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We analyze the impact of spin-orbit and Rabi couplings on the dynamical stability of spin-orbit-coupled spin-1
Bose-Einstein condensates for ferromagnetic (FM) and antiferromagnetic (AFM) interactions. Determining the
collective excitation spectrum through Bogoliubov—de Gennes theory, we characterize the dynamical stability
regime via modulational instability. For AFM interactions, the eigenspectrum reveals the presence of both stable
and unstable avoided crossings (UACs), with the first-excited branch undergoing a double unstable avoided
crossing. In contrast, with ferromagnetic interactions, only a single UAC, which occurs between the low-lying
and first-excited branches, is observed. Furthermore, the eigenvectors demonstrate the transition from densitylike
to spinlike behavior, as the collective excitation shows the transition from the stable to the unstable mode for
both the FM and AFM interactions. In the multiband instability state, eigenvectors display spin-density mixed
mode, while they show spin-flip nature in the avoided crossing regime. Our analysis suggests that spin-orbit
coupling enhances the instability gain, while Rabi coupling plays the opposite role. Finally, we corroborate our
analytical findings of stable and unstable regimes through numerical simulations of the dynamical evolution of
the condensates by introducing the perturbations upon quenching the trap strength. The dynamical phases show
the formation of complex domains with AFM interaction, which may be attributed to the double unstable avoided

crossings in such a system.
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I. INTRODUCTION

The experimental realization of spin-orbit-coupled (SOC)
Bose-Einstein condensates (BECs) in the laboratory has
opened up a wide range of phenomena to explore in ultracold
atomic physics. Initially achieved in experiments using two of
the three hyperfine components of the F = 1 states of 3’Rb
[1] and later extended to spin-1 BECs [2,3], these systems
have become a rich ground for exploring exotic quantum phe-
nomena such as superfluidity [4], supersolidity [5], metastable
supersolid [6], modulation instability [7-9], vortices [10,11],
and solitons [12,13].

Numerical simulations have played a crucial role in reveal-
ing many fascinating properties of spin-orbit-coupled (SOC)
Bose-Einstein condensates (BECs), primarily through the use
of the mean-field Gross-Pitaevskii equation (GPE) [14-20].
Liu et al. reported exact soliton solutions and manifold mixing
dynamics in quasi-one-dimensional SOC spin-1 BECs [21].
Numerical studies along similar lines suggest the emergence
of more complex phases, such as multiring structures,
stripes, and superlattice solitons, in quasi-two-dimensional
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SOC spin-1 BECs [22]. In addition to these phases, the
formation of symbiotic spinor solitons has been reported
in quasi-one-dimensional and quasi-two-dimensional spin-1
ferromagnetic (FM) BECs [23]. For antiferromagnetic
(AFM) SOC spin-1 BECs, the formation of stable multipeak
vector solitons in quasi-one-dimensional systems has been
reported [24]. Recently, He and Lin, through linear stability
analysis, demonstrated the existence of stationary and
moving bright solitons in quasi-one-dimensional SOC spin-1
BECs under the influence of a Zeeman field [25]. Several
works have reported the coexistence of spin precession and
the separation between the spin components because of
anomalous spin-dependent velocities arising solely due to the
spin-orbit coupling, which also results in the appearance of
complex dynamics in the condensate [26—28].

Collective excitations, which are low-lying excitations
of the quantum gas, are key in determining the stability
properties of ground-state phases and the behavior of
fluctuations and superfluidity of the BECs. Landau developed
a framework for studying elementary excitations in superfluid
helium, while for weakly interacting Bose gases, Bogoliubov
derived the theory of elementary excitations [29]. Numerous
theoretical works have reported the collective excitations in
single-component BECs [30-33]. Goldstein and Meystre [34]
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extended the Hartree-Bogoliubov theory for multicomponent
BECs and derived the quasiparticle frequency spectrum.
They further demonstrated that interferences arising from
cross coupling between condensate components resulted in a
reversal of the sign of the effective two-body interaction and
the onset of spatial instabilities. The stability of supercurrents
in BECs with one-dimensional spin-orbit coupling has also
been studied, showing that supercurrents in the plane-wave
phase exhibit dynamical instability. Additionally, extensive
energetic instability analysis of supercurrent states has been
reported [35]. Several laboratory experiments have reported
collective excitations, including phononlike excitations in a
dilute gas of 87Rb [36] and collective excitations of sodium
atoms in a magnetic trap [37]. Khamehchi e al. [38] used
Bragg spectroscopy to measure the collective excitations in
SOC BECs, revealing the presence of phonon-maxon-roton
modes, as predicted using the Bogoliubov—de Gennes (BdG)
theory. In a recent study, Ravisankar et al. [39] investigated the
influence of spin-orbit coupling and Rabi coupling strengths
on the dynamical instability of quasi-two-dimensional binary
BECs using Bogoliubov theory. Their analysis revealed the
presence of phonon, roton, and maxon modes, demonstrating
that increasing the spin-orbit coupling enhances instability,
whereas stronger Rabi coupling stabilizes the system.

Modulation instability (MI) is a measure of instability in
BECs, which is one of the key criteria for determining the
stability of the condensate. In recent years, numerous studies
have been carried out to examine the stability of the spinor
condensate using MI. For instance, Kasamatsu and Tsubota
[40,41] demonstrated that MI in two-component BECs leads
to the formation of multiple domains and regions dominated
by solitary waves. Robins et al. [42] and Zhang et al. [43]
performed numerical MI analyses of the FM and AFM phases
of spin-1 BECs, revealing that the FM phase is unstable, while
the AFM phase is stable. Some works show the stability anal-
ysis of these phases in the presence of the external field. For
instance, Matuszewski et al. showed that a homogeneous mag-
netic field induces spatial MI in AFM spin-1 BECs, resulting
in the formation of spin domains in sodium condensates con-
fined in optical traps [44]. In a subsequent study, they found
that the metastable phases of an AFM spin-1 condensate, in a
simple model with pure contact interactions, could exhibit a
rotonlike minimum in the excitation spectrum. The presence
of an external magnetic field gives rise to the instability of
the roton modes, which can lead to the spontaneous emer-
gence of regular periodic patterns [45]. Similarly, Kronjiger
et al. reported spontaneous pattern formation in AFM spinor
BECs and identified several linearly unstable modes using
a mean-field approach [46]. In another direction, Pu et al.
reported that magnetic-field-induced dynamical instabilities
in spin-1 BECs are accompanied by I,-type instabilities in the
presence of a nonzero magnetic field [47]. Systems with such
embedded instabilities spontaneously develop a spatial pattern
in the time evolution from the uniform initial state.

On the other hand, studies of instabilities in SOC BECs
remain relatively limited. Bhuvaneswari et al. [8] theoretically
investigated the MI in quasi-two-dimensional SOC BECs with
Rabi coupling, assuming equal densities for both pseudospin
components. They found that unstable modulations arise from
initially miscible condensates, depending on the combination

of signs of intra- and intercomponent interaction strengths.
The spin-orbit coupling enhances instability regardless of
the interaction type; however, in the case of attractive in-
teractions, spin-orbit coupling further amplifies the MI. In
quasi-one-dimensional systems, Bhat et al. [7] demonstrated
that two-component SOC BECs with equal component densi-
ties exhibit MI, leading to the formation of a striped phase
as the ground state. Additionally, Li et al. [9] studied MI
in quasi-one-dimensional SOC BECs with Raman coupling,
showing that instability occurs for repulsive density-density
and spin-exchange interactions even in the absence of spin-
orbit coupling and Raman coupling.

Identifying unstable phases and their underlying mech-
anisms in complex spin-1 BECs remains a significant
challenge. For instance, a recent study by Gangwar et al.
reported the occurrence of unstable avoided crossings (UACs)
in the context of FM interactions in spin-1 SOC BECs [48].
However, a comprehensive understanding of the interplay
among interaction strength, spin-orbit coupling, and Rabi cou-
pling, the key factors in the emergence of complex phases,
remains elusive. In this paper, we present a detailed analysis
of modulational instabilities in SOC spin-1 BECs, exploring
how interaction types (AFM and FM) and coupling parame-
ters influence the eigenspectrum and resulting dynamics. For
AFM interactions, the eigenspectrum exhibits both stable and
UACs between the low-lying and first-excited branches, as
well as between the first-excited and second-excited branches.
Notably, the first-excited branch under AFM interactions dis-
plays a double UAC, a phenomenon previously reported for
spin-1 BECs in the presence of a magnetic field [46,47]. In this
study, however, we explicitly demonstrate that this double un-
stable avoided crossing is induced by spin-orbit coupling. For
FM interactions, we find that a single UAC occurs between the
low-lying and first-excited branches, with a double UAC ap-
pearing only when the Rabi coupling strength is negative. The
UAC is associated with the I,-type instability, which drives
pattern formation in the density profile of the condensate [49].
To complement our analytical findings, we conduct numerical
simulations for both AFM and FM interactions. These simu-
lations provide deeper insight into the dynamics and pattern
formation arising from modulational instability.

The structure of our paper is as follows. In Sec. II we
present the mean-field model to explore MI of SOC spin-
1 BECs with Rabi coupling. Following this, we provide a
detailed theoretical formalism using BdG theory to calculate
the collective excitation spectrum in Sec. III. In Sec. IIl A we
present the collective excitation spectrum for FM interactions,
followed by an analysis of AFM interactions in Sec. III B. In
Sec. IV we present the effect of interaction strengths on MI. In
Sec. V we demonstrate the variation of the band gaps between
the low-lying and first-excited states and between the first- and
second-excited states for FM and AFM interaction. In Sec. VI
we present numerical simulations using the GPEs, which
complement the dynamical instability regions obtained from
the BAG analysis. In Sec. VII we summarize our findings.

II. MEAN-FIELD MODEL

We consider a quasi-one-dimensional SOC spin-1 BECs
with tight confinement in the transverse direction [50], which
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can be described using three sets of coupled GPEs, given as
[23,51-53]
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Here ¥4, ¥, and ¥_; are the spinor wave functions that
satisfy the normalization condition f fooo dxp =1, where p =
Zj’:—l pj, the total atomic density of the condensate, and
pj = |1ﬁ_,~(x)|2 represents the density of jth component of
the condensate with j = %1, 0. Equations (1a) and (1b) are
nondimensionalized, using time, length, and energy r = w,f,
x =X/ly, and hw,, respectively. The resulting condensate

\/%lﬁil’(), where [y = /hi/mw, is
the oscillator length for the trap frequency w, along the x
axis. The trap strength is given by V (x) = x?/2, the density-
density interaction strength co = 2Nly(ay + 2a)/3! 2 and the
spin-exchange interaction strength ¢, = 2Nly(a; — ao)/3li,
where ap and a, are the s-wave scattering lengths in the
total spin channels O and 2, respectively. Upon tuning ¢; < 0
(c; > 0), one can have the FM (AFM) interaction of the
condensates [53,54]. Here [, = «/h/mw, is the oscillator
length in the transverse direction with w; = J_ The
spin-orbit coupling and Rabi coupling strengths are given by
k, =k Jwyly and Q = Q/ hw,, respectively. In the above de-
scription, the quantities with the tilde represent dimensionful
quantities. In this entire work, we consider all parameters to be
dimensionless. The energy functional corresponding to the
coupled GPEs (1a) and (1b) is given by [20]
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Here we outline the experimentally viable range for the
parameters that we have considered for our simulations.
For the FM interaction, we consider ¥’Rb BECs with the
number of atoms N ~ 2 x 10*. The axial trap frequency
is wy =27 x50 Hz and the transverse trap frequencies
are w, = w; = 2w x 500 Hz. The resultant characteristic
lengths would be [y = 1.52 um and /; = 0.48 um. For the
AFM interaction, we consider the BECs of 2°Na atoms.
The resultant characteristic lengths for 2*Na BECs are [y =
29 um and /; =0.9 um. The spin-dependent and spin-
independent interactions can be achieved by controlling
the s-wave scattering lengths through Feshbach resonance
[55-57]. However, the SOC strength k;, = 0.1-5 can be
tuned by changing the laser wavelengths in the range from
68.86 um to 1377.22 nm. However, the dimensionless Rabi
frequency interval = [0, 5] used in the simulation can be
attained by tuning the Raman laser strength in the range of
2wk x (5-250) Hz.

III. COLLECTIVE EXCITATION SPECTRUM

In this section, we present the collective excitation spec-
trum of SOC spin-1 BECs using the BdG analysis. We
consider that the uniform ground-state wave function ¢; is
perturbed by the wave function 8¢; for which the excited-state
wave function is given by [47,58]

Vixn) = e M) + 8, 1), (3)
where
5¢j (x, 1) = Mjei(qxxfwt) + v;‘e*i(qxxfw*t)’ @)

and the uniform ground-state wave function is considered as
¢ =1/2, - 1/«/5, 1/2)7,  ; denotes the chemical potential,
and u; and v; are the Bogoliubov amplitudes corresponding to
the three spin components. Substituting Eq. (3) in the dynam-
ical equations (la) and (1b), we obtain

(L — wI)(uyy vy g vo u—y v_1)" =0, )

where T represents the transpose of the matrix, / is a 6 x 6
identity matrix, and £ is a 6 x 6 matrix given by
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FIG. 1. Eigenvalue and corresponding eigenvectors for (a) (k., 2) = (0.5, 1.0) showing real eigenfrequencies and (b) (k., 2) = (4.5, 1.0)
showing the multiband instability for FM interaction with ¢ = 5 and ¢, = —2.0. The magenta dashed line represents Re(w; ), the thick green
solid line represents |[Im(wy;)|, the blue dash-dotted line represents Re(wy.), the thin black solid line represents |[Im(wy.)|, the cyan dotted
line represents Re(wy, ), and the thick orange solid line represents |Im(w;,)|; here solid and dash-dotted lines are the analytical results of the
BdG equation (8) and open circles are numerical results obtained by solving Eq. (5). The eigenvectors of the low-lying branch are |u |3
(red circles), |u_; |,2, (black hexagons), |u0|12, (magenta hexagons), |v0|,21 (cyan open stars), |v4g |121 (green open squares), and |v_; |121 (magenta
triangles) and for the first-excited branch |u,, |}e (blue open pentagons), |u_, |§e (orange stars), |u0|§e (olive open pluses), |vo|}e (red open
crosses with the dotted line), |v, |§» . (cyan open diamonds), and |v_, |}L, (maroon closed circles). (a i) Only real eigenfrequencies are shown.
(b i) Multiband instability, which is symmetric in the quasimomentum direction. The corresponding eigenvectors depict the densitylike mode
and spinlike mode, respectively. The UAC among branches results in an /,-type instability band in the eigenspectrum. The vertical scale on the

right represents the magnitude of imaginary eigenfrequencies.

The matrix elements of £ are provided in the Appendix.
Bogoliubov coefficients follow the normalization condition

/ D (ui? = o) |dx = 1. (7)
J

We compute the determinant of the matrix £ and equate
it to zero det(L — Ilw) = 0, which yields the characteristic
equation

0® + bo* + co® +d =0, 8)

with the coefficients b, ¢, and d provided in the Appendix.

By numerically solving the BdG equations (6), we comple-
ment the reliability of the analytical results for the excitation
spectrum and obtain the eigenvectors as a function of g.
For the numerical calculation, we consider the real space
[—1000, 1000] grid with a step size of h, = 0.2. We employ
the Fourier collocation method, which utilizes the LAPACK
package [59] to diagonalize the truncated BAG matrix we
acquire by numerically computing the Fourier transform of
the BdG equations. In momentum space ¢,, we consider
[—700, 700] modes, with a grid step size of h, = 0.0157.

In our recent work, we conducted a detailed analysis of
the collective excitation spectrum for FM interactions in SOC
spin-1 BECs. We reported the presence of unstable avoided
crossings between the low-lying and first-excited states of
the eigenspectrum [48]. In this paper, we extend this analysis
to AFM interactions, where we observe evidence of double
avoided crossings. In the following section, first we discuss
the effects of spin-orbit coupling and Rabi coupling on the
eigenspectrum for FM interactions and subsequently we ex-
tend the analysis to AFM interactions.

A. Collective excitation spectrum
of FM SOC BECs (¢p > 0 and ¢, < 0)

In this section, we present the collective spectrum anal-
ysis for SOC BECs with FM interaction, characterized by
co = 5.0 and ¢; = —2.0. The negative (w_), positive (w.),
and zeroth (wp) branches are designated as the low-lying
(wp), first-excited (wy.), and second-excited (w;,) branches
of the eigenspectrum, respectively. It has been shown that
the eigenspectrum of SOC BECs exhibits intriguing features,
including /,-type instabilities [47,49]. Generally, these /,-type
instabilities arise from UACs between the branches.

We begin our analysis by first calculating the eigenvalues
of the BAdG matrix, as given in Eq. (6). In Fig. 1 we present the
eigenspectrum corresponding to regime I (k7 < Q) [Fig. 1(a)]
and regime II (kf > Q) [Fig. 1(b)] of the condensate. In
regime 1 (k7 < €2), we observe only real eigenfrequencies,
accompanied by a gap between all branches. The low-lying
branch exhibits a phonon mode, as shown in Fig. 1(a i). The
eigenspectrum is symmetric about the quasimomentum direc-
tion. To further explore the detailed nature of the excitations,
we plot the eigenvectors corresponding to the eigenspectrum
in Fig. 1(a 1) in Figs. 1(aii) and 1(a iii). Here we display three
sets of eigenvector components, namely, |u1|?, |v,1|?, |uol?,
lvo|?, |u—1|?, and |v_;|?, for a specific branch of the eigen-
spectrum. We find that all eigenvector components exhibit
a densitylike mode consistent with the real eigenfrequencies
observed, aligning with previous studies on spin—% SOC BECs
[39,60]. Additionally, these eigenvectors satisfy the following
relations for the low-lying and first-excited branches:

2 2 2 2
|u+l|11 - |M—1|11 =0, |U+l |11 - |U—l|11 =0,

w7, — 1l =0, Jolf, — valf, =0 (9)
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Apart from this, we find that the eigenvector components
of the low-lying branch appear to approach the same value
at g, ~ 0, a typical feature of the phonon mode in the
eigenspectrum [see Figs. 1(a ii) and 1(a iii)]. In Fig. 1(b 1)
we present the eigenfrequency for regime I (k7 > ) of
the condensate, which clearly reveals the presence of imag-
inary eigenfrequencies in the low-lying and first-excited
branches of the eigenspectrum, whereas the second-excited
branch exhibits only real eigenfrequencies. The low-lying
branch displays three instability bands at wave number
and corresponding eigenfrequency pairs given by {g,, v} =
{0.33,0.999}, {2.04, 0.799}, and {8.37, 0.773}, while the first-
excited branch exhibits a single instability band at g, =
2.04 with an eigenfrequency of @ = 0.799. This single-
band instability in the first-excited branch arises due to an
UAC between the low-lying and first-excited branches of the
eigenspectrum, occurring within the quasimomentum range
1.14 < g, < 2.94. This interaction is primarily responsible
for the I,-type dynamical instability [47-49]. The presence
of imaginary eigenfrequencies indicates dynamical instability
in the condensate phase. Similar to regime I, in regime II
we also observe that the eigenspectrum is symmetric about
the quasimomentum direction; however, it distinctly exhibits
multiband instability. This multiband nature manifests in the
eigenvectors as a spinlike mode, satisfying a specific relation-
ship between the low-lying and first-excited branches of the
excitation spectrum

2 2
|M+1|11 - |u—l|11 #0,

ugilF, — luil7, #0.

|U+1|121 - |v—1|121 # 0,
lviilF, — lvoalf, #0. (10)

The eigenvectors of the low-lying branch display an in-
teresting feature of the transition from the spinlike mode to
the densitylike mode, which indicates the presence of a tran-
sition Im(w) — Re(w), and then from the densitylike mode
to the spinlike mode, which informs that Re(w) — Im(w)
and in the weak wavelength limit only Re(w) is present and
Im(w) is absent. This particular feature suggests the presence
of the spin-density-spin mixed mode of the eigenvector in
the three-instability-band regions of the eigenspectrum. The
first-excited branch of the eigenspectrum has a single insta-
bility band that occurs due to the UAC between the low-lying
and first-excited branches, which lies in the quasimomentum
range 1.14 < g, < 2.94. Closer to the ¢, of UAC, the eigen-
vectors of the low-lying and first-excited branches display
out-of-phase behavior among the branches [see Fig. 1(b ii)].
However, the zeroth component of eigenvectors exhibits a
densitylike mode only [see Fig. 1(b iii)].

After analyzing the collective excitation spectrum, we wish
to understand the appearance of MI in the phase plots. Specif-
ically, we focus on the k;-g, plane for the FM SOC BECs.
In Figs. 2(a) and 2(b) we present the pseudocolor repre-
sentation of the modulational instability gain, defined as the
imaginary part of the modulus of eigenfrequency, for a Rabi
coupling strength 2 = 1 and with FM interaction strengths
co = 5.0 and ¢; = —2.0. We observe that instability bands
start emerging in the range where k7 > Q, first appearing
in the low-lying branch ¥;; as a single band. However, for
k; > 3 two instability band emerge and for k;, > 4 three bands
are observed [see Fig. 2(a)]. For the first-excited branch X,

FIG. 2. Pseudocolor plot of the modulational instability gain for
the ferromagnetic phase (co =5 and ¢, = —2) in the k;-g, plane
for (a) and (b) 2 =1 and (c) and (d) 2 = —1 in (a) and (¢c) X;; =
[Im(wy, )| and (b) and (d) %, = |[Im(wy,)|. In (a) multiband instabil-
ity gain appears at k;, = 1 and in (b) a single-band instability appears
at k;, & 4.0. In (c) and (d) double- and single-band instabilities ap-
pear at k;, > 0.25, respectively. The second-excited branch of the
eigenspectrum shows the absence of instability gain for both sets of
parameters. The instability gain is symmetric about k; and ¢,.

instability emerges only at higher values of the spin-orbit
coupling (k;, 2 4.0). This can be attributed to the emergence
of an UAC between the w; and wy, branches within the
quasimomentum range 0.95 < ¢, < 3.64. Initially, this forms
a single instability band, which expands as the SOC strength
increases. In Figs. 2(c) and 2(d) we present the MI gain for the
low-lying and first-excited modes, respectively, at Q = —1,
with all other parameters held constant as those used for
2 = 1. Here we observe a markedly different trend compared
to those results obtained with a positive Rabi frequency. In
a spin-1 condensate, negative Rabi coupling increases the
system’s energy, manifesting as a higher number of instability
bands [61]. For negative Rabi strength, we notice that the in-
stability appears at a lower SOC value (k;, > 0.25) compared
to that for positive Rabi strength [see Figs. 2(c) and 2(d)].
The instability manifests as double bands in the low-lying
branch and a single band in the first-excited branch, both of
which intensify with increasing SOC strength. The instability
gain is symmetric about the quasimomentum g, and the SOC
strength k7. Notably, the second-excited branch exhibits no
instability gain in the FM BECs, even in the presence of
spin-orbit coupling k;. After getting a clear understanding of
how Rabi coupling affects the MI gain in the k;-g, plane, we
now shift our focus to exploring the same in the ©2-¢g, plane by
fixing the SOC strength as k; = 1. We analyze the impact of
Rabi coupling on the MI gain for the FM interaction strengths
co =5.0 and ¢; = —2.0. To systematically investigate the
impact of Rabi coupling strength on the eigenspectrum, we
begin our analysis by choosing k;, = 1.0. We find that the low-
lying branch of the eigenspectrum exhibits finite instability
gain for Q < 1 [see Fig. 3(a)], but for 2 > 1 the modes be-
come stable. Upon examining the other two branches, namely,
the first-excited branch and the second-excited branch, we
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FIG. 3. Pseudocolor plot of the modulational instability gain in
Q-g, phase plane for FM interactions (¢o = 5.0 and ¢, = —2.0) for
(a)—(c) k, = 1 and (d)—(f) k, = 4.0in the (a) and (d) £;; = [Im(w;;)|,
(b) and (¢) Xy, = [Im(wy,)|, and (c) and (f) X, = [Im(w,,)| low-
lying, first-excited, and second-excited branches of the excitation
spectrum, respectively. In (a) the primary band appears for 2 > 0
following the relation k7 = , while in (b) and (c) it appears only
for Q < 0, with a cutoff in (c) at 2 &~ —1.66. Similar to (a)—(c), the
primary instability band in (d) appears for > 0. In (d) and (e) the
secondary and primary bands appear for 2 > 0, which is different
than for (a)—(c). In (f) single-band instability appears for < 0,
following a cutoff value 2 ~ —1.44. The instability gain that appears
is not symmetric about €2 and increases upon decreasing €2; however,
it shows symmetric behavior about g, .

observe that the instability gain becomes finite only for
Q < 0, as illustrated in Figs. 3(b) and 3(c), respectively. In-
terestingly, the low-lying and first-excited branches of the
eigenspectrum display multiple instability bands for 2 < 0,
whereas the second-excited branch exhibits only a single
instability band starting at Q < —1.66. Upon considering
stronger SOC strength (k;, = 4.0), multiband instabilities ap-
pear in both the low-lying and the first-excited branches [see
Figs. 3(d)-3(f)]. The second-excited branch, however, still
only shows a single instability band, similar to the case with
k;, = 1. Comparing the instability features across the range of
Rabi frequencies from —Q to +£2, we observe a transition
from multiband instability to a single instability band in the
low-lying branch, accompanied by the existence of a primary
band in the first-excited branch for € > 0. The primary in-
stability band in the low-lying branch appears at k? = Q. In
the second-excited branch, a single instability band is present
for Q < —1.44. Furthermore, the instability gains ¥;, & fes
and X, in all three branches increase as the Rabi coupling
strength decreases, and they exhibit symmetry about g,.

Overall, we find that SOC BECs with FM interaction
exhibit a single UAC between w;; and wy,., as previously
reported [48]. This UAC emerges at critical values of coupling
strength, following the relation 2 & 0.1278kz — 1.1358, with
its origin at (kz, 2) = (2.94, 0.01). Interestingly, in MI analy-
sis [9,42], we observe that for 2 < 0, the first-excited branch
wy. exhibits a second UAC with the second-excited branch
wye, accompanied by the emergence of more multiband insta-
bilities compared to cases where 2 > 0.
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FIG. 4. Eigenspectrum with AFM interaction (¢y = 5.0 and c; =
5.0) for (a) (k., 2) = (0.5,1.0) and (b) (k., 2) = (4.5, 1.0). The
lines and symbols have the same meaning as in Figs. 1(ai) and 1(b i).
(a) A stable avoided crossing appears between the first-excited (wy.)
and second-excited (w;,.) branches as well as between low-lying (w;;)
and wy, branches. (b) As spin-orbit coupling is increased, multiband
instability emerges in the eigenspectrum accompanied by the appear-
ance of UACs between the wy, and w,, branches and between the w;;
and wy, branches. The first-excited branch exhibits the double UAC.
The right vertical axis represents the imaginary eigenfrequencies.

After analyzing the collective excitation for FM interac-
tion, we now present the corresponding analysis for the AFM
interaction.

B. Collective excitation spectrum of AFM SOC
BECs (cp > 0 and ¢, > 0)

In this section, we present the collective excitation
spectrum for AFM interaction SOC BECs by consider-
ing ¢co =c; =5.0. In regime I, with k, =0.5 and Q =
1.0, the eigenspectrum exhibits only real eigenfrequen-
cies. However, avoided crossings occur between the wj
and wy, branches at g, ~ 2.70 and between the wy, and
wy. branches at g, ~ 1.87 [see Fig. 4(a)]. As the imag-
inary part of the eigenspectrum is zero Im(w;) =0, the
condensate remains dynamically stable. The involvement
of the first-excited branch in both of these stable avoided
crossings results in a double stable avoided crossing near
g ~ 1.87 and ¢, ~ 2.70, as depicted in Fig. 4(a). Fur-
thermore, the minimum of the low-lying excitation spec-
trum occurs at g, = 4.06, corresponding to the phonon
energy minimum. This minimum corresponds to the rotonic
minimum and is responsible for the emergence of the plane-
wave phase in spin-1 AFM SOC BECs [62,63]. Such features
are not observed in FM SOC BECs.

In Fig. 4(b) we show the eigenspectrum corresponding
to regime II, where we consider k;, = 4.5 and 2 = 1.0. The
other parameters are the same as those in Fig. 4(a). In this
regime, we notice the appearance of a multiband imaginary
eigenfrequency in both the w;; and wy, branches. There are
three instability bands present in the low-lying branch, whose
location and corresponding amplitude are given as {g., w} =
{1.63,3.037}, {4.81, 2.149}, {9.06, 1.585}. However, the
other two instability bands appear in the first-excited
branch  with  position and amplitudes {gq,, 0w} =
{1.46,0.802}, {4.81, 2.149}. Additionally, we notice the
presence of a single-band instability in the w, branch
with {gy, o} = {1.46,0.802}, which arises solely due to
crossing between wy, and wy.. The presence of imaginary
eigenfrequency leads to dynamical instability in regime II,
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FIG. 5. (a) and (b) Eigenvectors corresponding to Figs. 4(a) and 4(b), respectively, for (i) and (ii) the low-lying and first-excited branches
and (iii) and (iv) the second-excited and first-excited branches of the eigenspectrum. The eigenvectors of the low-lying branch are given
as |uy |3 (red circles), [u_;|? (black hexagons), |uy|?, (magenta hexagons), |vg|? (cyan open stars), [v,| (green open squares), and |v_ 3,
(magenta triangles) and for the first-excited branch as |u4 |§g (blue open pentagons), |u_; |§e (orange stars), |ug |§e (olive open pluses), |vy |§e (red
open crosses with the dotted line), |vy; |§-e (cyan open diamonds), and |v_; |§-e (maroon closed circles). The eigenvectors of the second-excited
branch are given as |u; |fg (indigo circles), |u_; |fe (red hexagons), |uo|?, (black hexagons), |vg|?, (cyan right triangles), |v |fe (green open
down triangles), and |v_; |f,e (violet closed circles). (a) In-phase behavior (densitylike mode) with the occurrence of flip at the point of the
stable avoided crossing between w;; and wy, and between w,, and wy,. (b i) and (b iii) Out-of-phase behavior (spinlike mode). At the point of
the UAC, eigenvectors are out of phase among the branches. (b ii) and (b iv) Only the densitylike mode.

as also obtained in [34,35,39]. The w/, branch experiences
a double UAC, arising from avoided crossings with the
other two branches. The first UAC between w; and wy,
appears in the quasimomentum range 4.01 < g, < 5.49,
while the second UAC appears between wy, and wy, in the
quasimomentum range 1.14 < g, < 1.78 [see Fig. 4(b)].
Such an instability is responsible for an /,-type dynamical
instability [47,49], which will be discussed later in the paper.

Next we analyze the corresponding eigenvectors of
regimes I and II for the AFM SOC BECs. In Fig. 5 we demon-
strate the nature of eigenvectors corresponding to Fig. 4. First,
we report for regime I the respective eigenspectrum presented
in Fig. 4(a). As all the eigenfrequencies wy, @y, and w;,
are real, the corresponding eigenvector components display
in-phase (densitylike) behavior in the quasimomentum direc-
tion ¢g,, which meets the criterion given in Eq. (9) (and also
holds for the eigenvectors of the second-excited branch). A
flip in the eigenvector components occurs at the point of the
first stable avoided crossing around ¢, ~ 2.70 between the
wy and wy, branches [see Fig. 5(a 1)], similar to the result
reported in Ref. [60]. As the second stable avoided crossing
is observed between wy, and wy,, the eigenvector components
for corresponding branches also show the flipping tendency
at the point of crossing at g, ~ 1.87 [see Fig. 5(a iii)]. The
zeroth component of eigenvectors of low-lying, first-excited,
and second-excited branches of the eigenspectrum show a
densitylike mode, which is given in Figs. 5(a ii) and 5(a iv).
Overall, we observe that at the point of stable avoided crossing
between the branches, the flip in eigenvectors of both branches
occurs simultaneously at g, =~ 2.70 and 1.87. Moreover, a
further flip in the eigenvectors of the low-lying branch takes
place at g, ~ 4.06, when the eigenvalue spectrum approaches
zero, where Re(w) = Im(w) = 0.

We present the nature of eigenvectors for high k; cor-
responding to the eigenspectrum shown in Fig. 4(b). We

observe that, due to the presence of a complex eigenfrequency
[Im(w;) # 0], the eigenvector components show the spinlike
(out-of-phase) behavior characterized by Eq. (10) (the same
applied for the eigenvectors of the second-excited branch).
As the low-lying and first-excited branches have multiband
instability in the eigenspectrum, the eigenvectors exhibit a
transition from the spinlike to the densitylike mode, resulting
in a mixed mode. The first UAC between the wy; and wy,
branches occurs in the quasimomentum range 4.01 < g, <
5.49 in the eigenspectrum [see Fig. 4(b)]; the correspond-
ing eigenvectors exhibit complicated out-of-phase behavior
among these branches, as illustrated in Fig. 5(b i). Looking at
the eigenvector in the second UAC region (1.14 < ¢, < 1.78),
we find that the eigenvectors exhibit similar out-of-phase fea-
tures [see Fig. 5(b iii)]. Interestingly, the zeroth components of
the eigenvectors for the low-lying, first-excited, and second-
excited branches exhibit the densitylike mode independently
[see Figs. 5(b ii) and 5(b iv)] [48].

In the preceding section, we derived the multiband imag-
inary eigenfrequencies for the low-lying and first-excited
branches, as well as the single-band imaginary eigenfre-
quency for the second-excited branch of the spectrum. The
instability gains in these eigenspectra are characterized as
X1, fe.se = Im(wyy re 5e)|. After analyzing the presence of in-
stability in the collective excitation spectrum of AFM SOC
BECs, we aim to investigate the nature of this instability
through instability gains using phase plots, varying the param-
eters k; and 2. We begin by examining the role of k;, (SOC
strength) in the instability gain of AFM condensates with
interaction strengths cy = ¢, = 5.0. In Figs. 6(a)-6(c) the
Rabi coupling strength is fixed at &2 = 1. Instability emerges
when k; > 1. In the low-lying branch X;;, we observe the
emergence of double-band instability along the quasimomen-
tum direction. The growth of the primary instability increases
with increasing SOC strength. Additionally, the bandwidth of
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FIG. 6. MI gain in the k;,-q, phase plane for (a)—(c) 2 =1 and
(d)—(f) = —1. The interaction strengths are ¢y = ¢; = 5.0. The
pseudocolor representation is the same as in Fig. 3. We obtain the
instability bands (a)—(c) at k, = 1.0, following the critical relation
k? = Q, and (d)—~(f) for k;, > 0.25. The symmetry arguments are
similar to those in Fig. 2.

the secondary instability widens, exhibiting a hornlike shape.
The first- and second-excited branches also display instability
gains (X, and Xy,), characterized by double- and single-band
structures, respectively. For the instability gain of the first-
excited state (X r,), two humps appear: The primary instability
band remains constant, while the secondary instability band
expands with increasing SOC strength. The instability gain
of the second-excited branch (Z,,) and its bandwidth also
exhibit an increasing trend as k; increases. Interestingly, for
a negative Rabi coupling (2 = —1), we observe a distinctly
different trend compared to the positive Rabi coupling case.
In a spin-1 system, negative Rabi coupling injects additional
energy into the system [61], resulting in a higher number of
instability bands. Consequently, instability arises earlier (at
k; > 0.25) compared to the positive Rabi coupling case [see
Figs. 6(d)-6(f)]. Here triple instability bands appear in the
low-lying and first-excited branches. The first band remains
constant, while the bandwidth and instability gain of the sec-
ond band vary with k;, and the third band grows gradually
with increasing spin-orbit-coupling strength, consistent with
the previous case. For both 2 =1 and —1, the instability
bandwidth of all branches remains symmetric about the quasi-
momentum ¢, and the spin-orbit-coupling strength k;. Next
we investigate the effect of Rabi coupling strength on the
instability gain, denoted by X r. s, in SOC spin-1 BECs
with AFM interactions, where ¢y = ¢, = 5. In Figs. 7(a)-7(c)
we fix the spin-orbit-coupling strength at k;, = 1 and vary
the Rabi coupling strength €2. This reveals double instability
bands in the low-lying branch of the eigenspectrum, whereas
the first-excited and second-excited branches exhibit only
single-band instability. In the low-lying branch, the primary
instability band emerges at 2 = 1.0, increases in magnitude
for Q2 < 1.0, and disappears, becoming stable for & > 1.0.
Additionally, a secondary instability band appears for Q <
0. In the first-excited branch, instability gain is observed
for Q2 < 0, inheriting an UAC between the low-lying and
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FIG. 7. MI gain in the Q2-g, phase diagram for (a)—(c) k, = 1 and
(d)-(f) kL = 4.0. Here the density-density interaction has ¢y = 5.0
and the spin-dependent interaction ¢, = 5.0. The pseudocolor bar is
similar to that in Fig. 3. Multiband instability appears for the low-
lying and first-excited branches of the spectrum, while the second-
excited branch shows single-band instability. The instability gain is
not symmetric about 2 and increases upon decreasing €2; however, it
shows symmetric behavior about g, .

first-excited branches. In the second-excited branch, a single
instability band emerges, growing for < 3.15;at 2 <0, a
second UAC appears. Thus, when 2 < 0, the AFM system
exhibits double UACs and double instability gain bands [see
Fig. 7(c)]. Note that as the amplitude of the instability gain
for this branch is one order smaller than those of the other two
branches, we multiply a factor of 20 to bring it to the same
scale as the other two branches.

For a relatively strong spin-orbit-coupling strength of k;, =
4.0, we observe multiband instability in the low-lying and
first-excited branches of the eigenspectrum, while the second-
excited branch displays single-band instability for Q < 3.0.
Due to the significantly higher SOC strength, the instability
gain exhibits both a larger amplitude and higher coverage
in the phase plane [see Figs. 7(d)-7(f)]. Comparing the two
cases, we find that for weak spin-orbit coupling (k;, = 1), the
maximum unstable phase occurs only for negative 2, i.e., —€2,
with stability observed for positive €2, i.e., +£2. In contrast, for
strong spin-orbit coupling (k, = 4.0), the entire considered
range of €2 is unstable.

In Fig. 7 the instability gain along the quasimomentum
direction g, increases as the Rabi coupling strength decreases,
displaying symmetric behavior about g,. Furthermore, we
confirm that in regime II of the AFM interaction, double
UACs are present for both positive and negative 2 (),
whereas in the FM interaction, double UACs occur only
for negative 2 (—€2). Thus, both systems exhibit double
UAC:s, with their appearance dependent on the Rabi coupling
strength.

Further, we study the behavior of the system at fixed in-
teraction strengths ¢y and ¢, and quasimomentum g,, upon
simultaneous varying the spin-orbit coupling (k) and Rabi
coupling (€2) strengths [see Figs. 8(a) and 8(b)]. We demon-
strate the instability gain of the low-lying branch of the
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FIG. 8. Pseudocolor representation of the MI gain for X, =
[Im(w;;)| in the k.- phase plane for (a) (cp,c2) = (5,5) and
(b) (co, c2) = (5, —2) at quasimomentum ¢, = 1. Multiband insta-
bility appears in each case, which increases upon increasing k; . The
instability bands show symmetric behavior about k;; however, it is
not symmetric with the variation in 2.

eigenspectrum corresponding to two different sets of interac-
tion strengths at g, = 1. In Fig. 8(a) we consider interaction
strengths corresponding to AFM interaction and in Fig. 8(b)
corresponding to FM interaction. We obtain multiband in-
stability for both cases, which is not symmetric about €.
The instability gain is symmetric about k; and increases
upon increasing the spin-orbit-coupling strength. Here we
conclude that regime I (22 > kf) is dynamically stable, while
regime 11 ( < k?) is dynamically unstable and exhibits
multi-instability bands. Moreover, with respect to the nega-
tive Rabi couplings, both spinor BECs exhibit double UACs.
Additionally, we observe that the instability gain of the FM
condensate is reduced by approximately half for the AFM
condensate, indicating that the latter is dynamically more
unstable and sensitive to perturbations.

IV. IMPACT OF DENSITY-DENSITY INTERACTION
AND SPIN-EXCHANGE INTERACTION ON THE MI

So far we have analyzed the effect of k;, and <2 on the col-
lective excitation spectrum for the FM (co, ¢2) = (5.0, —2.0)
and AFM (¢, ¢2) = (5.0, 5.0) interaction phases of the SOC
spin-1 condensate. For FM interactions, the instabilities
mainly appear in the low-lying and first-excited branches
of the eigenspectrum. However, for AFM interactions, they
appear in the low-lying, first-excited, and second-excited
branches. Next, to make our analysis more general, we scan a
wide range of interactions ((cz, ¢o) € [—10, 10]) for low-spin-
orbit-coupling (k7 < €2) and high-spin-orbit-coupling (k} >
2) regimes.

First, we consider the effect of the density-density interac-
tion term ¢y by choosing c, positive or negative. At first, we
choose ¢, = —2.0 along with two different sets of coupling
strengths k; and Q. For k? < Q, we find that the instability
gain is zero as long as the total interaction strength remains
repulsive, i.e., co + ¢ > 0. However, single-band instability
appears in the low-lying branch of the eigenspectrum when
the total interaction strength is attractive, i.e., co + ¢» < 0. For
¢ = —2.0 and ¢y > 2.0, the instability gain is absent. The
instability appears where the interaction follows the relation
co + ¢» < 0. The instability gain appears to increase upon
further decreasing c( [see Fig. 9(a)]. However, there is a lack

FIG. 9. (a) Pseudocolor representation of the MI gain for the
low-lying mode X, = |Im(w;)| in the cy-g, phase plane with
(k., 2) = (0.5, 1.0). Also shown is the pseudocolor representation
of the MI gain for (b) the low-lying mode X;; = |Im(w,;)| and (c) the
first-excited mode Xy, = |Im(w;,)| in the co-q, phase plane for
(kp, 2) = (4.5, 1.0). The spin-exchange interaction is ¢; = —2.0.
In (a), the instability gain appears only in the low-lying branch,
while in (b) and (c) it appears in the low-lying and first-excited
branches of the excitation spectrum. The instability gain increases
upon decreasing ¢y, showing symmetric behavior about ¢,; however,
it is not symmetric about cy.

of instability in the first- and second-excited branches (not
shown here). Now we consider regime II, where kz > , and
we obtain multiband instability that appears in the low-lying
and first-excited branches of the spectrum. The instability gain
of the spectrum increases upon decreasing c( [see Figs. 9(b)
and 9(c)]. On the other hand, instability gain is absent in
the second-excited branch of the eigenspectrum. We find that
regime I has instability only for the attractive system and
no UAC, but regime II is stable only for ¢y + ¢, & 0 and
otherwise exhibits UAC but no appearance of double UACs.
For both sets of coupling strengths, the instability gain of the
spectrum is symmetric about g, and not symmetric about cg.
In the above, we analyzed the effect of ¢( in the presence of
¢ = —2.0. Further, to analyze the impact of positive interac-
tion, we consider ¢, = 5.0. Here also we consider the low-k;,
regime, regime I (k7 < Q), and the high-k; regime, regime I
(kz > ). For regime I, we consider ¢ in the range [—5, 5]
and obtain only real eigenfrequencies in the eigenspectrum.
Therefore, the instability gain remains absent and is responsi-
ble for the dynamical stable phases (not shown here). Further,
we choose regime II, which exhibits multiband instability
that appears in the low-lying and first-excited branches of the
eigenspectrum [see Figs. 10(a) and 10(b)], while the second-
excited branch shows single-band instability [see Fig. 10(c)].
Regime II is stable only for the attractive c( interactions
results as ¢y + ¢; & 0. The instability gain increases upon
increasing cp, showing symmetric behavior about g,, while
it is not symmetric about cy.

After exploring the density-density interaction parameter
regime, we now shift our focus to analyzing the impact of
the spin-exchange interaction strength ¢, on the instability
while keeping the density-density interaction strength fixed
at ¢o = 5.0. In regime I, we consider ¢; in the range [—5, 5],
and the eigenspectrum yields only real eigenfrequencies, indi-
cating an absence of instability (not shown here). In contrast,
for regime II, we observe the emergence of multiband in-
stability in both the low-lying and first-excited branches of
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FIG. 10. MI of the AFM interaction (¢, = 5.0) in the ¢y-¢g, phase
plane for k;, = 4.5 and = 1.0. The pseudocolor bar is similar to
that in Fig. 3. Multiband instability in the (a) low-lying and (b) first-
excited branches and (c) single-band instability in the second-excited
branch of the eigenspectrum increase upon increasing ¢y, with sym-
metry arguments similar to those in Fig. 9.

the eigenspectrum. The low-lying branch remains unstable
across the considered range of ¢, (except where ¢y + ¢, ~ 0),
while the first-excited branch exhibits instability accompa-
nied by the first UAC. Conversely, the second-excited branch
displays single-band instability when the effective interaction
is AFM, coinciding with the appearance of a second UAC
in the system, but only for ¢; > 2 [see Figs. 11(a)-11(c)].
The instability gain increases upon increasing c;, showing
symmetric behavior about ¢g,, preserving asymmetric behavior
about c,.

In Fig. 12(a) we show the instability gain of the eigen-
spectrum upon simultaneously varying the density-density
interaction strength ¢y and spin-exchange interaction strength
¢ for (kp, 2) = (0.5, 1.0). We find that the instability only
occurs for the low-lying branch of the eigenspectrum for
attractive interaction when ¢y + ¢, < 0. However, for the re-
pulsive case (co 4+ c2 > 0) the system appears to be stable.
In Fig. 12(b) we show the instability gain corresponding to
the low-lying eigenspectrum for k;, = 4.0 and 2 = 1.0. For
this case, we find the presence of a wider instability region
in the entire range of interaction strengths, including both
attractive and repulsive, as well as for the mixed case. In-
terestingly, we find that, for the mixed case of interactions,
the system gets stabilized. Overall, we find that for the repul-
sive case, regime II shows instability; however, for regime I,

107! 10V

FIG. 11. Ml in the ¢;-g, phase plane for k, = 4.0 and 2 = 1.0,
with ¢y = 5.0. The pseudocolor bar is similar to that in Fig. 3.
The instability gain of the spectrum increases upon increasing c;,
showing symmetric behavior about g, ; however, it is not symmetric
about c,.
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FIG. 12. Pseudocolor representation of the MI gain of the lowest
eigenmode ¥;; = |Im(w;;)| in the co-c, phase plane for (a) (k., 2) =
(0.5, 1.0) and (b) (kz, 2) = (4.0, 1.0). The quasimomentum strength
is fixed at g, = 1. In (a) the instability gain appears only in the
low-lying branch when the total interaction strength is attractive
co + ¢2 < 0, while in (b) the spectrum exhibits multiband instability.
The instability gain in the eigenspectrum is not symmetric about ¢y
or about c;.

the repulsive interaction shows a stable nature. The instability
gain of the eigenspectrum is not symmetric about ¢y or ¢;.

V. CHARACTERIZATION OF DOUBLE UNAVOIDED
CROSSINGS USING THE BAND GAPs Ay
AND A, OF THE EIGENSPECTRUM

After gaining a comprehensive understanding of the insta-
bility of FM and AFM interactions, we now characterize the
band gap between the eigenbranches. The band gaps in the
eigenspectrum are defined as the difference between the first-
excited and low-lying states, expressed as Ay = Re(wy.) —
Re(wy;), and the difference between the second-excited and
first-excited states, expressed as Ag = Re(ws.) — Re(wy,). A
value of Ag; ~ 0 indicates the presence of a gapless mode
between wy; and wy., while Ag, ~ 0 signifies a gapless mode
between wy, and wg,.

In this study, we fix the density-density interaction at
co =5 and the Rabi coupling at € = 1, while varying the
spin-orbit-coupling strength as k;, = 0.5 (regime I), 2.0, and
4.5 (regime II), as shown in Figs. 13(a)-13(c), respectively.
Figures 13(a i) and 13(a ii) demonstrate that, when si-
multaneously varying the spin-exchange interaction ¢, and
quasimomentum ¢, with a fixed ¢y = 5, no band gap exists
(Agi = Agr = 0) only for ¢; > 0 (AFM interactions). This
gapless state persists as ¢, increases, indicating no gap be-
tween wy, and wy; and between w,, and wy.. Conversely, for
¢ < 0 (FM interactions), only gapped modes are observed
between all branches.

Similarly, upon increasing the spin-orbit-coupling strength
to k; = 2.0, the band gaps close only for ¢, > 0, with the
gapless region expanding in the ¢, — g, plane and main-
taining its gapless nature as c;, increases [see Figs. 13(b i)
and 13(b ii)]. Next we consider a relatively large spin-orbit-
coupling strength of k; = 4.5. In this case, the first UAC
appears with Ag; = 0 between the low-lying and first-excited
branches only for —2 < ¢; < 0 (FM case), consistent with
findings in SOC spin-1 ferromagnetic BECs [48]. This first
UAC persists even in the ¢, > 0 regime [see Fig. 13(c 1)].
However, a second UAC emerges for ¢, > 0 [see Fig. 13(cii)].
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FIG. 13. Pseudocolor representation of the changes in band gap
A, = Re(wy,) — Re(wy;) and Ay = Re(w,.) — Re(wy,) for differ-
ent k;, in the ¢,-g, plane by keeping 2 = 1.0 and ¢y = 5.0 for (a i)
and (a ii) k, = 0.5, (b i) and (b ii) k, = 2.0, and (c i) and (c ii)
k; =4.5.In(ai)and (bi), the band gap Ay closes for positive ¢; > 0
(AFM interaction); however, in (c i) it closes for both AFM (¢, > 0)
and FM (¢, < 0) interactions. In (a ii)—(c ii) the band gap A,, closes
for AFM interactions only (¢, > 0).

Thus, a relatively strong spin-orbit coupling exhibits two gap-
less UACs when ¢; > 0, whereas a single gapless UAC occurs
for -2 < ¢, < 0.

In conclusion, in regime II, ferromagnetic SOC BECs ex-
hibit a single UAC, while AFM interactions result in double
UACs between the branches. In contrast, regime I remains
stable, displaying two gapless stable avoided crossings for
¢ > 0 and only gapped modes for c; < 0.

VI. NUMERICAL SIMULATION

In this section, we present the numerical simulation results
to understand the nature of the dynamical stability of the con-
densate. We obtain the ground state of the condensate using
the imaginary-time propagation (ITP) method and then evolve
it using the real-time propagation (RTP) method by quench-
ing the trap strength. We use the split-step Crank-Nicolson
scheme to implement both ITP and RTP methods [19,20]. We
consider a space grid [—32, 32] with the space step dx = 0.05
in both ITP and RTP. The considered time steps are dt =
0.00025 and 0.0005 for ITP and RTP, respectively. Here we
choose two quantum phases in the two different SOC BECs,
namely, FM and AFM BECs.

A. Dynamics of ferromagnetic SOC BECs

In this section, we present the dynamics of the ground state
for the two regimes of the ferromagnetic SOC BECs.

For regime I (k, = 0.5 and Q2 = 1.0), we generate the
plane-wave (PW) phase of the FM interaction ground-state
phase using the parameters ¢y = 5.0, ¢, = —2.0, kz, = 0.5,
and Q2 = 1.0 under a harmonic trap with strength A = 0.10.
After obtaining the ground state, we apply an instantaneous
quench in the trap strength, triggering the dynamics of the
condensate, which are computed using real-time propagation.

t

t

t

FIG. 14. Time evolution of the condensate in the x-¢ plane for
the |41, |¥ol%, and |¥_;|*> components of the condensate for
(a) (k, 2) = (0.5,1.0) and (b) (k., 2) = (4.5, 1.0), upon quench-
ing the trap strength to one-third of its initial value. The interaction
strengths are ¢y = 5.0 and ¢, = —2.0. In (a) the density profile shows
stable behavior throughout, showing the dynamical stability of the
condensate. In (b) the density profile holds its SW nature for a while;
at a later time, |4, |? fragments in small domains and shows a decay
in amplitude while the zeroth component diminishes at first and then
increases the amplitude.

In Figs. 14(a 1)—14(a iii) we present the dynamical evolution
of the density profiles for the three components of the con-
densate, revealing breathing oscillations. This characteristic
response of the condensate to perturbation confirms the real
eigenfrequency for these parameters, as illustrated in Fig. 1(a).
For regime II (k, = 4.5 and Q = 1.0), we obtain the ground
state with the interaction strength ¢cp = 5.0 and ¢; = —2.0 and
considering spin-orbit coupling and Rabi coupling strength as
kp = 4.5 and 2 = 1.0, respectively, which is a stripe-wave
(SW) phase. Further, in time evolution, perturbing the trap
strength of the density profile of the condensate changes its
shape and amplitude. Here we discuss it in the x-¢ plane. The
density profile evolves as the stripe wave in the beginning,
but for ¢ > 0, densities |.|> fragment into several small
domains, while the zeroth component density diminishes up
to ¢t ~ 400, and afterward |y|> has very weak growth; for
t > 400, all the components exhibit an immisciblelike non-
linear wave pattern. Moreover, we find that in the absence
of magnetization (m = 0), the condensates remain polarized
in the £x directions, which is not observed in regime I [see
Figs. 14(b 1)-14(b iii)] [48,64], due to the appearance of
instability, as shown in Fig. 1(b). Overall, we find that the
numerical simulation confirms the dynamical instability of
the condensate, which is in line with the collective excitation
spectrum calculation.

B. Dynamics of antiferromagnetic SOC BECs

First, we consider the dynamics of regime I (k, = 0.5
and ©Q = 1.0), which also yields the PW phase of the AFM
interaction of the SOC BEC:s. Initially, we generate the ground
state with equal interaction strengths ¢y = 5.0 and ¢, = 5.0,
keeping the Rabi coupling and spin-orbit coupling as 2 = 1.0
and k;, = 0.5, respectively. We then generate the dynamics of
the condensate by quenching the trap strength. The dynamical
evolution of the condensate is obtained by using the RTP of
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FIG. 15. Dynamical evolution of the condensate in the x-¢ plane
for the ¥4 |%, [¥o|?, and |y_,|> components of the condensate for
(a) k. = 0.5and 2 = 1.0 and (b) k., = 4.5 and 2 = 1.0, by quench-
ing the trap strength to one-third of its initial value. The interaction
strengths are ¢y = 5.0 and ¢, = 5.0. In the PW phase, the density of
the condensate shows stable breatherlike dynamics. The SW phase
holds its shape in the beginning, then the [¢.,|> components frag-
ment into several small domains, and the zeroth components start
diminishing, confirming the dynamical instability of the condensate.

the GPE. In Figs. 15(a 1)-15(a iii) we show the densities of
the three component |y 12, |¥ol?, and |[y_1 %, respectively.
During temporal evolution, the density shows stable breather
oscillation. This particular feature of the condensate
complements the real nature of the collective excitation
spectrum corresponding to this regime as presented in
Fig. 4(a). This constant behavior of the density profile during
dynamical evolution and stable energy complements the
dynamically and energetically stable nature of the condensate.

In Figs. 15(b 1)-15(b iii) we show the dynamical evolu-
tion of the density component for regime II (k, = 4.5 and
Q = 1.0) attained after the quench of potential strength for
the ground state prepared with interaction strengths cyp = 5.0
and ¢, =5.0. We find that the density profile, which has
a stripe-wave nature for all the components at r = 0, starts
getting fragmented into several small domains upon evolu-
tion. While 1 components get polarized [see Figs. 15(b 1)
and 15(b iii)], the zeroth component density starts diminish-
ing [see Fig. 15(b ii)] [44,46,65]. This particular dynamical
feature of the condensate complements the presence of the
double UAC, which are present with both low-lying and
second-excited branches, resulting in I,-type instabilities and
thus making the condensate dynamically unstable. It is worth
noting that a similar domain formation has been realized in
the presence of a weak Zeeman coupling [46].

VII. CONCLUSION

We have studied the stability of various phases in
spin-orbit-coupled spin-1 SOC BECs with FM and AFM in-
teractions. The Bogoliubov—de Gennes theory was employed
to compute the eigenspectrum of the condensate.

For ferromagnetic interactions in the low-spin-orbit-
coupling regime (k; < Q), the eigenspectrum exhibits real
eigenfrequencies with a gap between the branches, showing
phonon modes in the low-lying branch. The eigenvectors
corresponding to the low-lying branch components approach

the same value at ¢, & 0, confirming the presence of phonon
modes. In the high-spin-orbit-coupling regime (k7 > Q), we
observe multiband imaginary eigenfrequencies in the low-
lying branch. For FM interactions, we find the emergence of
an UAC between the low-lying and first-excited branches, in-
dicating the presence of I,-type instability in each branch. The
eigenvectors in this regime exhibit spin-density-like mixed
modes arising from the multiband eigenfrequencies in quasi-
momentum space. At the wave-number regime where UAC
occurs, the eigenvector shows out-of-phase behavior for all
the components of the condensate.

For AFM interactions with low-spin-orbit coupling, we
observe stable avoided crossings between the low-lying and
first-excited branches, as well as between the first- and
second-excited branches. At these stable avoided crossings,
the eigenvectors of all components display flipping charac-
teristics. In the high-spin-orbit-coupling regime (2 < k7), we
identify multiband imaginary eigenfrequencies in the low-
lying and first-excited branches, accompanied by single-band
instability in the second-excited branch. Evidence of I,-type
instability is observed in the excitation spectrum, primarily
originating from the first UAC between the low-lying and
first-excited branches and the second UAC between the first-
and second-excited branches. Notably, for AFM interactions,
the first-excited branch exhibits a double UAC, a feature
not present in the ferromagnetic case. The eigenvectors for
AFM interactions reveal spin-density-like mixed modes in the
low-lying and first-excited branches, while the second-excited
branch transitions from density to spin modes due to single-
band instability. The presence of an UAC and a double UAC
induces out-of-phase behavior in the respective components.

Further investigation into instability in momentum space
reveals that while the instability region is symmetric in the
spin-orbit-coupling range, it shows an asymmetric character
in the Rabi coupling plane. For fixed values of Rabi coupling
(positive or negative), both FM and AFM SOC BECs are
destabilized only for high spin-orbit coupling (k? > €2). In the
case of weak spin-orbit coupling in AFM BECs, instability
and UACs are observed within the range © < 3, while the
system remains stable otherwise. In contrast, the FM con-
densate remains stable in this regime. Both systems exhibit
a double UAC when © < 0. For higher spin-orbit coupling,
AFM interactions show an UAC for Q 2> 6, with a double
UAC appearing for 2 < 3. The ferromagnetic condensate,
however, remains unstable throughout the entire Rabi cou-
pling range, with an UAC observed for 2 < 1 and a double
UAC for Q < —2. In the k.-Q phase plane, both systems
exhibit stability only in regime I; instability prevails in all
other regimes, driven by the spin-orbit-coupling strength and
multiband instability. Finally, we have investigated the varia-
tion of the band gaps between low-lying excitation branches
in the interaction parameter space, noting that AFM SOC
BEC:s consistently showed double UACs, while ferromagnetic
interactions displayed single UACs in the eigenspectrum.

We have complemented the dynamical stability of the
condensate obtained using the BdG analysis through the
mean-field GPEs for both the low-spin-orbit-coupling regime
(regime I) and high-spin-orbit-coupling regime (regime II).
For low spin-orbit coupling, we have reported the stable
breather pattern of the condensate with FM and AFM
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interactions, which very well complement the dynamically
stable nature of the condensate as shown using the BdG
analysis. At high spin-orbit coupling, for which the ground
state is of stripe-wave phase nature, dynamically fragmented
condensate is exhibited upon evolution for both interactions.
This fragmentation is more pronounced in the AFM interac-
tion, which may be attributed to the presence of instabilities
across all branches. In AFM SOC BECs, the fragmentation
is accompanied by the complex domain formation in which
the amplitude of the component remains unchanged but the
shape of the condensate fluctuates. In contrast, for FM SOC
BECs, decay appears in the density profile, evidenced by the
reduced amplitude and immiscibility of the condensates.

It would be intriguing to extend the present work to higher
(two and three) dimensions, where SOC BECs can exhibit a
diverse range of interesting topological and supersolid states
[5,66]. Recently, it has been reported that the inclusion of the
quadratic Zeeman term becomes a handy tool to tune the gap
between the double roton minima, which in turn is helpful in
inducing the plane wave to stripe phase transition in spin-1
SOC thermal BECs [67]. It would be interesting to explore the
effect of the quadratic Zeeman term on all sorts of MI and low-

J

lying excitation investigated in the present work. Controlling
the gap between the low-lying excited state presented in
the paper could be valuable for developing novel quantum
material and technology using ultracold atomic systems.
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APPENDIX: RELEVANT TERMS OF THE BDG MATRIX OF COLLECTIVE EXCITATIONS

In this Appendix, we provide an explicit form of the matrix elements of the BdG matrix equation (6). The matrix elements of

Eq. (6) read
g
Hy = 2 + (200, + 60 +¢21) + 2 (265, + 65— ¢2,), (A1)
2
Hy = % o6y + 200+ 62)) + a6l +0%)). (A2)
H = q_2x+60(¢+1 + 85 +207)) + 2202, + b5 — ¢74) (A3)
Q
tadir = co(PF) + @5 + &2 )pa1 + 2(D7) + 5 — B2 1) b1 + C20050", + 72%, (A4)
2 2, 0 2 2 " Q
podo = co(d7y + ¢5 + &1 )do + c2(d7, + 7)o + 22051191 + E((p—&-l +é-1), (AS)
Q
fopo1 = co(@Z, + &f + %1)b-1 + c2(02, + &5 — &%) d-1 + 2y, + N (A6)
+ 42 4o ke . . Q .
Lip=C"¢1, Liz=CTdyd1 — Equ + 2c2¢00”; + E, Ly =C o1,
15=C ¢" 1011, Lis=C ¢_1¢41 + 0205, Lo =—-CT¢*%, Loz =-CTeio,,
k Q — % * *
Loy = —CT oo}, + ﬁ —20p5¢-1 — ﬁ’ Los = —C™¢* 9% — c2epp?,
Lo =—C 195, L31=CT¢% ¢o+ 2020501 + lex [ Ly = Ctoi 160,
Q
L34 = cod? +2 i L= OG0 + 2008060 — ~igy + . Lag = Ct_ido.
34 = Codpy + 20201101 35 O~ 1o + 2c205P 41 ﬁlq NG 36 d_160
kr Q
L4 = —Cro* ¢k, Lyp=—-C* e g — 200000, — —=,  Laz = —codi? — 2c20% 9%,
41 d1 190 42 1190 NG q 20007 7 43 0P 201107
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Lsy =C ¢rip_1 + ¢y, Ls3=CTgidp_1 +

Lso =CT 2, Lo=—-C¢%¢" — oy,
k Q
‘C64 = _C+¢O¢i1 — ﬁqu — 2C2¢;¢+1 — E,

Also,

Cct =co + ¢,

The coefficients for the BAG characteristic equation (8) are

kr
A
Loy = —C 1107,

: . Q
iqx + 2C2¢0¢+1 +—=

. Lss=Chpop_1,
7 54 P01

Loy = —C 59",

Les =—CTo*.

C™ =c¢y— .

b=—5Q" —4c; — (2k; +3Q+c0)q; — 34} + (82 + 42), (A7)

¢ =4Q" + Q[2Q(k] +3Q) — (k} — 5Q)co]q? +4caq? + 3[2k] + 997 + (k] + 6)co]q]
+ 132+ o)t + 2qt +43[Q% + (kf — Q+co)q;]
— 302[169Q° +2Q(7k; + 52 + 8co)q; + (ki + 6K + 4co)qs + 42, (A8)
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