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The properties of r-mode harmonic-oscillator coherent states are reviewed. In particular, the -algebra
diA'erential-operator realization of the creation and annihilation operators on the coherent states and their
diagonal projectors is constructed. A homomorphism between the algebra describing r-field modes and the
algebra describing r-level systems is exhibited explicitly. This homomorphism allows the projection of the
multimode calculus onto the multilevel calculus. In particular, multimode coherent states and projectors can
be used as generating functions for multilevel coherent states and projectors. In addition, the multilevel Q
algebra is constructed directly from the multimode Q algebra under this homomorphism. For illustrative
purposes, the Q algebra for the diagonal coherent-state projectors for two-level atomic systems is presented
explicitly in terms of a parametrization in the Bloch angles 0 and q. Two classes of applications are treated:
(a) the mapping of atomic-density-operator equations of motion into phase-space equations of motion for the
quasiprobability weighting function P; (b) the construction of equations of motion for the diagonal elements Q
of the density operator in the coherent states. It is shown that the solution to either equation with the
appropriate initial condition gives complete statistical information for the atomic system. It is shown
explicitly that the functions P and Q are related by a convolution integral.

I. INTRODUCTION

The mapping of quantum observables into c-
number functions is an old problem in quantum
mechanics' that has recently found a wide range of
applications in quantum optics. It is well known,
for example, that, in terms of the Glauber' co-
herent-state representation, virtually every den-
sity operator W(a, a, t) can be mapped into a c-
number function P(&, t), and that precise rules of
correspondence have been established to construct
the c-number equations of motion for P(o', t).' This
classical-quantum correspondence for Bose-E in-
stein observables has stimulated a number of very
beautiful analyses that have led to the reformula-
tion of the entire laser theory in terms of c-
number differential equations. 4

This classical-quantum correspondence is ef-
fected by introducing coherent states

I ~& = gf.(~)lm&,
m=p

f (o.)=e " "~'o. /v'm!

as an over-complete basis, and then replacing the
action of creation and annihilation operators
(a, a, [a, a j = I) on these states by first-order
linear differential operators acting on the function
f.(~):

& ~l& = n'(&)(~l,

n'(a) =, , +-,' o', n'(a ) = ™*.

A similar set of operator realizations may be ob-
tained for the action on ket coherent states using
the adjoint relation

n"(2') = [n'(~)]*.
Coherent-state projectors I n&(o'I provide a basis

in terms of which most physically reasonable
operators may be expanded. X)-operator algebras
also exist for projectors:

I ~&&~l& =n'(&)I &&&&I,

8n~ (a)=, + o.', n" (a ) = o'*.
(1.4)

A similar operator realization is obtained for the
left action of the operators A. The left- and right-
operator realizations onto projectors are related
by

The discovery of the coherent atomic states to
describe collections of two- and multi-level atomic
systems' has provided the motivation for more
recent work on the classical-quantum correspon-
dence for angular momentum operators. ' In par-
ticular, it has been shown that the quasi-proba-
bility-density P (Q, t), associated with an arbi-
trary density operator W(&', J, , t), can be used to
describe the time evolution of collections of two-
level systems. ' Furthermore, moments of the
collective atomic operators, as well as multi-
time correlation functions, can be represented
in terms of phase-space integrals possessing a

1019



1020 R. GILMORE, C. M. BOWDEN, AND L. M. NARDUCCI

close formal similarity to classical averages and
correlation functions for stochastic processes,
respectively.

The main problems that we wish to pose in this
paper are (i) to map multimode Bose operators
and multilevel atomic-shift operators into linear
differential forms; and (ii) to identify the rule of
correspondence that maps the differential operators
of a multimode harmonic oscillator algebra into
those of the multilevel Lie algebra.

The main results of our analysis are that (a) the
multimode coherent states provide a generating
function for multilevel coherent atomic states,
and multimode projectors provide generating func-
tions for multilevel projectors; and (b) the multi-
mode differential operators map homomorphically
onto the multilevel differential operators for states
and for projectors.

As a consequence of these results, we provide
explicit expressions for the linear differential
operators corresponding to the quantum observa-
bles of the multilevel algebra and prove that these
differential operators also form an algebra (K)

algebra).
This formalism finds a natural application in

connection with the dynamical evolution of c-num-
ber density functions. Here we summarize the
known results that have been derived in Refs. 6
and 7 for the P function, and introduce an alter-
native c-number description based on the diagonal
elements of the density operator in the coherent
atomic-state representations. The S-algebra
formalism can also be applied to equilibrium sta-
tistical problems. This is discussed in connection
with the so-called Bloch equation for the canonical
density operator.

II. THE r-DIMENSIONAL HARMONIC OSCILLATOR

A. Multimode Lie algebra

We consider a system with & independent oscil-
lator modes, each described by its creation and
annihilation operators a. , a (j =1, 2, . . . , &). The
2&+1 operators a, , a, , l span a Lie algebra with
commutation relations

[a„. , a~t] =f&...
[a, , a~] =0 = [a~t, a, ],

[a, , l] =0=[f,a, ].

B. Multimode coherent states

Since the multimode Lie algebra is the direct
sum of single-mode Lie algebras, coherent states
for the multimode system are direct products of
single-mode coherent states (1.1):

r

=I [exp(o', a,' —o',*a, )~ 0&

= ]Q exp(- &,*&~/2) exp(&, a,. )~
. 0& (2.2)

The diagonal "projectors" for the multimode
system are simply

0 6 =8 —— ~ ~ ~ Pyg

m=p n=p

(~)"" (~ ) "" (~*)"~" (~*)"
I' r 1 r

m~=p n&= p j=1

(2.4)

D. Multimode 5) algebras

Since the multimode coherent states (2.2) are
direct products of single-mode coherent states,
the multimode S algebras are obtained directly
from the single-mode K) algebras:

g)E ( ) (y ~B8 (aJ )
(2.5)

~l (a ) ~ ~RA( 1')

d

J

(2.6)

In fact, all properties of the single-mode S alge-
bras can be transferred to corresponding proper-
ties of the multimode a algebras. If A, B are
elements in the multimode Lie algebra (2.1), and
&, s are arbitrary complex numbers, then

Z~ (rA + sB) = &S (A ) + s K)~ (B), linearity

K)~(AB) =$~(B)Q~(A), antihomomorphism

~~([A, B])=[M (B), 5) (A)], antihomomorphism.

(2.7)

An identical set of properties holds for the alge-

(2.3)
Here & is a complex &-dimensional vector, and

r
n~n= Y a*a.

i=1

C. Multimode projectors
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bra S~. These properties hold even if the opera-
tors A, B are formal polynomial products of linear
elements in the multimode Lie algebra.

Furthermore, the relations between the single-
mode S algebras can be transferred to the multi-
mode system:

n'*(A)=n"g') u'*(A)=m'(A'). (2.8)

Relations (2.7) and (2.8) immediately lead to the
properties

Ss(rA + sB) = rent (A) + sS"(B), linearity

gP(AB) =8"(A)KP(B), homomorphism

u ([A, B])=[6"(A), 8 (B)], homomorphism.

(2.9)

Once again, these properties are valid for the
algebra Q~, and the operators A. , B may be formal
polynomial products of the elements in the Lie
algebra (2.1).

Finally, from (2.5) and (2.6),

[&'(A), &'(B)) =o, [&'(A), &"(B)]=0 (2»)
A A

for a,rbitrary A. , B.

III. THE r-LEVEL ATOMIC SYSTEM

A. Multilevel Lie algebra

We now consider a single system with & internal
degrees of freedom

~
J'), (g =1, 2, . . . , &). The

operators B» effecting transitions from state ~2)
to state ~&) obey the commutation relations

[&;„& 1=&,.~a -& ~5.

These are the commutation relations for the Lie
algebra u(&) of the group U(&}. As a result, the
multilevel Lie algebra is isomorphic to u(r).

It is very useful to observe that the Lie algebra
u(&) can be realized in terms of bilinear combina-
tions of boson creation and annihilation operators,
using the identification

E~~ =a~ a„. (3.2)

As a consequence, we may expect a rather deep
and beautiful connection between multimode prop-
erties and multilevel properties.

B. Multilevel coherent states

r r
xexp L Qy„„y„„+y„p„)I))

u=2 &=2
(3.3)

Since E,.„=E~,, the g, ~ must obey the relation
p,*.

~ =-y„,. in order for the argument of the exponen-
tial to be anti-Hermitian. '

The exponentials in (3.3) may be evaluated, '
resulting in the expression

In general, the ensemble of coherent states for
a system is obtained by applying the ensemble of
allowed unitary transformations to the ground
state of the system. " For a single &-level atom
with ground state ~1)=col(0, . . . , 0, 1), the most
general allowed unitary transformation is an «&
unitary matrix. The action of an arbitrary &&&&

unitary transformation on the ground state can al-
ways be written

exp Q(y p +y, „p, , „)), „„
8-2

XI

[I —xxt]~~~ x U(r —1)
«x 0

0 xr

X]

(3.4)

In this expression x is the (& —1)X1 matrix
col(x„, . . . , x,), and the parameters x„and y„=—y„,
are related by

x.= [y.sin(y'y)'")/(y'y)~',
(3.5}

x, = (1 —xtx)'~'

where yty = Qy fy„. The phase factor e'~ has been
explicitly removed from the column vector on the
right. We define the vector' col(x„, . . . , x„x,) to
be the coherent state for a single &-level system
obtained by applying the unitary transformation
(3.3) to the ground state of the system.

It is clear that &-level coherent atomic states

exist in one-to-one correspondence with the space
of coset representatives U(&)/U(& —1))8)U(1)
=SU(r)/U(r —1). This space may be identified with
the 2(r-1)-dimensional sphere S""":

x', +Q x„*x„=l. (3.8)

/xx, . (3.7)

Each of the three coherent-state parametriza-
tions described above involves &-1 complex pa-
rameters or 2(&-1) independent (real) param-

A third parametrization for coherent states that is
sometimes useful is given by
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In this expression, the tensor product 8 is taken
over the N identical r-level atoms, I'"(x) is the
fully symmetrized Nth-order tensor representa-
tion of U(r) of dimensionality (N+r —1}!/N!(r—1)!,
and the states lm& are the basis vectors for this
representation, defined by

7

g ~ I»"~I2&"" lr&"

p (m, !m, ! .m„!)'" (3.9)

The sum extends over all Nt permutations of the
m, + m, + + m„=& single-particle basis vectors
involved in the tensor product. In particular, the
N-particle ground state is IN, 0, 0, . . . , 0&.

The only important matrix elements in the sym-
metric representation I'"[U(r)] are those belonging
to the column acting on the ground state of the
total system. These are homogeneous mono-
mials. ' The coherent states for ~ identical &-level
particles in the group parametrization are then

eters: x„,x„*; y„,y„*; 7„, i „*. The coordinatization
involving the x„will be called the group paramet-
rization, since the x„are matrix elements in a
unitary group matrix. The complex numbers p„
will be called algebraic coordinates, since they
parametrize an element in the I.ie algebra u(r).
The parameters 7„will be called projective coordi-
nates, since they are obtained by stereographic
projection from the sphere. '

The three parameter spaces are bounded as
follows:. x x-1, y y-(m/2)', T 1 & ~. These
three parametrizations are generalizations of
(3.13), (3.7), and (3.11) of ACGT, ' respectively.
The relationship between these parametrizations
is shown in Table I.

The coherent states for an ensemble of ~ identi-
cal &-level atoms, evolving simultaneously from
the ground state under identical unitary transfor-
mations, are given by

N

=...t&U. ( }I»&=K I
&I'„",( ). (3.8)

p=l m=N

m~+ ~ ~ ~ +m =Nr

&&C(m„. . . , m„)(x, ) & ~ (x ) ~

(3.10}

These coherent states can be expressed in terms
of the algebraic and projective parametrizations
using the correspondence given in Table I.

C. Multilevel projectors

The diagonal projectors for the multilevel sys-
tem are simply

=g-g lm&c(m)
m=N n=Nx

x (x, ) i ' ' (x ) ~(x*)"i ~ ~ ~ ( x)"r

x C (n) (nl . (3.11)

Here the summation Q =„ indicates a sum over a!I
values of all m; subject to the constraint
m + '+m1

D. Multilevel Q algebras

The S algebras for atomic coherent states can
be constructed by the same techniques as the
algebras for the single-mode oscillator coherent
states. That is, we construct first-order linear
differential operators I)'"(4) (X=B,K, I,R) having
the same effect on the states or the projectors as
the operator A in u(r). In this case, we must con-
struct differential operator realizations for the
shift operators E» which span the Lie algebra
u(r). We shall illustrate this construction explicit-
ly for I) (E,,).

The effect of the shift operator E,, on the basis
vector I m„. . . , m„) can be determined using the
boson operator realization (3.2} on the symme-
trized states (3.9):

TABLE I. Relationships between the group, algebraic, and projective multilevel atomic
coherent-state parametrizations.

Group

xtf

in 5 (xfx)i/2
(+gal)~/2

XQ

g.—rgb)«2

Algebraic

)i/2

gt )i/2

XN

tan(gpss) i /2

(p gp)i /2

projective

TQ

(1+z g~)'~2

tan ~
(7 t ~}t~2

8
( f )f/2

Bound

x'fx ~1

yfg (21&)2
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E m»~ 1&'''& J~ ' ~ S~k~ ~ y~r)
—(m + 1)I/mal/2

&& ~m„. . . ,m, + I, . . . ,m, - I, . . . ,m„).

(3.12)
As a result, the effect of Ez~ on the coherent-state
projector

crating function for the multilevel calculus. In the
next section we will establish a homomorphic
mapping of the multimode calculus (Lie algebra,
coherent states, diagonal "projectors, " S alge-
bras) onto the multilevel calculus. As a conse-
quence of the results of the following section, all
the results of this section will be seen to follow as
trivial consequences of the corresponding results
of Sec. II.

IV. MULTIMODE TO MULTILEVEL MAPPING

of (3.11}is

m M~„x

(3.13)

The differential operator producing the same ef-
fect on the functions ~„„(x)can be determined to
be

x v+x+ V*=+ x„, +x„*, „. (3.16)
@=2 14 Q

In addition, since x, =(1-x* x)'' is not an inde-
pendent variable, &/sx, is not defined, and 'D~(E»)
must be discussed separately. One finds that
S (Z») is given also by (3.14), provided one de-
fines the symbol &/&x, to be

8 -1 8(x' V —x+ ' V*)—:—
8x 2x —— — — Bx+

1 1 1
(3.16a)

The realization S. (&») is obtained from gP(E»)
by the substitution N- &N and the definition

8
-=-,'x [~-(x v+x* v*)].

Bx1
(3.16b)

This definition is not unique in this case; however,
it leads to the simplest algebraic form of the S
operators. In addition,

~8+(A) +Ic(/tt} ~R4(/I) ~L(/I' t) (3.17)

The construction of the multilevel Q algebras
by these considerations is anything but straight-
forward. Furthermore, the direct verification of
properties (2.7)-(2.10) for these 5) algebras is an
extremely involved procedure.

For the reasons cited, it is useful to observe
that the multimode calculus can be used as a gen-

u'(Z, .„)=x, , +x,x,*[+--,'(x V+x+ V*)].

(3.14)

In this expression, we have defined

h(a& a~}=a~a~,

h(aJa~t) =h(a, a&) =0,

h(aJ) =h(a~) =h(I) =0,

(4.1)

provides also a homomorphism of the full multi-
mode Lie algebra onto the multilevel Lie algebra
given by a a~~t=E(»cf. 3.2).

Under the restriction (i.e., homomorphism) of
the full multimode Lie algebra to the number-pre-
serving subalgebra, we should expect the irreduci-
ble representations of the full algebra, with cor-
responding basis vectors ~m„. . . , m, ), to decom-
pose into a direct sum of irreducible representa-
tions of the u(x} subalgebra, characterized by the
constraints m1+ +~ & & 0 1 2 . . We
should therefore also expect that the multimode
coherent states decompose into a direct sum of
multilevel coherent states; that the multimode
projectors provide a generating function for the
multilevel projectors; and that the multimode X)

A. Lie algebra homomorphism

The multimode Lie algebra described by (2.1}
is actually only the spectrum-generating part of
the full multimode Lie algebra. The full Lie alge-
bra contains homogeneous polynomial products
of the boson creation and annihilation operators
of order 0, 1, and 2. In addition to the identity I
and the operators a~, a~ which add or remove one
photon from mode j, there are &' second-order
operators of the form a,. a~, which transfer a pho-
ton from mode h to mode g, 2&(&+I) operators
of the form a a~ (j ~h), which add one photon each
to modes g and & or two photons to mode J =&,
and their adjoints a~a&, which remove pairs of
photons. The set of operators I, a, , a, , a,.a„,
a,.a„, a„a, closes under commutation and therefore
spans a Lie algebra.

This Lie algebra has a variety of subalgebras
of interest. One such subalgebra is spanned by the
&' photon number-preserving operators a, a~. This
subalgebra is isomorphic with u(x). The homo-
morphism h of the full multimode Lie algebra onto
the number-preserving subalgebra, given by
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algebras map homomorphically onto the multilevel
R algebras.

B. Coherent state homomorphism

The multilevel coherent states are Poisson distrib-
uted in the (t) average .The homomorphism onto a
specific multilevel projector is provided by the
limit

(4 2)

The relationship between the oscillator coherent
states and the atomic coherent states is made
manifest by the change of variables

n, =x,«''», . o(= (o(t o()'~' 8''»= n„/~ o.,~.

ljm e Q A

(4.7)

The effect of this transformation is to express the
& independent complex parameters n (j =1,2, . . . t)
describing multimode coherent states in terms
of the & —1 independent complex parameters x„
(u =2,3, . . . , &) describing multilevel coherent
states. Two additional real parameters are re-
quired to make the transformation one to one.
These are n, the modulus of &, which provides
the spherical condition (3.6) on the variables x;,
and the phase y which is explicitly extracted from
&, to make x, real and thus completely dependent:
x, =(1 —x* ~ x)'~' [cf. (3.4) and (3.5)].

This change of variables relates the multimode
(2.3) and multilevel (3.10) coherent states:

This homomorphism can also be constructed from
(4.4) and its adjoint.

+&,* by 26. (4.8)

D & algebra homomorphisms

The homomorphisms (4.4} and (4.7) also provide
homomorphisms from the multimode S algebras
onto the multilevel X) algebras. This connection
is made very simply; as an example, we construct
the homomorphism explicitly for the S algebra:

n~(E, ») =n (ata») by (3.2)

=&~(a»)$ (at) by (2.7)

nl p m&=p The &/&o'» are expressed in terms of &/so.', a/94),
&/»», and &/»»* using (4.2) and the chain rule
(cf. Appendix A):

N=p

„,i, (xe'e)" ((m, + ~ +m, )!)~'j
e

~(x, ) ~. . . (x„)"(m„.. . , ~„}

8 I ~ 8
=-,'x*e j~

8A 8A1

1 1 8
+ j~, —x ' V+x* V+«'~ 2x, sip

~~g. («*')" &
~iv!

x
(4.3}

-j@
(x V+x V),x~e

2

As a consequence, the multimode coherent states
can be used as generating functions for the multi-
level coherent states. The explicit homomorphism
from the multimode coherent state

~
o') onto the

multilevel coherent state ~N } is given by

8 I 8 1 ' 8-j@8n„' " 8n ne'~ 8x

(( (x ~ V+x* V )

As a result, we find for all values of g, &:

(4 9)

lime- jNy

C. Projector homomorphism

(4.4)
(E,„)=x» yx»x, . — + o."

—»x»x~ (x V it* ~ V*),

where we have defined

(4.10)

The coherent-state homomorphism provides a
projector homomorphism as follows:

O(»(+N( )(»)N N-
Q Q

(M!N! )'~'e=o N=p x

8 1 8

ex, Rx, e(i/) ——— —)
(4.11)

(4.5)

(4.5)

We now apply the operator n (E») =S (a, a») to
the diagonal projectors (2.4), and follow by pro-
jecting the result onto the diagonal projectors
(3.11)using the homomorphism (4.7). Under the

y average, the derivative &/&(iy) vanishes. In
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addition, we have

~ ~

S 3 '~2}» g (l»2)Nn', +l» e " ', -Ne "; . (4.12)
() +2

f (Q)=
~

( -'8)"
, ( o -'8)' "

m+ J)
(5.4)

As a result, the g) algebra homomorphism is
given explicitly by

As indicated in Sec. III, we are interested in map-
ping transformations of the form

+...,"[n .(. v+—." v")j)
"
x

Nlim, e" u (a, a, )~n&(J&
a2~p

=("'
XA(Q)—= Q f (Q)f* (Q)X~J, m&(Z, m'~

tlat ~ ffl

=u (X)A(Q) (5.5)

where we have defined

(4.13}

(x V-x* V )=-
Bx 2x ——— — Bx +

1 I 1
(4.14)

The result (4.13}is obtained simply but indirectly;
it is identical to the result (3.14) which is obtained
more directly but less simply.

Analogous calculations can be carried out for the
algebras S», 5P, Ss. The realization S (E») is
obtained from S (E») by the substitution E- ,N—
and the definition (3.16b) for 8/», The. algebras
S", Ss are constructed from S,S» using (3.17).

The homomorphism (4.4) and (4.7) preserve the
properties (2.7)-(2.10) of the multimode S alge-
bras. As a trivial consequence, the multilevel
K) algebras possess these properties as well.

A(Q)X =—Q f (Q)f +, (Q)~ J, m&(Z pyg'g
m, fft '

=u" (X)A(Q), (5.8)

K) (E~l, ) =x„+x~x~*[A'- ~ (x V yx* ~ V)],

where s/sx, is defined by

(5.7)

where the superscripts L and 8 refer to the posi-
tion of the operator X with respect to the projector
A(Q). The differential operators 5) (X) and 5P(X)
are first-order differential operators acting on the
c-number functions f„(Q) and f„*i(Q). As shown in
Sec. III [Eq. (3.14)], the left differential operator
corresponding to 8» (2, &= I, 2) is given by

V. SALGEBRA FOR TWO-LEVEL ATOMIC SYSTEMS (x V-x* V*)—=-
2x ~ ~ ~ ~ ()x1 I 1

(5.8)

As an illustration, we specialize some of the
general considerations developed in Secs. III and
IV to the case of two-level systems. First, we
observe that the coherent states (3.10}for &
identical two-level systems can be expressed in
the familiar form

In the present case, a familiar realization of the
operators E&I, is provided by the set of angular mo-
mentum operators ~', ~,

21 9 I2 (5.9)

( 2j 1/2

IQ&= g
~

~

(slug&) (cos g) s"=-' (m ~~)

x(Zm&

using the algebraic parametr ization

(5.1)

Keeping in mind the parametrization (5.2) and the
explicit form of the partial derivative 8/»,

1 ~ 1

Bx~ cos(8/2} 8 0 2 sin(8/2)

(5.10)
x =cos&0, x2=e syn20. (5.2)

(5.3)

where the c-number functions f (Q) are defined by

The states ~Q& in Eq. (5.1) are the coherent atomic
states extensively discussed in Ref. 5 and paramet-
rized on the surface of the Bloch sphere. The
diagonal projector A(Q) = ~Q&(Q~ takes the form

J J
[Q&(Q[= g g [~, ~&«, ~'If (Q)f* (Q),

Eq. (5.7), for 2 =2 and & =1, reduces to

~(&„)=- ~(~')
0 8 j 0 8=e ~ ~sin0+cos2 — +—cot—
2 80 2 2

(5.11)

We now consider the indices j =1 and 0 =2. In this
case, Eq. (5.7) must be supplemented by the defini-
tion of S/», given by Eq. (5.8). The result is
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&'(&,.) =&'(~ )

8'l 8 i 8 8=e '~ ~sin8-sin' — ——tan-2j88 2 2 spy
'

(5.12)

these density functions. In Sec. VII we provide
an inversion formula for Eq. (6.2). For future
use, consider the following identity

dQPQ, t S~ J AQ = dQAQ J PQ,
In a similar way we can construct s~(E») and
m~(z„):

8 I . 8 Z 8B~(E ) =2&sin' —+-,' sin8 +—,(5.13)88 2 8y8, 8 i 8n (E ) =2&cos' ———,
" sin8

2 88 2 8y

(5.14)

Thus it follows that

where & stands for +, or z and where
I

SV'(Z') =e'" (&+1)sin8- cos'—
2 88

8 8
& (& ) =e '" (&+1)sin8+sin'—

2 88

(6.3)

(6 4)

8 z 8=-J'cos8+ z sin6 +—
88 2 8y

(5.1 5)

The explicit form of the right operators 5P(X)
follows from the symmetry relation

n"(x) = tu'(x')1*. (5.16)

VI. THE QUASI-PROBABILITY FUNCTIONS

P(Q, t) AND Q(Q, t)

A useful application of the S algebra is the map-
ping of operator equations into c-number differen-
tial equations. Here we consider two types of
quasi-probability functions associated with the
density operator W in the Hilbert space of angular
momentum: the P function, defined by the integral
representation

W(t) = $dfl P(A, t)A(O), A(Q) -=IO)(nl, (6.1)

and the Q function defined by the diagonal elements
of the density operator in the atomic coherent-
state representation

Q(n, t) = (niw(t)in&

dQ'P Q', t Q Q' (6.2)

The P function has been used to describe the evolu-
tion of a single-mode superradiant system, ' as
well as the approach to thermal equilibrium of a
(2&+1)-level atom. ' The Q function is analogous
to the function Q(o', t) = (o'~ W~ o') discussed in the
context of the Glauber coherent-state representa-
tion."

Here we focus on the formal derivation of the
equations of motion for both P(n, t}and Q(n, t),
starting from a fairly general class of master
equations, and then relate the physically relevant
expectation values of the dynamical variables to

(6.5)

AS (J,) =-(&+1)cos8- & sin8 —— . (6.6)88 2 8y'

(The general properties of the S operators for
multilevel atomic systems are discussed in Ap-
pendix B.) We consider a class of master equa-
tions of the form

W =Q C„A„WB
n, m

where C„are c-number coefficients and A„and
are arbitrary products of angular momentum

operators. In terms of the P representation, Eq.
(6.7) becomes

(6.7)

dQA(()) —=+C„„fd() P(A)A„d(fdB
n, m

'„=gc„.n'(A„)~(B.}p(n). (6.8)

Notice that the order of the left and right operators
in Eq. (6.9) is immaterial, since the left and right
operators commute with one another. In gener-
al, we may expect the operators A„and + to be
products of elementary angular momentum opera-
tors ~ . In this. case, it is easy to verify that the
differential operator S corresponding to

A

An = J"iJ"2 ~ ~ J"n

=gC„, JtdnP(n)u (A„)n"(B )A(n)
num

= J(dnA(n)QC„S (A„}$"(B )P(n, t),
n, m

(6.8)

where we have used the identity (6.3). The equa-
tion of motion for the function P(n, t) follows at
once from Eq. (6.8):
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is given by

~'(A. ) =&(~")" &(~" ).

Similarly, if & =J '''' ~™,we have

&(B )=~(~" )'''~(~"').

(6.10)

(6.11)

The diagonal matrix element of X has been eval-
uated in Ref. 5 and is usually no more involved
than trigonometric polynomials for physically rele-
vant operators.

In terms of the Q representation we have instead

In conclusion, the mapping of a master equation
of the form given by Eq. (6.7) follows from the
formal replacements

w p(n, t),

(x) =tr( fdQ lv(t)xA(ee))

2&+ 1
(o.i7)

A = P&-~ ~ ~ P~- x7 (A ) = & (Z") ) ~ ~ ~ u (P )

B = " —""-fP(B ) =P(P") ~ KP(J" )

A„wB - s (A„)KP(B )p(n, t). (o.i2)

It follows by inspection that the order of the par-
tial differential equation for P(n, t) is the same as
the largest number of elementary angular momen-
tum operators ~ ~ contained in the term A„S'B
of the master equation.

In a similar manner we can construct the dif-
ferential equation of motion for Q(n, t). To this
purpose we multiply Eq. (6.7) by the diagonal pro-
jector A(n) and take the trace over the angular
momentum degrees of freedom.

It follows that

Thus, in the Q representation the trigonometric
function (n~X~n} is replaced by the differential
operator X)~(X).

As a final application of the techniques developed
in this paper, we consider the mapping of the Bloch
equation of equilibrium statistical mechanics. Let
W =exp( PH) be-the (un-normalized) canonical
density operator corresponding to the formal
solution of the Bloch equation

= -~2 (HW +WH). (o.io)

According to the mapping rules summarized in
Eqs. (6.12) and (6.15), the equilibrium c-number
functions P(n, P) and Q(n, P) satisfy the following
differential equations:

tr[WA(n)] =- = -Re[u'(H)P(n, p)] (o.i9)

=P C„ tr[WS~ (B„)5P(A„)A(n)].
ff, m

The equation of motion for the Q function is

(o.is)

(6.14)

and

= -Re[&'(H) Q(n, P)], (6.20)

where S and G are constructed as indicated in

Eqs. (6.12}and (6.15}, respectively, and where the
"initial conditions" for P =0 are given by

w(t) -Q(n, t),

A =& ~ ~ "&""-~(A)=~(~"~) "~(~"")
B =~"~" ~".-&'(B )=~'(~"")" &'(J"~)

A„wB„-u (B„)xP(A„)Q(n, t). (6.15)

Thus, the mapping procedure for constructing
the equation of motion for Q(n, t} from the master
equation (6.7) can be summarized by the following
formal replacements:

P(n, 0) = 1, Q(n, 0) = 1. (6.21)

sQ ~ . sQ
BP' 9 6j, =-~sin& =-JcosOQ

o' =Qv, sc.

(6.2s)

As an elementary illustration, consider the equilib-
rium density operator for a (2&+1)-level system
described by the Zeeman Hamiltonian

H = -gp.g X J (6.22)

The Q function satisfies the differential equation

Once again, the order of the right and left opera-
tors is immaterial, because S and X) commute
w'ith one another.

The expectation values of arbitrary functions of
angular momentum operators can be calculated in
terms of the P function from the integral form

whose solution takes the form

(( ed') (1 —e ) coed)*'
QH, P =e

cosh ——s inh —cos ~ (6.24}

(x(t)) = dn p{n, t)(n~x(t)~n}. (o.io)
After imposing the normalization condition
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dQ 0, =1, (6.26) P(n) =& '{&[Ql/&[l&fdln) I']] (v.sb)

the moments of interest can be calculated accord-
ing to Eq. (6.17). It goes without saying that in

this elementary case, the partition function of in-
terest can be calculated much more directly. The
differential equations (6.19) and (6.20), however,
appear to offer some advantage over the operator
equation (6.18) in more complicated situations
where the partition function is not so readily ac-
cessible.

Q(&) = d'PP(P)l&t!I &&I' (7.1a)

and

q(n) = I d, n p(n )l(n ln) I . (v. lb)

Since I&pl o')I' =exp(—
I
n —pl'), (7.1a) is a convolu-

tion and may therefore be inverted by standard
techniques. If q(h) is the Fourier transform of

Q(n), i.e., F{qj=q(h), then the convolution trans-
formation theorem gives

q(&) = P (h) exp(-I hl'/4}, (7.2a)

VII. TRANSFORM BETWEEN P AND Q

In this section we derive the explicit transform
relations between the Q and P representations
discussed in Sec. VI. The generalization to multi-
level systems (&&2} is shown to be straightfor-
ward.

It is useful to compare the relations between the
Q and P representations for field systems and for
two-level atomic systems, which are given re-
spectively by

To make (7.3b) more explicit, we resolve the
functions Q(n), P(n), and I&n'In) I' in terms of a
complete set of functions defined on SU(2}:

p(n) =p(nh) =g p..., I „,„„(nh),d(J)
(v.4)

where d(J}=2J+I is the dimensionality of the uni-
tary irreducible representation r of SU(2), V(G)
is the volume of SU(2), h& U(1), Q &SU(2)/U(1),
and Ah represents an arbitrary group element in

SU(2). The Fourier coefficients of P(n) are

&mm = &~ I'mm ~& *dp & ~ (7.5)

The Fourier coefficients of the weighting function
l(n'ln)l' are

d„(n) d „(h)
V(H)

(7.6)

This integral can be expressed in terms of Cle-
bsch-Gordan coefficients"

fez V(G)/V(ff)
(2j+1) rn' -j -j -j m"

(7.7)

The only nonvanishing terms in this expression
are those for which J =L (integer), O~L ~2j,
m'=m"=0. Then, '~ using V(G)/V(H} = V[SU(2)/U(l)]
= 4m'

P(p) =& '{q(h) p(lhl'/4)]. (7.2a)

A similar procedure is used to invert (7.1b).
Since

where we have used F{e I "I') =e I&I'&'. -As a re-
sult, P(p) is given explicitly by

4a
00= 2j+f

j j
-j 0

(2j ~1)I(2j)!
(2j + 1 + L)!(2j —L}!'

&Q In) = P [r~,.(n')]*r',.(n) =r~, , (n'-'n),

F[q(n}]=&[P(n}] F(I&&dl»l').

As a result, P(n) is given formally by

(7.2b)

Eq. (7.1b) has the form of a convolution on the
gioch sphere SU(2)/U(1). As a result, (v.lb} may
also be regarded as a convolution on the group
SU(2}. If F represents the Fourier transform on

SU(2), then the convolution theorem assumes the
form12

The explicit form of (7.2b) is then Q, =P oR~.
As a result,

P(nh) =Q
L=0

d(L) Qi
I ~(nh), (7.9)

Fn= ""' 'r nnl( }
V(G)/V(ff) mP( )y (7.10}

Since P(nh) =P(n) and I' (Qh) = r~ (Q), the argu-
ment Qh in (7.9) can be replaced by the coset rep-
resentative Q. In addition, (7.9}can be expressed
in terms of the more familiar spherical harmonics
using"
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Q'„, = Q(nk}[I'~, (nk}]*d„(nk)

= v(» Jt @(n}[1~(~))*d„(n)

As a result,

(7.11)

p())) = f)()),0'g(Q')d„())'),

where

k(n n)= (2j")g4m

(7.12)

+L
x Q I"(n}[I"(n'}]*.

m=- J,

Since the kernel k(n, Q') is a function of the
group operation Q' 'Q only (by the addition theo-
rem for spherical harmonics}, the inverting rela-
tion (7.12) has the form of a convolution. In fact,
in the field case, (7.3a} can also be put into the
form of a convolution.

Finally, we exhibit explicitly the symmetry be-
tween the convolutions in (7.1b) and (7.12) as fol-
lows

Q(n}= k, (n, n')P(n')d„(n'),

P(n) = k (Q, Q') Q(n') d„(n'),

VIII. CONCLUSION

Coherent states for an ensemble of & identical
&-level atoms' are defined in terms of the coherent
state for a single &-level atom generated by a uni-
tary transformation applied to its ground state
[Eq. (3.4)]. The coherent states for an ensemble
of identical ~-level atoms are given as the tensor
product of the individual atomic coherent states
[Eq. (3.8)]. A linear combination of these &-level
coherent states was shown to represent the &-

mode harmonic oscillator coherent state [Eq.
(4.3}], and in particular, the diagonal projectors
for the &-level coherent states were shown to be
Poisson-distributed in a phase average of the
diagonal &-mode coherent-state projectors. [Eq.
(4.6}]. We have exploited the multimode-to-multi-
level homomorphism (4.1) and used the multimode

22 +I
k (Q Q')=Q(R~)" Q & (n')[I'~(n')]*. (7.13)

+=0 m=-Q

This result generalizes immediately to the ease of
the multilevel coherent states for && 2.

It is necessary to express the & complex vari-
ables n„and the derivatives s/an„(u =1,2, . . . , r)
in terms of the &--1 complex variables x;, the
derivatives &/&xj (j = 2,3, . . . ,~), and the two real
variables n, y, and &/&n, &/&y. The relations
between the variables themselves are straight-
forward:

A. =~. Q e~+j j
r

Pn„*n„=n2, (A1)

coherent states, the projectors, and the I) alge-
bras as generating functions for multilevel co-
herent states, projectors, and S algebras [(4.3),
(4.5), and (4.13), respectively].

Diagonal projectors appear frequently in quan-
tum statistical calculations, where one represents
operators, and particularly density operators,
using the coherent states as a basis." The S
algebra for r-level systems allows the replace-
ment of any operator by an equivalent c-number
differential operator. The S algebra has already
proven extremely useful in mapping reduced atomic
density operator equations of motion into differen-
tial equations for the quasi-probability distribu-
tion function P(n)."

For the purpose of establishing the S algebra in
the most familiar terms, we have specialized in
Sec. V to operators and coherent states in SU(2),
with the natural parametrization' of the coherent
states in the Bloch angles ~ and y. The Q opera-
tors corresponding to the angular momentum
operators J', ~, and ~, are given explicitly in
these variables by Eqs. (5.11), (5.12), (5.15), and

(5.16).
These results were applied in Sec. VI to the

mapping of a rather large class of density opera-
tor equations of motion [cf. (6.7)] into c-number
partial differential equations [cf (6.1) .and (6.9}].
This we call the P representation. In a similar
way, a mapping of the equations of motion for the
diagonal elements of the density operator in the
coherent states, called the Q representation, was
derived [cf. (6.2) and (6.14)]. It was shown explicit-
ly that the P and Q representations are equivalent.
A simple illustration was given in terms of the
mapping of the Bloch equation of equilibrium sta-
tistical mechanics.

Finally, we have shown in Sec. VII the explicit
connection between the quasi-probability distribu-
tion functions P and Q. The two functions were
shown to be related to one another by a convolu-
tion integral.

APPENDIX A: CHANGE OF VARIABLE
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The relationship between the derivatives is deter-
mined using the chain rule. For example,

8 8Q 8 8(P 8

8 Q„8Q„8Q 8 Q„8(P

APPENDIX B: THE SOPERATORS

The Q operators are defined by the identity

d2x, ~ ~ ~ d'x„P(x, t ) $'(J )A(x)

8xg 8 8xg

sn„ sx~ Bn„ sx) (A2) dx„Ax Q X Px, t,

2 n d n =p (n„dn„*+ n„*d n„), (A3)

Q

8Q„2Q ~

8Q
8Q+ 2Q

The other partial derivatives may be determined
in a similar way. It is possible to establish the
following identities:

2Q2 ~ 8Q

Q 8x~
0 1 x 1 +2Q' ~ 2Q Q 8Q*'

1 1 1

(A4)

0=,x~+0+
8x~

2 Q 8Q~+

A similar set of equations involving x,. is ob-
tained from the set (A4) by complex conjugation.
As a result we obtain, after a little algebra,

8 y g
8 1 8=-,'x, e '~ +sn, ' ' sn 2xe'~ s(imp)

The partial derivatives in (A2) and their complex
conjugates are most conveniently determined im-
plicitly, according to the following examp1. e:

r
n2 =gn„*n„,

(Bl)

where X is an arbitrary operator in the Hilbert
space of the r-level atoms and A(x) is the co-
herent-state projector defined by Eq. (3.11).

A special set of S operators appropriate for two-
level coherent states was introduced in Sec. VI
to construct the equation of motion for the quasi-
probability-function P(Q, t) Her.e we discuss the

operators for multilevel systems and summarize
their properties. First we observe that if A and
B are elements in the multilevel Lie algebra, and
& and s are arbitrary complex numbers, the fol-
lowing properties hold for the left operators:

$~ (rA + sB) = r$ (A) +s$ (B), linearity

(AB) =$ (A)$ (B), homomorphism

$ [A, B]=[$~(A), $~(B)], covariant
commutation
relations. (B2)

The right operators $" [also defined by Eq. (Bl)]
satisfy the properties

$"(rA+sB) =r$ (A)+s$" (B), linearity

&'(AB) =$"(B)$"(A), antihomomorphism

Ss[A, B]= [$"(B),$s(A)], contravariant
commutation
relations.

x, e '~
(x v+x* ~ v*)

2Q

1
(x v-x v*)

2x e'9'
1

1=-x e '&
8Q ' ' 8Q Qe'" 8x

(x ' v +x* v*).
2Q

In these equations, we have defined

(A6)

(A6)

The construction of the explicit form of the S
operators is a straightforward but lengthy process
which is based on an integration by parts of the
left-hand side of Eq. (Bl). In view of the proper
ties (B2) and (B3), we only need to restrict our
attention to the operators $(E») given by Eqs.
(3.14) and (3.16). We notice that the element of
volume contains 2(r —1) differential elements
d(Rex&) and d(lmx&) with J 01. Accordingly, one
must treat $(E») separately from $(E») (pal).
The operators $(E») and $(E,,), however, can be
expressed in the compact form

(A7) $'(E») =-x, +x,x,*[(&+r)+-,'(x V+x* V*)]

Expressions for 9/en„are obtained from (A5) and
(A6) by complex conjugation. $"(E,,) = [$'(E,', )]*,

(B4)
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where &/&x, is defined in the usual way, i.e.,
8 (x'v —g 'v ).Bx 2x|. 1

(as}

The algorithm connecting S and S operators can
be summarized by the following elementary re-
placements:

N N+r,

9

Bx)

and add -&~ z.

(a6)

¹teadded in proof. Many-atom systems have
been previously described by Bonifacio, Qim, and
Scully in terms of coherent boson states. " The
formal connection between their representation

and that of Arecchi et c/. ' is provided by Eqs.
(4.8} and (4. I) specialized to the case o. =( o„n,)
and x=(cos8/2, e '"sin8/2). It is worthwhile to
point out that, while the atomic coherent states
) 8, p) z correspond to a fixed specification of the
total cooperation number (or angular momentum),
the states ) n„a,) correspond to an undetermined
value of the angular momentum, i.e.,

ln„o.,) = QC, (o.„a)i8,q), .

The coefficients ( C~ ' form a Poisson distribu-
tion with parameter o., ~'+~ a, ~'. The relative
dispersion of the angular momentum A J/J' for
a state ( n„a,& is ( J n, ('+

i o, [') ' '. We are
grateful to Professors Bonifacio and Scully for
their stimulating comments.
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