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A minimum-variance principle for quasibound states is defined and utilized to investigate the corre-
sponding energy resonances. The variational principle yields simultaneously a resonance energy E
and a square-integrable wave function y, such that minimum variance is obtained for arbitrary var-

iations of a restricted class of square-integrable functions as well as with respect to variations of E. It
is further shown that the optimum energy E0 obtained from this method can simultaneously be writ-
ten as an expectation value of the actual Hamiltonian with respect to y = y(EO). The example of
the Stark effect in the hydrogen atom is studied. It is shown that the variationally obtained resonance
energy coincides with the real part of the complex pole of the m function of W'eyl, related to the
Green's function of the system under consideration. It is also shown that the corresponding numerical

application of the Rayleigh-Ritz variational method only gives meaningful results for field intensities
below 0.06 a.u. , as compared with the "exact" results of Hehenberger, McIntosh, and Brandas.

I. INTRODUCTION

The quantum-mechanical treatment of quasi-
bound states is a difficult problem for several,
reasons. The first stems from the fact that these
states are associated with energies in the con-
tinuous part of the spectrum, and this necessi-
tates a scattering-theory point of view. At the
same time, these states exhibit bound-state
character, which causes complications in the
scattering formulation. Although an application
of conventional methods designed for bound states
in this regard can give meaningful results, as
explained by Kato, ' the present situation is by no
means satisfactory. ' One of the most successful
methods to deal with these problems is the Fesh-
bach projection-operator technique. ' This tech-
nique has been particularly employed in the treat-
ment of autoionizing states of He and H .'

An essential degree of justification in this ap-
plication follows from the projection operator Q
constructed by Hahn, O' Malley, and Spruch. '
This situation changes, however, when more
complicated systems are considered, and the
search for new methods is needed.

Quasibound states also occur in such phenomena
as predissociation, the Stark effect, or tunneling
in general. All these phenomena provide exam-
ples of models which can be rigorously described
to &a high degree of accuracy. The fundamental
quantity in this description is the spectral func-
tion p(~). This function, or more specifically
its first derivative, has been studied previously
by means of the classical theory of second-order
ordinary differential equations due to %'eyl. ' '
Although dp/d~ has poles on the real axis for
energies corresponding to the discrete part of
the spectrum, it is a bounded function for (real)

energies in the continuum (disregarding bound
states imbedded in the continuum). In particular,
Titchmarsh' has shown that the poles of the Green
function (here related to dp/d~)' associated with
the SchrMinger equation for the hydrogen atom
in an electric field have moved down into the
complex plane. In this case, the real part of
the complex pole defines the resonance energy.
It is clear, however, that a resonance appearing
in a more complicated (than hydrogen) many-
body system may not be subject to a direct analy-
sis by means of Acyl's theory. Different tech-
niques must then be employed. In this note we
will study the occurrence of resonances via a
variational principle that directly yields infor-
mation about the real part of the complex pole.
Since the Stark effect in the H atom has been
studied in great detail, we have chosen this sys-
tem for testing purposes.

II. SPECTRAL DENSITIES AND THE NATURE OF THE
RESONANCE

Before proceeding we shall look at some rela-
tions which will help to reveal the nature of the
resonance. Vfe shall assume the resolution of
the identity in terms of the Stieltjes integral

cv dp QP

(2)

In writing (I) as a Stieltjes integral we have the
possibility of including both the discrete as well
as the continuous part of the spectrum. In the
following we will as a matter of convenience de-
scribe the continuum only; i.e., we will assume
that dp/dc' &~. Although specification of p is not
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W(E+ie)=(yl(E+i~-a}- lq &

we obtain, with the help of (1)

IA'(~)l'dp(~)
(E + ie —~)

(4)

necessary at this stage, we can use several
alternatives. If for the continuum states

(4(~)I t(~')& =5(~ - ~'),
we simply obtain dp(~) =d~. On the other hand,
if we define $((d} as the regular solution of the
radial Schr6dinger equation, i.e., where the
solution and its first derivative are 0 and 1 re-
spectively at the origin, then it follows that
dp(~) = (dp/d(d) d& where sdp/d(() is the imaginary
part of the Weyl-Titchmarsh m coefficient. 6' '
Introducing the Weinstein-Aronszajn function, '~

where y6 L' will be defined and discussed in Sec.
IIIp

f(&)=(yl))(e')+p '::+)~ ')
(15)

where we have absorbed gr(~} into dp~(ru), i.e.,

l~,(&)l'dp, (~) =dp (~) . (18)

We are now in a position to discuss the defini-
tion of a resonance. Since a bound state would
show up as a real pole of W(g) in (7), or in its
imaginary part vdp/d~, a quasibound state or
resonance defined by a complex pole of W(h) in
the vicinity of the real energy axis, would appear
as a sharp peak in dP/d(d, as 4& passes a certain
energy region. At the same time the principal-
value integral taken as a function of E changes
sign (passes through zero) in the same range of
energy. It would then be natural to define the
resonance E„as the energy which satisfies

where

z(~)=(ql((~)& . (6)

6
)t

dp(~)
(17)

where 6' indicates the principal value of the inte-
gral. From Ref. 11, we have the relation

1

& -f(&)'
in which f (8) stands for the Lowdin bracketing
function, def ined by

(8)

f(&) =(ylffl q & (q+I ffP(&-PffP) 'PffI q &, (9)

P=l —19 &&el .
Using the resolution of P for some convenient
dp (~)

(10)

P=
Jl lk (&)&dp,(~)(4,(~)l,

PHP$~((d) = ~gp((d),

we can write

Note that the weighted distribution lg(&)l'dp(+)
=dp(~} gives a third choice of a possible spectral
density, provided p has zero measure on Ao
=((ulg(&) =0). Taking the limit e -+0, one ar-
rives at

lim W(E+ie) =6' ) win-
,

" d() . dP
6 ~%0 E —(d d(d

Equating Re{W(E„})=0 from (7), identical to
(17), with the relation (8), where f(E„)will be
obtained from (15), we obtain, provided the
imaginary part of f(E„) is different from zero,

E, =&siffle&+(i'
~

E' (18)

which together with the interrelationship between
W($) and f($) [Eq. (8}]prompts the following for-
mula:

-)mf(E, ) =a, =m( d ) r

(19)

Note that Eqs. (18) and (19) correspond to a sepa-
rate evaluation of the real and imaginary parts of
8 =f(8), without taking their interdependence into
account. If f (g) varies slowly around E„, it is
easily deduced that dp/d& is a Lorentzian with
a complex pole at =p„-p&„. In general it may
of course happen that dp/d(d is asymmetric and
as a result the dependence between the real and
imaginary parts off (8) has to be taken into ac-
count while solving for h =f(8)." As an example
of asymmetry we mention the Stark effect in the
hydrogen atom for high fields. '

f((()=(p(H( 0)+f dp (m)

with

g,(~) =&~lffl I,(~)& .
Again taking the limit & - +0, one gets

(13)

(14)

III. A VARIATIONAL PRINCIPLE

It is well known that upper bounds to an eigen-
value are given by the Bayleigh-Ritz method and
the Hylleraas-Undheim theorem. ' Lower bounds
are in general more difficult to obtain although
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developments based on I owdin's bracketing func-
tion" are progressing. The most general lower
bound is given by Weinstein" in terms of the
width a((H&) defined by

v((H&) = (H') -(H&' =((H-(H))'&, (20}

where the average is taken with respect to a trial
function. Russek et al."have analyzed the bound-
ing properties of o in connection with the energy
levels and lifetimes of autoionizing states. Within
the framework of Feshbach's projection operator
Q a resonance is defined as the eigenstate of
QHQ provided the level shift can be neglected. In
order to discuss this situation, we shall consider
the quantity (E in the continuum)

o(E) =&a I(H-E)'lv &, &elm& =1, (21)

where y = y(E) is a square-integrable trial func-
tion depending on E. The wave function y, which
will be determined from 5(&x(E))=0 for E fixed,
will presumably mimic the inner part of the true
solution $(E)QL' of the Schrodinger equation (2).
The actual choice of trial functions will be dis-
cussed below. The minimization of u(E) has been
used by a number of people, see e.g. Bardsley
et al.'; see also Ref. 17. Extensions of the Ray-
leigh-Ritz principle to scattering problems have
furthermore attracted considerable attention, but
we will not discuss these aspects here.

The minimization of v(E), with E fixed, has a
very simple solution. Considering linear varia-
tions in the manifold I h&, i.e. assuming

q (E) =la& c(E) (22)

we obtain immediately a secular equation from

(23)&(u(E)) =&8q I(H-E)'I V& =o,
where the lowest root yields the minimum of
o(E), for E specified.

The following theorem can now be proved: If
y is fixed and(H& =(qlHly&, then

~(&H&) - u(E) . (24)

The proof follows easily from considering the
quadratic form

(25)E'-2E(H&+(H'& =o(E)-0,
which attains its lowest value for E =(H& .

Here we note in passing that u(E) can be made
arbitrarily small by enlarging the manifold I h& .
This follows directly from the properties of the
Hilbert space.

In order to trace the resonance, we vary the
energy in the continuous region of the spectrum
until the value of E which minimizes v(E) is found.
In this process we get qr(E) automatically by
varying its linear and nonlinear parameters for

each given E. Suppose that a minimum is obtained
for some 'E =E„ i.e.,

(E,) =&y(E.)l (H - E.)'I q (E.)& = (28)

but not necessarily

&y(E.)l(QHQ -E,)'ly(E, )& =o (29)

or

QHQ y(E }=E y(E, ) .
Using Russek's notation we can write

~(E,) = ~&(E.) + ~~(E.)

with

(E.) =&4 (E.)l(QHQ -E)'I p(E.)&,

op(E.) =(y F.)I (Q»)PHQI y(E, )& .
Instead of trying to get v =0 by solving the

eigenvalue equation for QHQ exactly, we are
instead obtaining a direct minimization of the
total width v(E). Although that may give the
result that a'o(E) 0 0, we still retain exactly

(30)

(31)

(32)

(33)

E.=(y(E,)IHlq (E,)&, &9 (E,)ly(E, )& =I (34)

Comparing Eq. (2'7) with the resonance behavior
previously discussed [Eq. (18)], we can conclude
the following. If for the choice y =y(E, ) =—yo in

(18), the principal-value integral can be neglected
in comparison to (y, IH I y, &, since we have indeed
minimized a mean-square deviation, then we can
write

E, =(N, IHI m, & =E, . (35)

It will be shown in the next section that this is
actually the case and that we may directly include
the level shift by a proper choice of the reference
function. This appears to be the optimal y from
the manifold spanned by lh&, determined through
a minimization of the width o'(E).

Then, if v(EO) is an absolute minimum for varia-
tions &(y(E)} within lh) manifold, i.e., o'(Eo)
& o'(E) for all E or interval containing (H), Eq.
(24} shows that v(EO) = v((H&) and

E, =(9 (E.)IHI y(E, )& . (27)

In other words by minimization of II (H- E)yll' we
have obtained an approximate square-integrable
solution to Eq. (2) such that the mean energy Eo
also yields minimum variance.

Let us now consider the definition of y(E,) in
relation to eigenstates of QHQ. If we let Q denote
the projection operator onto the manifold Ih&

=(h, }", =, , we have that

&y(E.)IQHQ E,I yP-, )& =o
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IV. NUMERICAL RESULTS AND DISCUSSION

A hydrogen atom placed in an electric field has
been chosen for testing purposes. The resonance
energies have been calculated for field intensities
ranging from 0.01 to 0.25 a.u.

The manifold ih) used for the determination of
the reference function yo was spanned by 15
Slater-type functions, five of them being of s
type, four of P type, etc. , ending with one func-
tion of g type.

The reference function y, was chosen to be the
one which minimizes the width ~i(II —E)i( —= o(E),
y E

~
h) . The minimization process consisted

both of linear and nonlinear variations, the latter
being the variation of the exponential parameter
& in the STO's. It turns out that nonlinear effects
are important for field intensities stronger than
0.1 a.u. , whereas linear variations alone give
good results for weaker fields; see Figs. 1 and 2.
The reference curve (broken line) on both figures
is based on data obtained by Hehenberger et al. '
from the real component of the complex pole of
Weyl's m function. . The variational approach
described in this note is presented in Table I and
in Fig. 3.

We have also calculated the resonance energies
by means of the conventional Rayleigh-Ritz meth-
od. The resulting curve, as well as the reference
curve due to Bef. 7, is shown in Fig. 3 for com-
parison. We notice that the resonance energies
obtained variationally as described here agree
with those obtained in Ref. 7. The agreement
holds for the whole range of field intensities con-
sidered (i.e., 0.01-0.25 a.u. ), and the largest dis-
crepancy between those two methods in this range

a -05e

a
-0.56

~ -0.5~

Ca
Co 052

0.05 0.10 0.15 0.20
Electric field intensity {a.u. )

FIG. 2. Same as for Fig. 1, but with G. =0.75.

does not exceed 5&10 ' a.u.
We observe also that the ground state branch ob-

tained from the conventional Rayleigh-Ritz method
in our case gives meaningful results for field in-
tensities below 0.06 a.u. As is well known this
method is not strictly applicable for an unbound
Hamiltonian. Still the rigor can be maintained in
the sense of Kato' that the outer part of the poten-
tial could sometimes be ignored in favor of the in-
terior part, and hence L' functions may somehow
represent the resonant wave function. The mini-
mum variance principle, as discussed here, seems
to extend the domain of applicability for which
these considerations are valid.

Our investigation of the minimum variance
method as applied to the determination of quasi-
bound states may essentially be summarized in
three statements.

(a) The optimization of rp with respect to linear
and nonlinear parameters for a fixed E yields
y =y(E) uniquely. Trial functions are chosen

—-0.58—a
Ol

a
-0.56—

al
L

C
-0.54-

4)
O
Ca
C
O~ -0.52—
Cl

0.05 0.10 0.15 0.20

Electric field intensity -{a,u. )

FIG. 1. Effect of nonlinear variations is demonstrated.
Their importance for field intensities higher than 0.1
a.u. is shown; for field intensities less than 0.1 a.u. the
effect of nonlinear variations is insignificant. The ex-
ponential parameter 0. =1.0. See Sec. IV for further
discus sion.
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-0,54
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0.05 0.10 0.15 0.20

Electric field intensity {a.u. )

FIG. 3. Resonance energies obtained by (a) the varia-
tional method described in text (solid line); (b) Weyl's
m-function method, after Ref. 7 (irregularly broken
line); (c) ordinary Rayleigh-Ritz variational method
(regularly broken line).
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TABLE I. Resonance energies shown in Fig. 3, and values of the exponential parameter G.

optimized for the case (a).

Field
intensity

{a.u. ) (a)

Resonance energy
(c)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.13
0.16
0.20
0.25

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
1,0
0.8345
0.9714
1.0817
1.2041
1.3313

-0.500 225 6
-0.500 909 2
-0.502 074 0
-0.503 767
-0.506 075
-0.509 145
-0.513091
-0.517 631
-0.522 085
-0.526 945
-0.541 418
-0.554 681
-0.570 173
-0.586 554

-0.500 225 6
-0.500 909 2
-0.502 074 2
-0.503 771
-0.506 105
-0.509 203
-0.513 077
-0.517 561
-0.522 415
-0.527 432
-0.542 156
-0.555 406
-0.570 529
-0.585 757

-0.500 225 6
-0.500 909 2
-0.502 074 0
-0.503 768
-0.506 090
-0.509 295
-0.514 427
-0.531 256
-0.580 912
-0.639 315
-0.821 293
-1.006 825
-1.256 903
-1.572 027

that are square integrable. Varying E as the
next step, obtaining minimum variance at E =So,
provides, in addition, expectation value charac-
ter, i.e.,

&0=(p(&,) ~H~y(E, )), &x(EO) = a minimum.

(b) Accurate determination of resonances for the
Stark effect in the hydrogen atom has recently
been obtained for very high field strengths (above
0.12 a.u. ) by Hehenberger et a/. ' This made pos-
sible a critical test of the minimum variance
method as applied to quasibound states with line-
width's of considerable magnitudes as well as
asymmetric shapes.

(c) Our results show that the application of the
minimum variance principle as presented here,

leads to a correct numerical description of the
real part of the actual resonance as a. function of
the field strength.
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