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It is well known that the spectral line shape of the narrow change signal induced at one Doppler-
broadened transition by an intense laser field resonating with a second one can be extremely complex
and nonclassical in form, the exact details depending on such factors as the direction of observation

relative to the propagation direction of the laser field and its spatial form (traveling wave or standing

wave). Nevertheless, the area under the change signal line shape, i.e. its frequency-integrated intensity,

is always the same for a given laser field, and is independent of the coupling between laser and change-

signal fields, A proof of this equal area property, based on quantum-mechanical transition-rate theory, is

given for a three-level system composed of degenerate or near-degenerate states. The resulting expression

is also applicable to line-shape calculations for experiments which study resonance Auorescence induced

by intense laser or resonance radiation or other forms of excitation.

In a recently introduced spectroscopic technique
called laser-induced line narrowing, ' one observes
the radiation arising from a Doppler -broadened
transition as influenced by an intense laser field
resonating with a coupled transition' (Fig. 1).
Viewed along the axis of the laser field, a narrow
resonant change signal appears superimposed on
the Doppler profile. This change signal can be
studied either in spontaneous emission or by prob-
ing with a weak tunable monochromatic field, and
it was shown in Ref. 1 that the spectral line shape
observed in the two cases is the same.

The overall behavior of the change signal can be
understood by noting that the applied laser field
induces changes in the population of the common
level over a narrow range of velocities, and this
change in the velocity distribution manifests itself
in the radiation at the coupled transition. In many
cases, however, the spectral line shape of the
change signal is not classical in form and cannot
be accounted for on the basis of population changes
alone. ' ' For instance, the line shape of the change
signal viewed in the propagation direction of the
laser field can be significantly different from that
viewed in the reverse direction. Furthermore, under
certain conditions the change signal splits into
two. In other cases one portion of the line shape
may be in the absorption phase while another por-
tion is in the emission phase. In fact, even if the
level populations of the laser transition are equal,
so that no net population change can be induced by
the laser field, a change signal at the coupled
transition can still occur, an effect certainly not .

explainable on the basis of population changes.
These nonclassical effects occur because of the
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FIG. 1. Schematic experimental arrangement for ob-
serving laser-induced line-narrowing change signals.
The change signals can be studied either in spontaneous
emission or by probing with a weak monochromatic
field.

coherent nature of the interaction between the laser
field and the radiation at the coupled transition,
which gives rise to Raman-type transitions in
which atoms produced in one level can make co-
herent transitions to the other levels without loss
of phase memory.

Nevertheless, in spite of the complex shape of
the change signals, the area under the change sig-
nal line shape, i.e. its frequency-integrated inten-
sity, is always the same as that predicted on the
basis of population changes. ' We refer to this re-
sult as the equal area ProPerIy. This feature is
not restricted to inhomogeneously broadened tran-
sitions. In fact, the equal area property was first
pointed out in an analysis of a homogeneously
broadened three-level system. ' In this paper we
shall show that the equal area property follows
from general quantum-mechanical considerations,
that it holds regardless of whether the transition
is homogeneously or inhomogeneously broadened,
and that it is independent of whether the radiation
fields are in the form of travelling waves or stand-
ing waves.

The proof is based on the derivation of an ex-

pressionn

for the frequency-integrated spontaneous
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emission intensity occurring at one transition in
the presence of an intense laser field resonating
with a coupled transition. This expression is also
important in studies of resonance fluorescence in-
duced by intense laser radiation, as in the stand-
ing-wave saturation technique, "in level crossing
studies, "'"and in quantum-beat experiments. "'"
In the standing-wave saturation technique one
studies the narrow resonance produced when an
intense standing-suave laser field is tuned through
the central portion of a Doppler-broadened transi-
tion, as manifested in the spontaneous emission
occurring at a coupled transition. " In level-cros-
sing experiments one observes the fluorescence
change signal emitted by a transition pumped by
an intense cw travelling-wave laser field or by
resonance radiation as a function of Stark or Zee-
man tuning of the sample being studied. "" In the
quantum-beat effect one studies the modulation in
the decay curve of the fluorescence emitted from
near-degenerate coupled transitions excited by a
short pulse. "' In analyzing these effects, it is
important to consider the degeneracy (or near de-
generacy) of the energy levels involved.

A previous derivation" of an expression for
laser-induced resonance fluorescence has been
based on application of the correspondence princi-
ple to expressions for dipole radiation obtained
from classical theory. " The resulting expression
for the frequency-integrated emission signal de-
pends, by virtue of the approach, only on the di-
agonal and near-diagonal density-matrix elements
induced by the laser field. The off-diagonal ele-
merits, which give rise to Raman-type transitions
as described above, are not accounted for in this
treatment. The validity of this approach is not
immediately obvious especially since, as explained
above, the expression for the emission line shaPe
from such a system does depend on the off-diagonal
elements of the density matrix, and the line shape
is very different from that predicted using classi-
cal arguments. The derivation presented here also
provides a rigorous justification of the correspon-
dence principle result for laser-induced resonance
fluorescence.

The proof is obtained from quantum-mechanical
transition rate theory. " Consider a three-level
molecular system as shown in Fig. 2, where i, j,
and k represent the close-lying states (degenerate
or near-degenerate, e.g. M states) comprising
levels 0, 1, and 2, respectively. The molecules
are assumed to be at rest. (The results will be ex-
tended to moving molecules below. ) Level 0, the

common energy level, is radiatively coupled to
levels 1 and 2. To be definite, level 0 is taken to
lie above levels 1 and 2." The energy of the rnth

sublevel (m =i, j, or k) is denoted by E and
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FIG. 2. Three-level system. Each level consists of
a number of close-lying (degenerate or near-degenerate)
states. An intense field $(r, t) resonates with the 0-2
transition. The frequency-integrated spontaneous-emis-
sion intensity at the 0-1 transition is calculated.

H =Ho+ H~+ V +H ',

where H, is the Hamiltonian of molecular system
with stationary wave functions Q„having energy
eigenvalues E; Hf is the Hamiltonian of back-
ground radiation field with eigenstates ~n) and en-
ergy eigenvalues (n+ 2)k&o, with n being the pho-
ton occupation number and u being close to cu„;
V is the interaction Hamiltonian coupling laser
field to molecular system; andH' is the interac-
tion Hamiltonian coupling background radiation
field to molecular system.

The Schrodinger equation for the system is given
by

(rI„+H')(tt„+ q') =ih —(q„+q'),
8

(2)

where

H„=HO+Bf + V

ku, =E —E, denotes the energy separation be-
tween states m and m'. Let g(r, t ) represent a
laser field at coordinates (r, t) of carrier frequency

~~ resonant with the 0-2 transition (e~-&o )02but

not with the 0-1 transition. The envelope of b is
taken to be a general function of space and time of
arbitrary magnitude. We wish to calculate the
fluorescence at the 0-1 transition emitted into a
small solid angle, as influenced by the laser field
resonating with the 0-2 transition. The problem is
solved by considering the intense laser field to be
classical and the spontaneous emission field to be
quantized. A perturbation approach is adopted in
which the laser field interacting with the molecules
and the noninteracting background field together
are considered to be the unperturbed system. The
interaction of this background spontaneous emis-
sion field with the system is then treated as a
small perturbation. The complete Hamiltonian is
given by
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is the Hamiltonian of the unperturbed system with
wave function P„and y' is the correction to the
wave function caused by the perturbation H

'.
Consider a molecule at position r and time t,

produced in molecular state nz at t =t, with no pho-
tons present in the background radiation field.
The unperturbed wave function may be expanded in
the form

4

(„(r,t; t„)=mQ 4 (r, t; t„m)y„,( )e0xp(-„-(z„,+ ,'5 )~(t —-t,)),
m'=i, g, k

where the A 's, the time-varying probability amplitudes of the unperturbed system, are subject to the
initial conditions

(4a)

A„(r, t„t„m)=5(m, m'}.

At a later time the system may make a transition into state )n) of the background radiation field. The per-
turbation wave function will be of the form

(C)'(r, t; t„m) =P g a,„(r, t; t„m) t) ((n) exp]- (i/h)[E, +(n+2)5~](t -t,)j,
n m'

(5a)

where the a „'s, the time-varying probability am-
plitudes of the perturbed system, are subject to
initial conditions

The corresponding transition rate per atom is
given by

a,„(r, t„t„m)=0. (5b) d
W(r, t; t „m)=

dt ~ a„)'p(a)) d&u

To lowest order in the perturbation Eq. (2) reduces
to

H„(j)'+H'(t)„=ih s (C)'. (6) = 2Re aa~+~+~p

J

Substituting Eqs. (2)-(5) into Eq, (6), multiplying
on the ].eft side by (I( p*, , and integrating over
space in the usual manner, one obtains"

Z ~+~~ -i(co~. -u))(t-to)a. , = —~~.. .en~ (7)

where

H,'( = (ll PP(R)H'Q;(R)lo& d'H . (8)

Accordingly, the perturbation probability ampli-
tudes a» may be expressed in terms of the proba-
bility amplitudes of the unperturbed system, which
are assumed known. Note, however, that Eq. (7)
cannot be integrated explicitly, since A

&
is a time-

varying function. '
The probability of a molecule produced in level

m at time t, being found in any one of the states of
level 1 at time t&t, accompanied by emission of
a photon at frequency co is given by

( a»(r, t; t„m)('p((d) du&,
Jf

where Q,. indicates sum over all the states of
level 1 and p(u&) is the density of final photon states
of energy Su in volume V emitted into solid angle
dQ, given by

p(&u) = uP dQ V/8m'c' .

and the corresponding emission intensity is SulV. .

The net intensity of emission is comprised of con-
tributions from molecules produced at all initial
times t, in all possible states m. The rate of for-
mation of molecules in level m is given by n y,
where n is the density of molecules in state m in
the absence of the laser field and y is the net rate
of decay of population in level m due to radiative
and collisional processes. " Therefore, the net
intensity emitted at frequency ~ into solid angle
dQ, I(r, t, dQ), is obtained by multiplying 5&oW by
the rate of formation of molecules in state m, in-
tegrating over all possible initial times, and sum-
ming over initial states:

I(r, t, dQ) =hegn y W(r, t; t„m) dt, .

(12)

This is the desired quantity.
It is now necessary to obtain an explicit expres-

sion for W. Inserting Eq. (7) into Eq. (11) and re-
grouping the factors, one obtains

W= —,Re P A&(r, t; t „m)e
5~i, &'

where
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dt 'A*, , (r, t; t „m)
& to w P

did p(id)H, ', , (id)H, '. ;((o)e'(- (14)

(Note that H;,. =Hp;. ) It is convenient to choose new variables of integration r =t —t ' and g =(d —a;, . Then

~ t-tp OO

dg A(r, t —T;t„m) d$ p($ +id;., )H,', (f, +id;., )H,';($+&o;,)e ' . (15}

5= —i (pII,'t, II .; A]*. ,

with

r v(t -tp) e&u—Au .
"-u)t I ~ (t-tp)

(17)

(18)

Note that for times t —t, »1/ tidhe integration
limits of f are large, and p approaches its asymp-
totic limit. Accordingly, we have

W= —,Re p ( ir)H,',,H,' ;-A;A e ' "'". 'o)

j,t.i '

(19)

~~H' H' A A ' "'(' ") (20}-o

Since for id(t —t,)»1,
""sinuIm(=2 du =z,"-o u

we obtain

(21)

[A -iw;(t-t )][oA it@i~(t-to)]*-

The p and the II "s are slowly varying functions and
the time-varying phase factor exp(i $r) is dominant.
The latter is a rapidly varying function of $ and 7

except near the origin of the $-v plane. According-
ly, the slowly varying factors can be removed
from the integrand and evaluated at $ =0. This
gives

t-tp
8= p(id)H, ', H, , (id) drA,* (r, t —r; t „m)

p

e&VT e-f(d . t T

X
ZT

(16)
where 6 is to be evaluated at v-~. The function in

brackets is large near v=0 but falls to zero for
T»1/id. Since A; does not vary appreciably over
this time, "it may be removed from the integral
and evaluated at v=0. This gives

I (r, t, dQ) = (2)imp/t) ) Q p;; (r, t )H,',H,';,
' t1)$14

(23)

where p, Eq. (10), is the density of final states
and p;;, the ii ' element of the ensemble-averaged
density matrix, is defined as"

p;;, (r, t) = Qn y dt, [A,e-" '-"]

x[A, e-' i'"-'o)]* (24)

The quantity p obeys the well-known equation
of motion"

(
2

+v prem' [Hg'p]~m'

—y [)) -n„()(m, m ')], (25)

where H„ is the Hamiltonian of the unperturbed
system, Eq. (13), and y is the decay constant
associated with the mm' element of p. The left-
hand side of Eq. (25) is the total ("hydrodynamic" )

derivative of p and automatically takes into ac-
count the motion of an ensemble of molecules mov-
ing with velocity v.

Equation (23) is the desired expression for the
frequency-integrated spontaneous emission inten-
sity." Note that the P;; may be obtained directly
from Eq. (25). This is generally much simpler
and more convenient than calculating the amplitudes
A; using the Schrodinger equation. Also note that
in the case of a Doppler -broadened system it is
necessary to integrate P;; over the distribution of
molecular velocities.

The above derivation of Eq. (23) assumed that the
pump transition is distinct from the transition at
which the emission is observed (three-level sys-
tem). A similar calculation for the case where the
spontaneous emission at the pump frequency itself
is studied (two-level system) shows that Eq. (23)
holds identically in that case also.

For electric dipole radiation a more explicit
form of Eq. (23) may be given. In this case matrix
elements of H' are given by'~

(22)
H&, = i (2))h&u/V)'t'p„,

where

(26)

Inserting Eq. (22) into Eq. (12), one obtains an
expression for the net intensity emitted at the
0-1 transition into solid angle dQ:

(27)

with p, ; the electric dipole matrix element con-
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necting sta, te i of level 0 with state j of level 1,
and & the polarization vector of the emitted photon.
Specializing to a Doppler-broadened system, Eq.
(23) then becomes

I(r, t, dQ) =, g p. ;,,p, , (P...),Go dQ

~ ~ If~ 1$

(28)

where the brackets indicate integration over ve-
locity.

Equation (28) has a simple form. It is similar
to the usual expression for spontaneous emission
intensity as would occur in the absence of the laser
field, except that the sums are taken over the
nea. r-dia, gonal elements of p, as well as the diago-
nal elements. The diagonal contributions repre-
sent the changes in level population induced by the
intense field. . The near-diagonal contributions are
interference terms, and are due to the phase co-
herence induced between closely spaced states by
the intense laser field. Note, however, that the
off-diagonal elements of p do not enter into this
expression.

Equation (28) was obtained in Ref. 12 in a differ-
ent manner, by explicitly calculating the line shape
of emission induced at the 0-1 transition in the
presence of an intense resonant cw monochromatic
travelling-wave field, and then integrating over
the line shape. " The line shape expression was
found to be nonclassical, and was dependent on the
off-diagonal matrix elements of p, as well as di-

I(r, t, dQ) = ((u'dQ/2mc')(Poo) i p, ,J ', (28)

where (poo) is the velocity-integrated population
of level 0, as influenced by the laser field. This
result indicates that in a nondegenerate system the
frequency-integrated change signal intensity only
depends on the change in population of the common
level (0) induced by the laser field, independent of
the coupling of the laser field with the ra,diation
emitted at frequency ~. This is the statement of
the equal-a, rea, property of the laser-induced line-
narrowing effect.

agonal and near-diagonal elements. Nevertheless,
after frequency integration the expression simpli-
fied and reduced to Eq. (28). It should be noted
that in the derivation given here the form of the
A 's (and therefore the P 's) was left unspeci-
fied. Accordingly, the present result is general
and holds for an applied field of arbitrary spatial
and temporal form resonating with the 0-2 transi-
tion. This includes excitation either by intense
monochromatic laser radiation or resonance radia-
tion, continuous or pulsed, in the form of a travel-
ling or standing wave. En fact, the result also
holds for other forms of selective excitation, such
as by a monoenergetic electron beam, since in the
derivation nothing was assumed to restrict the
form of V, the interaction Hamiltonian coupling the
excitation source to the 0-2 transition.

In a nondegenerate system Eq. (28) becomes
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~~In obtaining Eq. (7) note that (i) matrix elements of V
connecting to level 1 may be ignored since the laser
field does not resonate with the 0-1 transition; (ii) in
considering spontaneous emission at the 0-1 transition
only matrix elements of H' connecting levels 0 and 1
need be retained.
For continuous and/or intense laser fields, A; varies
at a rate -po&h/h, where po& is the dipole moment ma-
trix element of the 0-2 transition. In the case of
transient excitation A; may also vary -p;, the decay
rate of state i. Both of these rates are much smaller
than ~.

~~A detailed discussion of the steps involved in obtaining
the ensemble-averaged transition rate from the transi-
tion rate per atom is given in Sec. II A of Ref. 1.
See, for example, B. J. Feldman and M. S. Feld,
Phys. Rev. A 1, 1375 (1970), Sec. 2.
The above derivation can easily be extended to the case
of the emission (or absorption) signal induced by a
weak tunable monochromatic probe field by considering
n photons to be initially present in the background
radiation field mode t.cf. Eq. (4a)]. One then finds that
the expression for the frequency-integrated gain coef-

ficient, t o. (~) dc@, only depends on the diagonal and

near-diagonal elements of p, and not on the off-diagonal
elements. For example, the stimulated emission coun-
terpart of Eq. (28) is that

J 47r~~
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@ pvy&g; (p;g') —Q 0 p;0;g(pg~~)
Ital 1 'I
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coordinate systems in Fig. 4 of Ref. 12 were incorrect-
ly labeled. Throughout the figure the polarization vec-
tor ~ of the laser field should be oriented in the verti-
cal direction, and the Stark or Zeeman field should
point to the right. Then in Fig. 4(b) the z axis should
be vertical, and in Fig. 4(c) the x' axis should be ver-
tical, with the~ axis pointing to the right. The angles
of the coordinate systems should be relabeled corres-
pondingly. With the above changes the intensity dis-
tributions are correct as drawn. A complete list of the
errata for Ref. 12 will appear elsewhere.


