree excellently with
the values that Hanke and Bichsel®® deduced from
measurements of N, and O,. Also, our value for
N is close to the value that Dalgarno et al.%® cal-
culated from a semiempirical oscillator-strength
distribution for N,. The above observation cer-
tainly supports the Bragg rule. The somewhat
higher I, values of Turner et al.* for N and O
are based on stopping powers of many chemical
compounds, and probably suggest the extent of the
atomic-aggregation effect.

Large discrepancies of our results for Be, C,
Al, and Si from experimental values®*® must be
attributed to the atomic-aggregation effect; in-
deed, the experimental values all come from
measurements on solids, in which atoms are not
only in a valence state but are also interacting
among themselves. The above observation is in
accord with discussions by Platzman” and by
Fano.?®

D. S(1)and L(1)

The moment S(1) can be expressed*? in the
alternative form

4 /(0,8,)
s =g (E2E

HZEE £ (5] e

where p; is the momentum of the jth atomic
electron. The first term in square brackets is
the mean kinetic energy of all the atomic elec-
trons, which may be equated with the absolute
value |W,| of the total binding energy owing to
the virial theorem. For this reason we show in
Fig. 10 comparison of our HS S(1) values with
4|w,|/3R,|W,| being derived from the Thomas-
Fermi (TF) model and the HF model. The S(1)
values lie quite close to 4|W,|/3R from the HF
model,® and therefore show that the cross term
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Fig. 10. Comparison of the moment S(1) based on the
Herman-Skillman model with approximations to S(1) de-
rived from the total energy W from the Hartree-Fock

model (Ref. 35) (circles) and the total energy Wiy from
the Thomas-Fermi model (Ref. 39) (solid line).

(k#j) in Eq. (13) is small. (We shall later dis-
cuss the nature of the cross term in some detail.)
Our S(1) values also agree rather well with the
TF result®®

4|w,| /3R =2.0507 Z7/3, (14)

and the discrepancy from Eq. (14) may be largely
attributable to the well-known inadequacy of the
TF model at small 7.

For 1. >0, S(u) shows no periodicity but rather
increases monotonically as Z", where the value
of n increases faster than u (i.e., =1 for u=0,
n~% for u=1). In the context of Eq. (5), this
results from progressively weighting higher ex-
citation energies. The periodic effect of the
valence shell (low excitation energies) is there-
fore diminished, while the effect of inner shells
is to increase S(u) smoothly with Z, as a con-
sequence of an increase in the inner-shell contri-
bution to the oscillator strength.

At this point we present several remarks on
the cross term

P;* Pr
as( X ¥ ) (15)
J 7=k

in Eq. (13), which is certainly smaller than the
kinetic-energy term but is important on two
counts at least. First, © explicitly reflects
electron correlations in the ground state; note
that =0 in the Hartree model without exchange
effects. Second, the same quantity & causes the
specific mass-polarization effect of the nuclear
motion on atomic spectra (see p. 165 of Ref. 1).

Within the HF or HS model, it is possible to
show™ that @ <0 for all the atoms we treat
(Z <18). Moreover, finite contributions arise
only from pairs of electrons that have the same
spin and have orbital angular momenta differing
by unity. We see an excellent confirmation of the
above statements in the S(1) values that Cum-
mings'? computed from the HF model according
to Eq. (13). Indeed, 2 =0 for He, Li, and Be,
and <0 for all the succeeding atoms, which
have both s and p electrons. The § value amounts
to about —2% of the kinetic-energy term for B,
steadily becomes more and more important with
increasing Z, and approaches —-18% for Ar,
according to the HF results.”” Our HS S(1)
values show qualitatively the same behavior. Yet
€ in the HS model is a little smaller in absolute
magnitude than in the HF model; in the most
extreme example of Ar, the HS © value is about
~13% of the kinetic-energy term.

When one goes beyond the HF model, Q often
increases by a few percent of the kinetic energy,
because of more intricate correlation effects.
For instance, © >0 for He,*? and for Li,% when
it is computed from wave functions more accurate
than the HF model. Also the CI value®® of (1) for
Ne is greater than the HF values, as seen in
Table VI. Nevertheless, the increase due to the
CI effect in Ne is too small to offset the negative
sign of the HF Q values; thus £ remains negative
in the CI calculation.*®

Table VI presents comparison of our results
with those of other workers !"3740-45.48=50,52,62 Thq
general agreement in all cases is good. Hence,
we feel our values of S(1) are uniformly in the
range of 10% accuracy for all the atoms we treat.
This conclusion bears out also from comparison
with the HF values.'

The quantity L(1) appears as an important
parameter in the theory of straggling.®® As in
the case of S(1), it is a monotonically increas-
ing function of Z (see Table II). The discussion
of the behavior of S(1) can be carried over to
L(1) as the InE term has only a minor effect on
the gross Z dependence of L(1). Again, only
limited data are available for comparison. Table
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TABLE VI. Comparison of values of S(1) and L (1).

Atom S@1) Source L (1) Source
He 7.709 Present work 13.67 Present work
7.631 HF 28 13.6 S(u) fit?
8.167 Accurate® 13.72 Variation-perturbation theory ©
13.99 osD ¢
14.7+0.5 Moment theory ©
14.5+1.0 Moment theory f
Li 21.22 Present work
19.82 HF 8
20.74 ch
Ne 316.0 Prqsent work 1489 Present' work
302.85 HF' 1356.6 S(u) fit!
330.4 0sp! 1518 +158 Moment theory ©
318.5 osD¥ 1494+ 205 Moment theory f
293.7 HFX 1434+ 74.2 Variation perturbation theory"
321 osp! 1485.2 osp™
320 Adopted °
308.80 ci™m
315.3 osp™
Ar 1259 Present work 7370 Present work
1148.6 HF! 6270 Su) fit!
1150 Adopted ° 6623 £ 1024 Moment theory f
1115 0SDP

3Reference 41.
bReference 42.
®Reference 60.
dReference 58.
®Reference 43.

Reference 44.
EReference 17.
hReference 62.

VI shows that in those cases where comparison
is possible, the agreement is again good.

E. S(-3)

The amount of electron charge displaced when
an atom is put in an external uniform electric
field is proportional to S(-3). To see this signi-
ficance, we may write the atomic wave function
in the electric field € (directed along the z axis)
as u,+ €v,, where u, is the ground state. Accord-
ing to the first-order perturbation theory, we
have

zZ
Vo= Z E;‘(nl—ez z;|0)u,, (16)
i=1

n*0

where u, is the nth atomic state, E, its excita-
tion energy measured from the ground state, and
(nl-eX) 2. ,2,]0) is the dipole matrix element.
The summation };, included integration over con-
tinua. Noting the orthonormality of %, and the
definition of f,, we calculate the norm of vy, as

fReference 40.
J Reference 49.
KReference 50.
I Reference 45.
MReference 48.
"Reference 52.
°Reference 2.

PReference 37.

2

e - Z
S lwol2dte e diy=e 3 B2 (]S 2,100
n F=1

=4(a2/e)® S(-3), (17

where a, is the Bohr radius. Notice that e/a? is
the atomic unit for €. Because S(-2) is propor-
tional to the dipole moment induced by €, the
ratio S(-2)/S(-3) measures the mean distance of
charge displacement.

Understandably, S(-3) appears in the asymptotic
nonadiabatic potential for the interaction of an
atom with a charged particle.”™"

Table VII compares S(-3) values with some
data selected from the literature,!"*6:485378 Qur
values agree fairly well with presumably more
accurate values for Li, Ne, and Na, but only
moderately well for He. The discrepancy for Ar
is serious, and shows the inadequacy of the Har-
tree-Slater model for describing the lowest part
of the discrete spectrum, as seen also in the
S(-2) value (Table II). Yet, our S(-3) values
for other atoms in Table I should serve as a
guide for estimates until better values become
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TABLE VII. Comparison of S(—3) values selected from the literature.

Atom S(=3) Source
He 0.227 Present work
0.177 Recommended ? in Ref. 78
0.192 Uncoupled HFP
0.179 Uncoupled HF ¢
0.164 Coupled HFP
0.156 Coupled HF ¢
Li 261.4 Present work
295 Recommended in Ref. 78; variation-perturbation theory €
134.1 Uncoupled HF ©
Ne 0.340 Present work
0.318 Recommended in Ref.78
0.316 Semiempirical OSD f
0.266 Uncoupled HF ¢
0.239 Coupled HF
Na 266.5 Present work
275 Recommended in Ref. 78; semiempirical
155.7 Uncoupled HF ©
Mg 127.5 Present work
75.7 Uncoupled HF ©
52.8 Coupled HF ¢
Ar 3.20 Present work
2.08 Recommended in Ref. 78; semiempirical
2.47 Uncoupled HF ©
1.66 Coupled HF ¢

2The quantity B of Ref. 78 is equal to 4a{S(~3).

YReference 78.
®Reference 17.

available.

Table VII also includes representative results
of uncoupled HF” and coupled HF%® calculations.
Here we observe a continuation of the trend for
S(-2) seen in Table III. Namely, the HS values
are consistently larger than the HF values be-
cause the HS model predicts larger f values for
low-lying discrete excitations, especially the
resonance transition. The HS values are close
to the HF values for the “tight” atoms (i.e., rare
gases), but differ for the “loose” atoms (e.g.,

Li, Na, and Mg) by about a factor of 2. As in the
case of S(~2), the HS values are closer to recom-
mended values than the HF results except for Ar,
even though the HS model is an approximation to
the HF model. The situation for Mg remains par-
ticularly ambiguous owing to the lack of a recom-
mended value.

F. S(—4) and S(-6)

The moments S(-4) and S(-6) govern the fre-
quency-dependent polarizability and thereby
characterize optical dispersion properties such
as the refractive index and the Verdet coefficient.?

Table VII shows a comparison of our values

dReference 53.
®Reference 46.
fReference 48.

of S(~4) and S(-6) with some of the literature
values,163746485057.587980 Qur yalues for He, Li,
Ne, and Na agree moderately well with presum-
ably better values. The modest agreement indi-
cates once again that the HS model gives an
oscillator-strength distribution only fairly reli-
able for low excitation energies, which predom-
inantly contribute to S(-4) and S(-6). The dis-
crepancy of our values from better values is most
serious for Ar, where electron-correlation effects
both in the ground state and in any excited states
are substantial, chiefly owing to the unfilled 3d
orbitals.

IV. CONCLUDING REMARKS

The data of S(u) and L(u) we have presented
enable one to consider systematics of the dipole
spectrum of atoms from various points of view.
As an epilogue we point out another angle from
which the systematics may readily be seen.

Figure 11 shows plots of log,,S(u) as a function
of u for different atoms. The general behavior
of S(u) naturally classifies atoms into three
groups. The first group of tight atoms (i.e.,
rare gases) has S(u) that monotonically increases



118 J. L. DEHMER, MITIO INOKUTI, AND R. P. SAXON 12

TABLE VIII. Comparison of S(—4) and S(—6) with values selected from the literature.

Atom S(-4) S (—6) Sources
He 0.133 0.0505 Present work
0.0982 0.0321 0osp?
0.0976 0.0323 osp®
0.0967 0.0320 0osp ¢
0.0962 0.0319 Dispersion data ¢
0.0969 0.0323 Dispersion data ©
0.0966 0.0319 Dispersion data
Li 1824 8.90% 10% Present work
2137 Variation-perturbation theory &
2204 1.19% 10° Dispersion data ®
Ne 0.2008 0.09751 Present work
0.1798 0.07788 ospP
0.1815 0.079 66 Dispersion data ¢
0.179 0.0888 Dispersion data ®
0.187 0.084 Dispersion data f
0.1785 0.0766 osph
Na 1730 7.30% 10% Present work
1709 7.14%x 104 Dispersion data ®
Ar 2.872 2.664 Present work
1.681 1.349 osp®
1.746 1.571 Dispersion data d
1.760 1.512 Dispersion data ®
1.749 1.475 Dispersion dataf
1.720 1.444 osp!
3Reference 57. f Reference 80.
PReference 49. 8Reference 46.
¢Reference 58. f‘Reference 48.
dReference 16. ! Reference 37.

€Reference 79.

ST T T T T T T T T 1

TIGHT ATOMS INTERMEDIATE
ATOMS

T I I
LOOSE ATOMS

FIG. 11. Moment S )
for each atom as a function
of u. Note that the vertical
; scale is logarithmic. The
i open circles connected by
broken lines show semi-
empirical or otherwise
better values for He, Ne,
and Ar. The curve for H
is rigorous. All the other
curves are based upon the
oscillator-strength dis-
tribution for the Herman-
Skillman model.

N

log)o S(,U-)

N
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with u, a behavior that illustrates heavy concen-
tration of the oscillator strength at higher exci-
tation energies. The second group of loose atoms
(i.e., alkalis and alkaline earths) by contrast,

has S(u) characterized by a prominent minimum
near . =-1. Notice that the curve of log,,S(u)

to the left-hand side of the minimum is nearly
linear in p. This behavior shows the dominance
of the strong resonance excitation in those atoms.
[If the oscillator-strength distribution had a
single peak at an energy E,, then we would have
S(u)=Z(E,/R)*, in other words, log,,S(u) linear
in y.] The third group of atoms in the middle

of the Periodic Table exhibits an intermediate
trend in part similar to the loose atoms and in
part similar to the tight atoms. Going through
the first row, we observe a gradual change of

the curves, first B behaves similarly to Be,
succeeding atoms C, N, and O depart farther

and farther from the loose-atom behavior, and
finally F looks not much different from Ne. The
second-row atoms have qualitatively the same
trend, but the variation within the second row is
limited to a much narrower range. For this
reason we have omitted second-row atoms except
for Cl, which shows a behavior resembling Ar.
In Fig. 11 we have put H in the group of intermed-
iate atoms for no profound reason; actually, the
curve for H makes a class of its own.

Common to all atoms is the rapid increase of
S(u) for 4 >0. This general behavior is under-
standable because S(u) for >0 is dominated by
those high-energy parts of the dipole spectrum
which arise from tight inner structures. A fine
point to note in this context is a strong curvature
of log,,S(u) for u> 0, which testifies that the
oscillator-strength distribution has a considerable
spread at high energies. If the distribution were
sharply peaked, we should observe a nearly linear
increase of log;,S(u). Furthermore, every curve
in Fig. 11 should show a logarithmic divergence
at 1 =2.5, because oithe well-known asymptotic
behavior df/dE ~E~*° so long as an atom has an

s electron.

To indicate the reliability of the curves based
on our model calculations, we have included in
Fig. 11 empirical or otherwise accurate data
(shown by circles connected by broken curves)
for rare gases. Our HS data agree with accurate
data reasonably well for He, and excellently for
Ne. The agreement is modest for Ar, but looks
close enough (partly because of the logarithmic
scale) to make us convinced of the reality of the
gross systematics we have discussed. Indeed,
our data for Ar depart from accurate data more
seriously than those for any other atom for which
confident assessment is possible. (We have omit-
ted from Fig. 11 accurate data for loose and inter-
mediate atoms because we presented a thorough
comparison in Sec. III.) This departure for Ar
arises from the inability of the HS model to pro-
duce accurately the dipole oscillator-strength
distribution for the 3p - d channel. This case
represents a class of transitions for which this
model fails owing primarily to the approximate
treatment of exchange,'®! and secondarily to the
neglect of correlation effects in the initial and
final states.5*%% In Ar, the effect of these approxi-
mations is most severe near the first ionization
potential so that the errors in the moment S(u)
are most apparent for < -1 as seen in Fig. 11.

Finally, we plan to extend the present work to
atoms beyond Ar in order to establish the pattern
of behavior of S(u) and L(u) caused by the filling
of the d orbitals.

Note added in proof. W. C. Stwalley [J. Chem.
Phys. 54, 4517 (1971)] reexamines the analysis
of Ref. 30 in regard to the polarizability of Mg,
and obtains S(~2)=18.75.
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