PHYSICAL REVIEW A 111, L040402 (2025)

Detecting quantum resources in a semi-device-independent framework
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We investigate whether one can detect the presence of a quantum resource in some operational task or
equivalently whether every quantum resource provides an advantage over its free counterpart in some black
box scenarios where one does not have much information about the devices. For any dimension d, we find that
for any resource theory with less than d> number of linearly independent free states or free operations, there exist
correlations that can detect the presence of a quantum resource. For this purpose, we introduce the framework for
detecting quantum resources semidevice independently by considering the prepare-and-measure scenario with
the restriction on the dimension of the quantum channel connecting the preparation box with the measurement
box. We then explicitly construct witnesses to observe the presence of various quantum resources. We expect
these results will open avenues for detecting and finding uses of quantum resources in general operational tasks.
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Introduction. With the emergence of quantum technologies
in the last few years, it has become clear that entanglement is
an indispensable resource for a range of intriguing technolog-
ical applications that cannot be matched by classical means
[1]. The applications of entanglement are practically endless
[1], spanning from quantum teleportation [2], to the secure
distribution of cryptographic keys among several parties [3].
However, it has become clear in recent years that entan-
glement is not the only resource for quantum technological
applications, and there are other applications that rely on other
features of quantum systems, such as coherence [4,5], imag-
inarity [6-9], asymmetry [10], contextuality [11-13], purity
[14-16], and so on.

To investigate the roles of these resources in a wide
range of information-processing tasks, we must first under-
stand their characteristics. Quantum resource theories [17,18]
proposed in quantum information science provide a unified
approach for studying all such resources, as well as their roles
and limitations in various quantum technological applications.
While the exploration of entanglement characterization began
in the early 1990s [1,2,19-21], it was not until 2008 when
Gour and Spekkens introduced the concept of resource theory
and established a comprehensive framework in their investi-
gation of the resource theory of asymmetry [10]. Soon after, a
number of additional resource theories—including coherence
[4,5], imaginarity [6-9], purity [14-16], stabiliser quantum
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computation [22], quantum measurements [23], and numerous
others—were introduced in the literature [18]. As a conse-
quence, a generic framework for quantum resource theories
has been established [18,24,25].

After identifying all of these resources, it is critical to
observe their actual presence in practical scenarios. One of
the most common methods for observing this is state tomog-
raphy. However, in general, this method is not economical as
it involves reconstructing the complete information about the
given quantum state. Moreover, one also has to trust their mea-
surement device. Similarly in the subchannel discrimination
task, it was shown in Ref. [26] that any resource state belong-
ing to a convex resource theory provides an advantage over
the free states. This result was then generalized to dynamical
resource theories [27], generalized probabilistic theories [28],
and nonconvex resource theories [29]. However, in all these
works, one must trust the subchannels along with the quantum
state.

Although the above works show that quantum resources
show an advantage over their free counterpart, the element
of trust in these scenarios makes the problem of detecting
resources not applicable in their formalism. For instance, if
one already knows the quantum state then there is no point
in detecting the resource inside the device. In this work, we
pose a stronger question. Can quantum states or operations be
detected to be resourceful without trusting them or any other
operation involved in the test? To put it simply, we enquire
whether one can operationally detect the resource of unknown
quantum states and operations. For instance, violation of Bell
inequalities serves as a witness for entanglement detection
[30] where one does not trust any state or measurements. Sim-
ilarly, assuming multiple independent sources, it was shown in
Refs. [31,32] that one can detect whether any of the quantum
states or measurements need to be imaginary, thus provid-
ing a way to detect imaginarity without trusting any state or
measurements.
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Here, we focus on one of the well-known semi-device
independent scenarios known as the prepare-and-measure
(PM), where one assumes an upper bound on the dimension
of the quantum channel connecting the preparation and mea-
surement [33]. In a practical scenario, it can be imagined as
a communication task involving two separate boxes, a prepa-
ration box responsible for creating quantum states, which are
then transmitted to a measurement box. A fascinating fact
of this scenario is that we can perceive those boxes as black
boxes, so removing the need for trust in them. The prepare-
and-measure scenario has been employed in the literature for
a wide range of applications, including random access codes
[34,35], informational principles [36,37], key distribution
[38,39], dimension witness [33,40], self-testing [41], and
more.

As we are concerned here with detecting resourceful states
and operations, we treat operations as generalized instruments
that can generate quantum or classical outputs. Restricting
the quantum channel to transmit d—dimensional states, we
then show that for any resource theory with strictly less
than d?> number of linearly independent free states or free
operations, one can always detect whether the preparation
box produces at least one resource state and the operation box
performs at least one resourceful operation. Then considering
particular resource theories, we construct explicit witnesses
to detect their presence inside the preparation as well as the
measurement box.

Quantum resource theories. Any quantum resource theory
is built on two basic components: a set of free states and a set
of free operations [18]. The quantum states that do not belong
to the set of free states are referred to as resource states. Any
resource theory must adhere to the fundamental constraint that
the set of free operations must not be able to generate resource
states from the set of free states. Hence, quantum resource
theories allow us to study quantum information processing
tasks under a restricted set of operations. As an example, in the
resource theory of entanglement, separable states denote free
states, local operations and classical communications (LOCC)
denote free operations, and information processing tasks are
studied under LOCC [1].

Let us now restrict to states and operations acting on
C4 for any d > 2, where d is the dimension of the Hilbert
space. The free states are denoted as o, and the collection
of these states is denoted by the set S;. Now, consider a
set of linearly independent density matrices |I'y;)(I's.i| € Su
using which any state o; can be written via their linear
combination. Equivalently, the elements of the set Sextq =
{IC4.)(Cy;l}; forms a basis of S;. However, it is impor-
tant to note here that S; might not contain all the density
matrices which can be expressed as linear combinations of
|T4.:)(T4.:|. Moreover, it is also important to realize that not
every linear combination of these states would result in a
valid density matrix. Furthermore, the set Sex 4 might not be
unique. Let us now denote the cardinality of Sex.q as 7(Sext.a)-
For instance, in the resource theory of coherence [5], the set
Sext,a 18 given by Sex.a = {10)(OL, [L)(1], ..., |d — 1)(d — 1]}
and thus n(Sex.q) = d. Similarly, for the resource theory of
athermality or asymmetry [10,42], we have that n(Sex.q) <
(d — 1)> + 1. Likewise, for the resource theory of magic or
imaginarity in dimension two [7,22], we have that n(Sex2) =

Py

o —

N2
{p(ilxy)}

FIG. 1. We consider two parties, a producer and an observer,
each situated in spatially separated labs. They can communicate
solely via a quantum channel supporting a quantum system of di-
mension d. The producer freely selects y inputs to prepare quantum
states p,, which are then sent to the observer. The observer, in turn,
selects x inputs to apply quantum operations on the received states,
yielding outcomes j. After all the runs of the experiment, one obtains
the probability distribution {p(j|x, y)}.

3. For any dimension d, the maximum cardinality of this set
in quantum theory is ax (Sext.a) = d* [43].

Similarly, one can also characterize free operations &,
based on the above procedure. Equivalently, we express
the operation §; using its Kraus decomposition as §; =
{K; 5,Kj.5,} which might not be unique. The operator K; 5, K54
corresponds to the positive operator-valued measure (POVM)
element of the operation §;. Let us denote the set of these
free operations as O, which is composed of all possible
POVM elements of every free operation acting on C¢. Let us
now consider a set of linearly independent positive operators
[Ag.iY{Ag4il € Oqg such that they form a basis of O,. Let
us denote the set of these linearly independent operators as
Oext.a = {|Ad.i){(Ag.il}i- The cardinality of Oex 4 is denoted
as n(Oext.a)- Any operator in Oy can be expressed as a linear
combination of elements in Oey 4. For instance, in coherence
resource theory n(Oex.q) = d [5], for the resource theory of
asymmetry 7(Oex.q) < (d — 1) + 1 [10], and for imaginar-
ity in dimension two [7], n(Oex.2) = 3. Again, in quantum
theory for any dimension d : nmax (Oext.q) = d Z, Any resource
theory defined on a d—dimensional Hilbert space, from now
on will be denoted as {S;, Oy}.

Prepare-and-measure scenario. We consider here a PM
scenario with two parties, producer and observer in two differ-
ent spatially separated labs who can communicate only via a
quantum channel that can support a quantum system bounded
by the dimension d. The producer can freely choose y inputs
based on which it prepares quantum states p, and sends it
to the observer. The observer now freely chooses x inputs
based on which quantum operations (generalised quantum
instruments) are applied on the incoming quantum state to
obtain the outcomes j. This is illustrated in Fig. 1.

From the above setup, one obtains the probability distri-
bution p = {p(j|x, y)} where p(j|x, y) denotes the probability
of obtaining outcome j by the operation box given the inputs
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x, y. In quantum theory, the inputs y generate a qudit state p,
acts on C¢ and the operation box does the operation denoted
by the POVM elements as O, = {K;XK x} such that they act
on C“. Now, the probabilities p(j|x, y) are given by

pilx.y) = Te(K] K «py). (1)

Notice that in the above description, we treat operations in the
same way as measurements in quantum theory. In general, it
may not be possible to obtain these probabilities in a practi-
cal setting. However, we show below that treating operations
similar to measurement allows us to detect the presence of
a quantum resource in a semi-device-independent way. To
detect resources in an experiment, one can restrict to measure-
ments and all below analysis follows straightaway. Further-
more, the correlations p in general are not convex due to the
dimension constraint. Consequently, finding general results
for semi-device-independent schemes is highly nontrivial.

Results. Using the above framework, let us now establish
two no-go theorems that apply to a large class of quantum
resource theories. The first one concerns the case when the set
of linearly independent free states is strictly less than d?.

Theorem 1. Consider a resource theory {S;, Oy} such that
the cardinality of the Sext s is N with N < d?. Consider now
the PM scenario described above with y =0,1,..., N and
x=0,1,...,d>—=1 and any j > 2 such that one obtains
p = {p(jlx,y)}. Then, there exists at least one probability
distribution py in quantum theory that cannot be realized by
free states in S,.

The proof of the above theorem can be found in Ap-
pendix A of Ref. [44]. Let us extend the above theorem for
resource theories with the number of linearly independent free
operations strictly less than d°.

Theorem 2. Consider a resource theory {S;, O,} such that
the cardinality of the Oey 4 is N such that N < d?. Consider
now the PM scenario described above withy =0, 1, ..., d> —
land x=0,1,...,N and any j > 2 such that one obtains
P = {p(jlx,y)}. Then, there exists at least one probability
distribution py in quantum theory that can not be realized by
free operations in O,.

We refer to Appendix A of Ref. [44] for the proof of
the aforementioned theorem. Theorem 1 shows that one can
always detect the presence of a resource state corresponding to
the resource theory {S;, Oy} in the PM scenario if n(Sext.q) <
d?. Similarly, Theorem 2 shows that one can always detect the
presence of a resource operation corresponding to the resource
theory {Sy, O 4} in the PM scenario if n(Oey.4) < d*. One can
straightaway infer from the above results that if one wants to
detect the presence of a resource state as well as operation
simultaneously, then one needs to consider the PM scenario
with y,x =0, 1,...,d*> — 1. Thus, we obtain the following
corollary of Theorems 1 and 2.

Corollary 1. Consider a resource theory {S;, Oy} such
that the cardinality of the Sexi.q and Oey.q is less than d>.
Consider now the PM scenario described above with x, y =
0,1,...,d*—1 and any j > 2 such that one obtains p =
{p(jlx,y)}. Then, there exists at least one probability distri-
bution py in quantum theory that cannot be realized by either
the free states in S; or operations in O,. Thus, observing pg
allows one to conclude that at least one of the preparations and
operations is resourceful.

Let us remark here that the number of inputs x, y in the
above corollary might not be optimal. As we will see be-
low for particular resource theories, there might also exist
probability distributions with a lower number of inputs x, y
such that at least one of the preparations and operations is
resourceful. For this purpose, we construct witnesses which is
a function of the probability distribution p of the form

Ws,.0, = f(P) < Bs,.0,5 2

where Bs, o, is the maximum value attainable using the free
states and operations in the resource theory {S;, O,}. Conse-
quently, the presence of a resource can be verified if the above
bound is violated. Furthermore, from a practical perspective
it is usually beneficial to construct witnesses as one can never
exactly obtain the theorised correlations in an experiment and
witnesses provide a gap that can tolerate such errors.

Witnesses. Let us begin by giving a generic construction of
witnesses that follows from Corollary 1. For this purpose, we
consider the probability distribution gy which cannot be at-
tained by free states and operations. As x,y =0, 1, ..., d?* —
1, the witness is given by

d’—1

Ws,.o, =— Y |pOlx,y) — poOlx, )| < Bs,.0,. (3)
x,y=0

where Bs, 0, = —¢ and ¢ — 0T. The value of the above func-

tional, when at least one state and operation is resourceful, is
0. Consequently, the gap between the values obtainable using
free states and operations and quantum theory is close to 0 and
thus highly susceptible to experimental errors.

Let us now construct witnesses tailored to specific resource
theories that can detect the presence of concerned quantum
resources that provide a considerable gap between the max-
imum value obtainable using free states and operations to
quantum theory. In the first example, we construct a witness
for the resource theory of coherence [4,5] in the PM scenario
when the channel is limited to transmit qubits. In this theory
free states and free operations are known as incoherent states
and incoherent operations, respectively. Here, we consider the
PM scenario with x =0, 1 and y = 0, 1, 2. In this scenario,
the witness to observe coherence can be constructed as

We = p(0]0, 0) + p(010, 1) + p(O[1, 0)
+ p(111, 1) + p(110, 2) < Be, “4)

where B¢ can be evaluated by considering incoherent states
and operations [5]. The Kraus operator of any incoherent
operation {K} is given by K; = Z,tol ci il f (@) il where f(i)
is a function with domain and range being the labels of the
incoherent basis vectors and thus the corresponding POVM is
given by K;'K = Z?;Ol lci, j|2|i) (i]. Consequently, restricting
to d =2 we find that 8¢ = 4. Any violation of this bound
would imply that at least one of the states and operations is
coherent. Now, consider the following states:

po = 10)(0l, p1 =)+l 2= 1)1l &)
and measurements,
Koo = 10)(0l, Kio=I[T)(1],
Koi = [H){(+.  Kio=I[=){=l, (6)
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where {|0), |1)} are the eigenvectors of % and {|F), |5}

are the eigenvectors of \/5*". Here, o, and o, denote
respective Pauli matrices. Then, we obtain that We = 1 +
40052(71 /8) =3+ «/5, which violates the upper bound, i.e.,
Bc = 4. Since the resource theories of asymmetry [10] and
athermality [42,45] are equivalent to the coherence theory
[4,5] for d = 2, the same finding can be readily applied to both
theories. Moreover, we identify that the above witness W¢ in
Eq. (4) can be generalized to the case where the channel can
transmit qudits. For this purpose, we consider PM scenario in
Fig. 1 such that the number of inputs in the preparation box is
d? and the operation box is two and is given as y = ygy; where
yo,¥1 =0,1,...,d — 1 and x = 0, 1. Based on the quantum
random access codes (QRAC) for arbitrary dimensions intro-
duced in Ref. [35], we represent the witness of coherence in
arbitrary dimensions as

d—1
Wea= D Y p(=ydxyoy) <

x=0,1y0,y1=0

Be.a (7

where fc, is the maximum value of Wc, attainable
using incoherent states and operations. In the Supplemen-
tal Material [44], we show that B¢y = d*> +d. Consider
now the following observables, Z; = Zf:_ol o Y], Xq=
Z,tol |i){i + 1| which are d—dimensional generalisation of
the Pauli Z, X observables, respectively, with w = emi/d,
Then, putting the states [y, ) = X}°Z}' |¥00) where [$oo) =

«/T((\/_—i_ 10y + Z Y along with the opera-
tions Z;, X, corresponding to input x = 0, 1, gives us We 4 =
d? + d~/d. This further shows us that the resource that gives
the quantum advantage in QRAC is quantum coherence.

In the next example, we consider resource theory of imag-
inarity [7,8] and construct a witness for the detection of
imaginarity. Again, we take the PM scenario with x =0, 1, 2
andy =0, 1,2, 3 and d = 2, and the witness to observe imag-
inarity can be designed as

W = We + p(012,3) — |p(02, 0) — p(1]2, 0)
—[pQ012, 1) = p(112, DI < Br. ®)

where (; is the maximal value attainable considering real
states and operations [7]. Consequently, to evaluate f;, we
recall that any state p € C? can be expressed as p = (1 +
10y + 1,0y + 1,0;)/2, where o; are Pauli matrices and r;’s are
components of the Bloch vector 7. Since in the resource the-
ory of imaginarity free states satisfy p = p*, one can readily
obtain that any free state can be expressed as p = 1/2(1 +
r,0; + ryoy). Similarly, for the POVM elements, we have
KJIK i = mol + m;o, + m,o,. Using these representations we
evaluate that §; < 5. Any violation of this bound would imply
that at least one of the states and measurements must be
complex. Now, consider the following states:

po =10){0l,  p1 = [+){+],
=100, p3 = [+y){+l. )
and measurements
Koo =10)(0l, Kio=ID)(1l, Ko1=[F){Fl.
Kio=I[=-){=. Koa=I+){+l Ki2=|=) (=l (10)

where |+£,) = 1/«/_(|0 4 i|1)). Using the above states and
operations one can obtain W; =4 + \/_ which violates the
upper bound given in Eq. (8). In Appendix B of Ref. [44], we
also find specific witnesses for resource theory of purity and
magic.

Discussions. In the above work, we considered the
prepare-and-measure scenario where the measurement box
can perform generalized quantum instruments. By limiting the
quantum channel to transmit d-dimensional states, we showed
that for any resource theory, be it convex or nonconvex, with
fewer than d? linearly independent free states or operations, it
is always possible to detect if the preparation box produces at
least one resource state and if the operation box performs at
least one resourceful operation. While our focus in this letter
has been on single-partite systems, it is worth noting that our
method can be readily extended to multipartite systems, thus
encompassing the resource theory of entanglement.

In subchannel discrimination task [26], it was shown that
for every convex resource theory, the advantage obtained
is directly related to the robustness measure of the state,
which followed from the fact that all the quantum resources
share the same linear witness. In our case, such a general
relation cannot be obtained due to the simple fact that one
might not always obtain a linear witness to observe the ad-
vantage in the PM scenario [For instance, see the witness
of imaginarity in Eq. (8)]. Moreover, to detect resources of
unknown states or operations in the PM scenario, one would
require more than one state, operations and witnesses to de-
tect resources which in general will be different for different
resource theories. Furthermore, the optimization again has to
be carried over the states (unlike subchannel discrimation),
so the advantage cannot be related to the robustness mea-
sure of some states. However, it remains an interesting open
problem whether the advantage obtained is related to some
operational quantity. This would further address the problem
of finding sufficient conditions to violate a witness in the PM
scenario.

A practical application of our results can be illustrated in
the following scenario: Imagine an experimental laboratory
intending to purchase a preparation box guaranteed to produce
at least one resource state, and an operation box that performs
at least one resourceful operation. Suppose the experimenter
has access to a quantum channel capable of supporting at max
qudit systems. In that case, they can verify the capabilities of
these boxes without needing to trust them or have any prior
knowledge about their workings.

Our work opens up various interesting questions in the
PM scenario. As previously mentioned in Fig. 1, our ob-
jective was to confirm the presence of resources within the
two boxes. Now, consider a situation in which the boxes are
intended to generate resource states and operations only. It
would be interesting to verify if the PM scenario can confirm
whether the boxes are functioning as intended, i.e., they are
not producing any free state or operation. The following is
another intriguing follow-up question to consider: Consider
now a theory in dimension d where free states are given by
the convex combination of d? linearly independent vectors.
An instance of such linearly independent vectors is provided
in Ref. [43]. Let us for the time being assume that it is a valid
resource theory. Even if such a set of free states would not
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include every quantum state in dimension d, it is not clear
whether such a resource would be detected using the above
results in the PM scenario.
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