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Trapped-ion systems are a promising route toward the realization of both near-term and universal quantum
computers. However, one of the pressing challenges is improving the fidelity of two-qubit entangling gates. These
operations are often implemented by addressing individual ions with laser pulses using the Mølmer-Sørensen
protocol. Amplitude modulation (AM) is a well-studied extension of this protocol, where the amplitude of the
laser pulses is controlled as a function of time. We present an analytical study of AM, using a Fourier series
expansion to maintain the generality of the laser amplitude’s functional form. We then apply this general AM
method to gate-timing errors by imposing conditions on these Fourier coefficients, producing trade-offs between
the laser power and fidelity at a fixed gate time. The conditions derived here are linear and can be used, in
principle, to achieve arbitrarily high orders of insensitivity to gate-timing errors. Numerical optimization is then
employed to identify the minimum-power pulse satisfying these constraints. Our central result is that the leading-
order dependence on gate-timing errors is improved from O(�t2) to O(�t6) with the addition of one linear
constraint on the Fourier coefficients and to O(�t10 ) with two linear constraints without a significant increase
in the average laser power. The increase approaches zero as more Fourier coefficients are included. In further
studies, this protocol can be applied to other error sources and used in conjunction with other error-mitigation
techniques to improve two-qubit gates.
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I. INTRODUCTION

Trapped-ion systems are promising candidates for near-
term and universal quantum computers. They have long
coherence times: up to 0.2 s for optical qubits [1], 2.1 s for
Zeeman qubits [2], and 600 s for hyperfine qubits [3] with
control techniques. Trapped-ion platforms also support high-
fidelity operations, with single-qubit gate fidelities exceeding
0.9999 [4] and two-qubit gate fidelities exceeding 0.999 [5–8].
While three nines (0.999) in two-qubit gate fidelities are
sufficient for fault-tolerant quantum computation (see, for ex-
ample, the 0.9925 threshold [9]), any additional progress will
significantly reduce the overhead required for quantum error
correction. Therefore, improving two-qubit gate fidelities will
increase the range of computations available on quantum in-
formation processors, particularly when the system scales up
to more qubits.

The Mølmer-Sørensen (MS) gate [10,11] is one of the
standard two-qubit gates, with fidelities exceeding 0.999
in experimental implementations [5,7]. Although these fig-
ures place the MS gate within the fault-tolerance threshold,
the fidelity suffers greatly from experimental imperfections,
such as motional mode frequency errors, laser (or qubit) fre-
quency fluctuations, and gate-timing errors, especially as the
system scales.

Modifications of the MS protocol, such as pulse shaping,
have been proposed to reduce its sensitivity to these fluc-
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tuations. Each of the three pulse parameters, i.e., amplitude
[12–19], frequency [15–17,20–22], and phase [23,24], can be
controlled as time-dependent functions to enhance the pro-
tocol. Additionally, pulses can be constructed from multiple
frequency tones [25–28]. These degrees of freedom allow
pulses to be tailored toward certain outcomes, such as robust-
ness to errors.

Amplitude modulation (AM) has been demonstrated exper-
imentally in different forms in both laser-based and laser-free
setups. Amplitude modulation can be implemented with dis-
crete segments [12,13] or by using smooth envelope functions
[14,18,19]. Common pulse envelopes for AM are the sin2

pulse [14] and the truncated Gaussian pulse [19]. These pulses
feature a “soft start” [14], which results in a smaller displace-
ment near the gate time. Thus, these gates are more robust to
errors caused by residual spin-motion entanglement. Another
strategy is to use a parametrized pulse shape to bring out de-
sired features (such as robustness to experimental parameters
or smoothness). In a further study of [14], a general pulse
shape composed of triangular basis functions was used [18].
However, existing protocols of amplitude modulation enhance
the gate robustness at the cost of increased power usage.

Recently, laser power optimization was studied in simulta-
neous modulation of both the amplitude and the frequency of
the pulse to suppress motional mode frequency errors [15,16].
The method produces a provably power-optimal pulse using
matrix operations with 1000 or more basis functions, where all
motional modes of a chain of N ions are considered and fast-
oscillating terms are kept. This allows their work to achieve a
practical improvement in the fidelity of current devices. Yet it
is unknown whether power optimization can be achieved with
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just amplitude modulation of the pulse. Moreover, can the gate
robustness be enhanced without increasing the average laser
power?

In this work, we employ the general method of pulse
amplitude modulation using a Fourier basis to enhance the
two-qubit gate robustness against errors and optimize the av-
erage power used simultaneously. We apply this protocol to
gate-timing errors, which are commonly studied as bench-
marks for new protocols [25,29]. The robustness of the gate
against timing errors is guaranteed by a sequence of linear
equations, whose explicit forms are derived in terms of the
Fourier coefficients. In particular, the leading-order sensitivity
is asymptotically improved by �t4 (for a gate-time error �t)
for each linear constraint used. The power-optimized pulse is
then selected by reduction to a generalized eigenvalue prob-
lem, which is solved numerically. This benefit is observed
with minimal additional laser power, as compared to the orig-
inal MS protocol, if sufficiently many basis functions are used
in the AM.

In our scheme, we consider two ions interacting with only
the center-of-mass mode in the rotating-wave approximation.
This simpler model allows us to derive analytical expressions
for the phase-space trajectories of MS gates for AM generally,
with pulses characterized by Fourier coefficients. We demon-
strate enhanced robustness against the gate-timing errors with
only tens of basis functions and an improvement over the MS
protocol with minimal additional laser power.

This work is organized as follows. Section II introduces
the MS gate in more detail, using the notation and assump-
tions considered in [10]. In Sec. III the method is described
in detail. We define the Fourier series structure of our AM
(Sec. III A) and derive sensitivity conditions for gate-timing
errors (Secs. III B and III C). Then we perform optimization
of the free parameters to reduce the power cost (Sec. III D).
Section IV contains our numerical results, including plots of
the power-optimized pulse envelopes, gate trajectories, and
population evolution. Section V contains our discussion and
outlook.

II. MØLMER-SØRENSEN GATE

A. Introduction

One well-established protocol for implementing entangling
gates on trapped-ion platforms is the Mølmer-Sørensen gate
[10], which uses the ions’ motional modes to mediate an
effective spin-spin interaction between the internal electronic
states, i.e., the qubits. The MS gate, or MS protocol, is re-
alized by addressing the ions with bichromatic laser light,
with beams symmetrically detuned from the qubit transition
frequency.

In this work, we consider the situation of two ions in a
linear trap and assume that both ions have the same Rabi
frequency � and Lamb-Dicke parameter η. We also assume
that the trap is cooled to the Lamb-Dicke regime, meaning that
motional excitations greater than one quantum are suppressed.
In addition, we take the symmetric laser detuning δ to be
close to the center-of-mass mode frequency ν (ν − δ � δ),
which allows us to consider only the center-of-mass mode
in the interaction. Assuming this and that the laser intensity

is not too large (� � δ), the carrier term (recoil-free atomic
transitions) and fast-oscillating terms (those that oscillate at
frequencies δ or ν + δ) are neglected.

The starting point for this work is the MS Hamiltonian in
the interaction picture. Setting h̄ = 1, working in the Lamb-
Dicke regime, and neglecting carrier transitions and the fast-
rotating terms, the interaction picture Hamiltonian is [10]

Hint = f (t )Jyx + g(t )Jy p, (1)

where Jy = (σ 1
y + σ 2

y )/2 is the collective spin operator with
Pauli operator σy, x and p are the position and momentum
operators, respectively, of the center-of-mass mode, and the
functions f and g are defined as

f (t ) = −
√

2η� cos(ξ0t ), (2)

g(t ) = −
√

2η� sin(ξ0t ). (3)

Here ξ0 ≡ ν − δ is the laser detuning from the red and blue
sidebands of the center-of-mass motion. The analysis below
assumes a positive detuning, ξ0 > 0.

This Hamiltonian gives us an exact propagator [10]

U (t ) = e−iA(t )J2
y e−iF (t )Jyxe−iG(t )Jy p, (4)

which introduces the functions F , G, and A, defined by

F (t ) =
∫ t

0
dt ′ f (t ′), (5)

G(t ) =
∫ t

0
dt ′g(t ′), (6)

A(t ) = −
∫ t

0
dt ′F (t ′)g(t ′). (7)

At the gate time T = 2π/ξ0 under ideal circumstances, we get

F (T ) = G(T ) = 0, (8)

A(T ) = −π/2. (9)

Equation (8) is the condition when the spins and the center-of-
mass motion decouple; Eq. (9) is the condition for preparing
the maximally entangled two-qubit state. These conditions,
applied to (4), yield the propagator U (T ) = ei(π/2)J2

y , which
generates the YY interaction between the two ions. Let |gg〉 be
the state where both two-level atoms are in the ground state
and |ee〉 be the state where both atoms are in the excited state.
Assuming the initial state to be |gg〉, the protocol yields the
final state

|ψideal〉 = U (T )|gg〉 = 1√
2

(|gg〉 − i|ee〉), (10)

under ideal conditions. This logical gate is a sufficient en-
tangling gate for universal computing in combination with
arbitrary single-qubit gates [30].

We note that the propagator in Eq. (4) acts as a displace-
ment operator in the phase space of the motional mode, so the
phase-space picture will be used to visualize the gate trajec-
tories, as shown in Fig. 1. In this geometric interpretation, the
x and p coordinates of the phase-space trajectory are given
directly by the functions G(t ) and −F (t ), respectively. How-
ever, the trajectory (−G, F ) is plotted in our visualizations.
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FIG. 1. Phase-space picture of the MS gate with no error. The
variables x and p are the position and momentum observables of
the center-of-mass oscillation of the two-ion system. Here F (t ) and
G(t ) determine the spin-motion coupling as a function of time t
and therefore determine the phase-space trajectory. As a result, the
system acquires a geometric phase A(t ), particularly at the gate time
T when the trajectory closes at the origin and the spin variables
decouple from the motion.

The geometric phase A(t ) is the area enclosed by the trajec-
tory. The MS protocol generates a circular trajectory in phase
space which begins at the origin and closes at the origin ex-
actly one gate time T later. This closure at the origin is critical
to creating a maximally entangled state in the electronic states
of the ions, because a displacement from the origin in phase
space represents a coupling between the motional modes and
the spin variables. This remaining coupling prevents the spin
states from becoming maximally entangled, which reduces the
gate fidelity.

B. Gate fidelity

Our aim is to modify the MS protocol so that it produces an
entangled state at a predetermined level of success in the pres-
ence of noise and imperfections. We quantify the success of
the protocol by the gate fidelity, i.e., the projection of the pre-
pared state onto the ideal state, defined by 〈ψideal|ρ̂(T )|ψideal〉,
where ρ̂(T ) is the density matrix of the state prepared after
one gate time T and |ψideal〉 is the desired state.

Reference [25] gives the analytical expression for the MS
gate fidelity,

FMS = 3 + e−4(n̄+1/2)[(F 2+G2 )/2]

8

− e−(n̄+1/2)[(F 2+G2 )/2] sin
(
A + FG

2

)
2

, (11)

except the negative sign on the second term, which is required
for our definition of ξ0, A(t ), and |ψideal〉. In this expression,
n̄ is the average phonon number of the initial motional state,
which is directly related to the initial temperature of the sys-
tem, F and G are the phase-space coordinates (5) and (6),
respectively, and A is the geometric phase (7). Note that the
quantity n̄ is not a parameter in our study, as it is not related
to the pulse shape. Experimentally, this quantity can be made
very small by cooling the ions near the ground-state motional
mode [5,31].

In the ideal case, when the gate time is exact and there are
no fluctuations in the other parameters, F = 0, G = 0, and
A = −π/2. Hence, FMS = 1 and the state |ψideal〉 is prepared

exactly. Other parameters, such as motional mode frequency,
laser frequency, laser intensity, and gate time, affect F , G, and
A. Therefore, they also influence the fidelity. In this work, we
focus on reducing errors due to imperfections in the gate time
as an example of the power-optimized amplitude modulation
protocol.

C. Expansion of gate fidelity

Though the exact expression for fidelity is known in
Eq. (11), an expansion is used to analyze the sensitivity of the
relevant quantities to gate-timing errors. Consider a trajectory
(−G, F ) which closes at the origin and periodic functions f (t )
and g(t ). A variation in the gate time t = T + �t gives rise to
the following variations in F , G, and A, which follow from the
linearity of the integral expressions,

�F ≡ F (T + �t ) − F (T ) = F (�t ), (12)

�G ≡ G(T + �t ) − G(T ) = G(�t ), (13)

�A ≡ A(T + �t ) − A(T ) = A(�t ) + π/2. (14)

If we consider only small variations in the gate time, i.e.,
�t � T , then the variations in phase-space coordinates and
geometric phase should also be small, �F � 1, �G � 1,
and �A + π/2 � 1. It follows that the infidelity is, to leading
order (see Appendix A),

1 − FMS ≈
(

n̄ + 1

2

)
F 2 + G2

2
, (15)

as long as n̄ is not too large.
In the original MS protocol [10], recall F (t ) ∝ sin(ξ0t ) and

G(t ) ∝ 1 − cos(ξ0t ). Hence, for gate-time fluctuations,

�F ∝ sin(ξ0�t ) = O(�t )

and

�G ∝ 1 − cos(ξ0�t ) = O(�t2),

which means that F 2 + G2 = O(�t2) and hence the leading-
order term of the fidelity of the traditional MS gate is O(�t2).
Throughout the rest of this article, a protocol capable of
improving the leading contribution to arbitrary order is devel-
oped analytically. The next two sections contain the methods
used and the numerical results for examples of O(�t6) and
O(�t10) sensitivity.

III. METHODS

In this work, we apply amplitude modulation to the two-
qubit MS gate, constrain the asymptotic scaling of the MS gate
fidelity with respect to gate-timing errors, and then perform
numerical optimization to select the minimal-power pulse
which satisfies these constraints.

The AM is treated analytically by considering a Fourier
series expansion of the pulse envelope function. This ac-
complishes a description of all continuous pulses, which are
characterized by the Fourier coefficients. An analytical (para-
metric) expression for the phase-space trajectory of the gate is
derived in terms of these coefficients, which characterizes the
effect of the gate in terms of the Fourier coefficients.
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As in [25], we use a series expansion of the MS gate
fidelity with respect to a small gate-time deviation �t to de-
rive constraints for the sensitivity. However, the leading-order
dependence of the fidelity to variations in F and G were
determined in the preceding section, so all that remains is to
show the dependence of F and G on gate-time deviations.
This is achieved using a Taylor series expansion, in which
the O(�t n) contribution of F (and G) is determined by its
nth derivative. The leading-order term can thus be chosen to
arbitrary order: Setting the first k derivatives of F and G to
zero results in a gate fidelity with leading order �t2k+2. These
constraints are derived analytically and reduced to an equiva-
lent system of linear equations on the Fourier coefficients used
to express the pulse envelope function. Moreover, we find that
it is optimal to set the coefficients of the odd basis functions to
zero, meaning that half of the linear constraints (LCs) would
be automatically satisfied. Hence, a system of l LCs is used
to improve the leading-order gate fidelity to O(�t4l+2), an
improvement of four orders for each LC added.

Considering the power cost, we find that the average laser
power and geometric phase are both quadratic in terms of
the Fourier coefficients. Therefore, a pulse with improved
fidelity and minimized laser power can be found by solving
a constrained quadratic optimization problem. We solve the
optimization problem by reducing it via the linear constraints
and then changing coordinates so that the second quadratic
constraint is normalized. This problem is reducible to the
eigenvalue problem, so the relevant matrix is constructed ana-
lytically (indexwise) and then diagonalized numerically. From
these eigenvectors, the ai Fourier coefficients are recovered
and the power-optimized pulse is constructed.

A. General amplitude modulation

The procedure begins with a general time-dependent am-
plitude envelope function �(t ) written in the Fourier basis.
This can be made equivalent to the simultaneous amplitude
modulation and frequency modulation discussed in Ref. [16],
where a fast-oscillating pulse function is defined as G(t ) =
�(t ) sin[ψ (t )] to incorporate both the envelope function of the
pulse �(t ) and the phase term ψ (t ). We argue that by expand-
ing only the amplitude �(t ) in the complete basis, one can
generate the same pulse function G(t ) in the fast-rotating limit
as long as the basis expansion converges to G(t )/sin[ψ (t )].

We express the amplitude envelope function �(t ) as a
Fourier series with coefficients a0, an, and bn so that

�(t ) = a0

2
+

N∑
n=1

an cos(nξ0t ) + bn sin(nξ0t ). (16)

Note that we truncate the series to N th order in this expression,
yet the analysis holds for arbitrarily large N in principle. The
coefficients an and bn give us a large parameter space to work
with, which will be used to characterize AM pulses generally,
impose robustness constraints, and optimize the laser power.
The derivation of the MS propagator (4) is unchanged; how-
ever, our expressions f (t ) and g(t ) gain the time dependence

f (t ) = −
√

2η�(t ) cos(ξ0t ), (17)

g(t ) = −
√

2η�(t ) sin(ξ0t ). (18)

The integration to find F (t ) and G(t ) can still be done analyt-
ically with the choice of the Fourier basis. So the exact gate
trajectory for AM in the Fourier basis is given by

F (t ) = − η√
2ξ0

[
a0 sin(ξ0t ) + a1

(
sin(2ξ0t )

2
+ ξ0t

)
+

N∑
n=2

an

(
sin[(n + 1)ξ0t]

n + 1
+ sin[(n − 1)ξ0t]

n − 1

)

+ b1

(
1 − cos(2ξ0t )

2

)
+

N∑
n=2

bn

(
1 − cos[(n + 1)ξ0t]

n + 1
+ 1 − cos[(n − 1)ξ0t]

n − 1

)]
(19)

and

G(t ) = − η√
2ξ0

[
a0[1 − cos(ξ0t )] + a1

(
1 − cos(2ξ0t )

2

)
+

N∑
n=2

an

(
1 − cos[(n + 1)ξ0t]

n + 1
− 1 − cos[(n − 1)ξ0t]

n − 1

)

+ b1

(
ξ0t − sin(2ξ0t )

2

)
+

N∑
n=2

bn

(
sin[(n − 1)ξ0t]

n − 1
− sin[(n + 1)ξ0t]

n + 1

)]
. (20)

Note that a1 and b1 are each coefficients of a term linear in t
[in (19) and (20), respectively]. Therefore, F (T ) = G(T ) = 0
implies a1 = b1 = 0. These exact expressions for the gate
trajectories are used in Sec. III C to exclude n = 1 from the
optimization and in Sec. IV A to speed up numerical calcula-
tions.

B. Expansion of F and G

The infidelity is proportional to F 2 + G2 to the leading
order (15); thus the sensitivity of the fidelity to experimental

parameters is determined by constraints on the derivatives
of F and G. In particular, our strategy is to declare a
leading order k + 1 such that �F = O(�t k+1) and �G =
O(�t k+1), which guarantees sensitivity to errors of 1 −
FMS = O(�t2k+2).

The general forms (19) and (20) could be used to calcu-
late the derivatives, but the Taylor expansions of F and G
themselves are convenient to work with. Due to our choice
of the Fourier basis for the expansion of �(t ), the derivatives
of F and G are readily calculated analytically in terms of
the Fourier coefficients an and bn. For this reason, we will
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derive the conditions for the function �(t ) from these Taylor
expansions directly. Recall the definitions of F and G [Eqs. (5)
and (6), respectively], which directly yield F ′(t ) = f (t ) and
G′(t ) = g(t ) by the fundamental theorem of calculus. Thus we
just need to examine the derivatives of f (t ) and g(t ), defined
in Eqs. (17) and (18), respectively.

We make use of the general Leibniz rule, which states

( f g)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k)

for arbitrary functions f and g. Therefore,

f (i)(t ) = −
√

2η

i∑
l=0

(
i

l

)
�(i−l )(t )

∂ l

∂t l
[cos(ξ0t )] = −

√
2η

i∑
l=0

(ξ0)l

(
i

l

)
�(i−l )(t ) cos(ξ0t + lπ/2) (21)

and

g(i)(t ) = −
√

2η

i∑
l=0

(
i

l

)
�(i−l )(t )

∂ l

∂t l
[sin(ξ0t )] = −

√
2η (22)

×
i∑

l=0

(ξ0)l

(
i

l

)
�(i−l )(t ) cos[ξ0t + (l − 1)π/2]. (23)

These expressions depend on the derivatives of �(t ), which are described in Appendix B. After simplifying the expression at the
gate time t = T , the ith-order derivatives of F and G are

F (i)(T ) =
{

(−1)(i+1)/2
√

2ηξ i−1
0

[ a0
2 + ∑N

n=1 an
∑(i−1)/2

l=0

(i−1
2l

)
ni−1−2l

]
for odd i

(−1)i/2
√

2ηξ i−1
0

∑N
n=1 bn

∑i/2−1
l=0

(i−1
2l

)
ni−1−2l for even i > 0

(24)

and

G(i)(T ) =
{

(−1)i/2
√

2ηξ i−1
0

[ a0
2 + ∑N

n=1 an
∑(i−2)/2

l=0

(i−1
2l

)
ni−2−2l

]
for even i > 0

(−1)(i−1)/2
√

2ηξ i−1
0

∑N
n=1 bn

∑(i−3)/2
l=0

(i−1
2l

)
ni−2−2l for odd i.

(25)

This provides a general way to write and determine the
conditions for fidelity improvements in terms of the Fourier
coefficients.

C. Linear constraints

The leading contribution to the fidelity is O(�t2k+2) when
the first k derivatives of F and G are zero. Thus, the linear
system

F (i)(T ) = 0, 0 � i � k (26)

G(i)(T ) = 0, 0 � i � k, (27)

constrains the pulse such that the fidelity will be of order
2k + 2. In Appendix C we show that the constraints defined
by the system given in Eqs. (24) and (25) to satisfy (26) and
(27) are captured by the reduced system

δ1i
a0

2
+

N∑
n=1

anni−1 = 0 for odd i > 0, (28)

N∑
n=1

bnni−1 = 0 for even i > 0, (29)

where the Kronecker delta is used for compact notation.

In matrix form, the constraints (28) and (29) can be written

⎛
⎝ 1

2 1 1 1 · · · 0 0 0 · · ·
0 1 4 9 · · · 0 0 0 · · ·
0 0 0 0 · · · 1 2 3 · · ·

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1
...

aN

b1
...

bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

for the system up to i = 3. This matrix, denoted by C, can be
constructed for any i. Once we decide on an order k to bound
the error with respect to gate time, we immediately know the
number of constraints in our system i and hence we know the
full matrix C.

Note that F (T ) = G(T ) = 0 implies a1 = b1 = 0. There-
fore, n = 1 is excluded throughout the remainder of the
calculation.

D. Power optimization

The geometric phase and the average laser power of the
gate are evaluated at the gate time to produce expressions of
these physical quantities in terms of the Fourier coefficients.
These expressions allow us to optimize the average power
used during the gate. The optimization problem consists of
extremizing a quadratic form with respect to one quadratic
constraint and a collection of linear constraints, the generic
solution of which can be found in Ref. [32].
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The expression for average power is obtained by integrat-
ing |�(t )|2 over one period; the expression for geometric
phase comes from evaluating Eq. (7) at the gate time by
integration. In this section, the laser power will be in units
of |�MS|2, where �MS is the (constant) Rabi frequency of
the MS gate with the same parameters ν and ξ0. The most
general forms, in terms of both ai and bi, are presented in
Appendix D; however, we find that it is beneficial to have the
bi coefficients equal to zero (see Appendix D). In terms of
only an coefficients, the expression for average power is

P = 1

4
a2

0 + 1

2

N∑
n=2

a2
n (30)

and the expression for geometric phase is

A = −1

4
a2

0 + 1

2

N∑
n=2

a2
n

n2 − 1
. (31)

Equations (30) and (31) lead to the minimum average power
usage to generate the maximally entangled qubit states, which
is P � |�MS|2, which agrees with the lower bound obtained in
Ref. [16] (using the definition from [13]). Note that the aver-
age power and geometric phase are both quadratic forms of the
Fourier coefficients, giving rise to the quadratic optimization
problem. The additional linear constraints are those derived in
Sec. III C that improve the sensitivity of the gate fidelity.

Consider the row vector of an coefficients,

aT ≡ (a0, a2, . . . , aN ), (32)

excluding a1, which we know must be zero to ensure the gate’s
closure in phase space. Now we can write

P = aT Pa, (33)

with

P =

⎛
⎜⎜⎜⎝

1
4 0 0 0
0 1

2 0 0

0 0 . . . 0
0 0 0 1

2

⎞
⎟⎟⎟⎠,

and A can be written in the matrix form as

aT Aa, (34)

with

A =

⎛
⎜⎜⎜⎝

− 1
4 0 0 0

0 1
6 0 0

0 0 . . . 0
0 0 0 1

2(N2−1)

⎞
⎟⎟⎟⎠.

In terms of these quantities, the optimization problem we
face is the following:

maximize

∣∣∣∣aT Aa
aT Pa

∣∣∣∣
subject to Ca = 0. (35)

In principle, the geometric phase A should be fixed [so that
the ideal state (10) is correctly prepared], so the average laser
power P should be minimized. However, the constraint for av-
erage power gives a positive-definite quadratic form, whereas

the geometric phase gives an indefinite one. Therefore, it is
necessary to maximize the magnitude of A with respect to a
fixed P and rescale the solutions a to yield the ideal state.1

We can eliminate the linear constraints by solving the
system Ca = 0. The solution space, the null space of C, has
dimension N − k/2, and so each N-dimensional vector a can
be described by a unique (N − k/2)-dimensional vector a′.2
When the problem is restated in terms of these vectors, we
have

maximize

∣∣∣∣a′T A′a′

a′T P′a′

∣∣∣∣, (36)

where the linear constraints are encoded into the vectors a′.
Note that A and P are diagonal matrices, but A′ and P′ are
not.

Since P was positive definite, P′ will also be positive
definite [32]. Therefore, we can diagonalize P′ and form the
matrix P′−1/2. Then we can write x = P′1/2a′, so that the
optimization problem reduces to

maximize

∣∣∣∣xT P′−1/2A′P′−1/2x
xT x

∣∣∣∣. (37)

This construction is (the absolute value of) the Rayleigh quo-
tient of the matrix P′−1/2A′P′−1/2. The Rayleigh quotient of a
symmetric matrix is lower bounded by its smallest eigenvalue
and upper bounded by its largest eigenvalue, so our optimiza-
tion problem reduces to the eigenvalue problem for the matrix
P′−1/2A′P′−1/2.

We found the matrices A′ and P′ for arbitrary N for the
case of one linear constraint and for two LCs and then cal-
culated the eigenvalues and eigenvectors of P′−1/2A′P′−1/2

numerically using Mathematica. The matrices for one and two
LCs are given in Appendix E, while the numerical results are
presented in Sec. IV.

IV. NUMERICAL RESULTS

A. Qualitative comparison to the traditional MS gate

Now that the optimal pulse coefficients are calculated, we
numerically compare the AM-MS gate and the traditional
MS gate. The time evolution of each of these gates is rep-
resented in three ways: by the shape of the pulse envelope
function �(t ), the phase-space trajectory, and the population
vs time graph. The plots of �(t ) in Fig. 2 show the pulse
envelopes directly and highlight key differences from the
constant-amplitude MS gate. The plots of the phase-space tra-
jectories (Figs. 3 and 4) show the coupling between the elec-
tronic states and the motional mode, while the population vs
time graphs (Figs. 5 and 6) show how the probabilities of the
|gg〉 and |ee〉 states evolve in time.

1We anticipated (and confirmed) that the a0 term would be the
dominant contribution to the geometric phase and thus that A will
be negative. Hence, in practice, the minimum eigenvalue of A with
respect to P was found.

2The strategy, used in [32], is to choose vectors with N entries
where the last k/2 are zeros. Then, only the (N − k/2) × (N − k/2)
submatrices which act on the nonzero entries need to be considered.
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FIG. 2. Pulse envelopes of the power-optimized pulses, where
three features are observed: slow initial growth, a sharp peak, and
oscillations around a constant amplitude for the middle stage. The
optimal pulse for one LC is compared to the two-LC pulse for
(a) N = 3 and (b) N = 10. (c) Trend for increasing N , using the
one-LC case.

In Fig. 2 we observe that the power-optimized AM pulses
all display the significant feature of a soft start followed by a
sharp peak. The soft start around t = 0 (as well as the slow
decay toward t = T due to the symmetry of the pulse) corre-
sponds to a slow evolution of the trajectory near the origin in
the phase-space picture, improving the sensitivity to timing er-
rors. This feature is the source of the fidelity improvement. In
Figs. 2(a) and 2(b) we observe that the initial growth is slower

FIG. 3. Trajectory (−G(t ), F (t )) of the MS gate compared to
AM (with one linear constraint) gates for small N . The shape of the
AM gate approaches the circular trajectory of the standard MS gate
as N is increased.

FIG. 4. Trajectories (−G(t ), F (t )) of the MS gate and AM N =
5 gate with (a) 5% error and (b) 10% error. The AM gate trajectory is
traced out at a nonuniform rate, moving slowly near the origin. This
is the source of the robustness to timing errors.
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FIG. 5. Population dynamics of (a) the MS gate compared to
(b) the AM N = 5 gate when the motional mode is cooled to the
ground state.

for additional linear constraints when N is fixed, which agrees
with the required robustness to gate-timing errors. As N is
independently increased, the initial growth becomes faster, the
height of the sharp peak is smaller, and the middle stage of
the pulse approximates a constant envelope with smaller vari-
ations. The power-optimized AM pulse approaches a constant
pulse, a feature of the traditional MS gate, except around the
start and the end of the pulse.

The phase-space trajectories of the traditional MS gate and
the power-optimized AM-MS gate are compared in Figs. 3
and 4. As shown in Fig. 3, the traditional MS gate traces
out a circle intersecting the origin while the power-optimized
AM-MS pulses follow elongated trajectories. As the order of
N increases in the AM-MS pulses, the trajectory approaches
that of the MS gate. The gate-timing error �t can be vi-
sualized by plotting the trajectory for the range [0, T − �t]
in Fig. 4. The N = 5 AM gate is compared to the MS gate
using 5% and 10% errors for one and 2 LCs. From Fig. 4 we
observe that the soft start of the AM-MS gates significantly re-
duces the residual displacement in phase space for reasonable
timing errors, implying a reduction in residual spin-motion
entanglement.

The population vs time graph for these two types of pulses
is shown in Fig. 5, assuming the system is in the motional
ground state, and in Fig. 6, with the system in a thermal state

FIG. 6. Population dynamics of (a) the MS gate compared to
(b) the AM N = 5 gate when the motional mode is cooled to a
thermal state with the mean phonon number n̄ = 2.

cooled to n̄ = 2.3 Our focus is at one gate time t/T = 1,
where we expect an equal coherent superposition of |gg〉 and
|ee〉. We use the N = 5 pulse as a representative for the
power-optimized AM-MS gate in these plots. We observe that
the amplitude-modulated pulses produce a flatter curve in the
region around the gate time compared to the MS gate in both
cases, indicating an increased resilience to gate-timing errors.
Moreover, this flatness is more evident for thermal states,
as the population curve produced by the MS gate becomes
sharper around the gate time as the phonon number increases.
Note that the population curves do not show the coherence of
the state, which is relevant, because tracing out the motional
modes in the final state may introduce some decoherence. In
the following section, we plot the infidelity directly to account
for this.

B. Gate fidelity benefit vs laser power cost

We claimed that our protocol offers fidelity improvements
with minimal power cost. Figure 7 illustrates the former, while
Fig. 8 offers evidence for the latter.

3We use the analytic expressions for the population given in [10]
and the probability distribution of a thermal state from [33] to pro-
duce these plots.
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FIG. 7. Error rate comparison between the constant pulse and
Fourier pulses for (a) one linear constraint and (b) two linear con-
straints. Note the flatness around �t/T = 0 for each AM pulse.
The leading contribution of �t to the infidelity is (a) O(�t6) and
(b) O(�t10), compared to the leading order �t2 of the MS pulse.
The insets, set to a logarithmic scale, show this power-law scaling.

Figure 7 directly displays the infidelity 1 − FMS with re-
spect to gate-time fluctuations �t/T for one LC [Fig. 7(a)]
and two LCs [Fig. 7(b)] for a few values of N . Both Figs. 7(a)
and 7(b) contain the MS infidelity curve for comparison,

FIG. 8. The power required to produce an amplitude-modulated
pulse with our protocol decreases with increasing N . In principle, the
complexity of the pulse can be made arbitrarily large [34], resulting
in an arbitrarily small increase in the average laser power necessary
to implement the entangling gate.

which resembles a quadratic function. The same curves are
shown using a logarithmic scale in the insets in Figs. 7(a) and
7(b). The linear behavior in the logarithmic plots verifies the
power-law scaling.

All AM-MS gates have a so-called region of stability
around �t = 0 where the infidelity due to the timing errors
is less than 10−4. For the MS gate, the threshold for this stable
region is approximately ±0.32% error. For N = 5, 10, 20,
these regions are approximately ±3.3%,±2.3%,±1.5%, re-
spectively, for the one-LC case. For the same N , they are
approximately ±7.0%,±4.6%,±2.8%, respectively, for the
two-LC case. For a given N , we observe that the region of
stability is larger with more LCs. However, for a fixed number
of LCs, the region of stability narrows as N increases. This is
due to the power optimization. A lower average laser power
solution typically results in a narrower region of stability.

Figure 8 is a plot of the average laser power vs N for the
one-LC case and the two-LC case. Note that the MS gate
does not depend on N ; it is included as a benchmark. The
required power decreases with increasing N for both one-LC
and two-LC situations. A pulse satisfying two LCs costs more
power than one satisfying one LC, although both appear to
asymptotically approach 1. For a pulse with 100 Fourier coef-
ficients, one LC can be satisfied with 0.51% additional power
and two LCs can be satisfied with 1.2% additional power.
Therefore, using sufficiently large N , a more robust pulse can
be realized with a minimal increase in laser power from the
AM.

V. CONCLUSION

A. Discussion

In this article, we explored general amplitude modulation
by extending the constant-amplitude laser pulse in the tradi-
tional Mølmer-Sørensen gate to a Fourier series. This allowed
us to derive analytical formulas for the gate trajectory in phase
space and gave us a large set of parameters to employ for the
power optimization.

Based on the fidelity of the MS gate and its dependence on
timing errors, a set of linear constraints on the Fourier coeffi-
cients was derived such that the protocol prepares a maximally
entangled state with arbitrarily more robustness to gate-timing
errors than the original MS protocol. The coefficients were
then numerically optimized under the laser power, geometric
phase, and first and second linear constraints for varying pulse
complexities. Finally, the performance of these pulses was
characterized by a qualitative comparison to the MS gate
and by a cost-benefit analysis of the relationship between
gate fidelity and laser power, which provided evidence that
robustness can be gained with minimal extra laser power.

One important limitation to address is the error due to
off-resonant coupling to the stretch mode. This interaction
becomes stronger for faster gates, so errors due to this mode
set a gate-time cutoff for the validity of our model. We esti-
mated the infidelity by calculating the displacement (modulus
squared) in the stretch mode after one exact gate time [20] and
observed the dependence on the ratio of the mode-frequency
spacing to the detuning ξ0. Assuming a square pulse and a
c.m. mode frequency on the order of ν = 2π × 1 MHz, we
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estimate that our protocol is valid for gate times of 100 µs
and above. Encouragingly, the error due to the coupling to the
stretch mode was reduced when the analysis was repeated for
AM-MS gates. Appendix F contains the full analysis.

B. Outlook

Importantly, the protocol developed in this article can be
extended to other types of errors. Gate-timing errors are a con-
venient place to begin studying this technique, but these errors
are likely not the leading cause of infidelity in the state-of-the-
art MS gate [6,7]. By expanding Eq. (11) in other quantities
besides gate time (as suggested in [25]), the modulated pulses
can be constrained by a different system of equations in terms
of the Fourier coefficients. Hence, the same strategy can be
used on more significant error sources as well, such as laser
frequency fluctuations and trap vibrations. In addition, since
this protocol achieves a significant asymptotic improvement at
vanishing additional average laser power, we expect that it can
be used in conjunction with other error-mitigation techniques
[35] to improve two-qubit gates.

Another interesting direction of amplitude modulation is
to include the effect of laser amplitude fluctuations [36]. Not
only will these fluctuations affect gate fidelities, but they also
fundamentally limit the pulse shaping technique as more pre-
cise control of the laser amplitude is required.

Finally, we would also like to relax some of the assump-
tions in our model to extend the validity of the results to more
practical realizations. In particular, neglecting carrier transi-
tions and the third-order Lamb-Dicke terms is understood to
contribute coherent errors on the order of 10−4 [37], so these
terms will have to be considered in further studies of any
entangling gate aiming for a four-9 fidelity.
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APPENDIX A: DETAILS OF THE EXPANSION
OF GATE FIDELITY

The leading-order change of the function FMS is in the first
order of F 2 + G2. We notice this quantity is nothing but the
distance squared of the phase-space trajectory to the origin,
so let us define |α|2 ≡ F 2 + G2. Thus we can expand the
exponentials in terms of this quantity, as

e−4(n̄+1/2)(|α|2/2) = 1 − 2
(
n̄ + 1

2

)|α|2 + O|α|4,
e−(n̄+1/2)(|α|2/2) = 1 − 1

2

(
n̄ + 1

2

)|α|2 + O|α|4.

We can also expand the sine function. Since A(T + �t ) =
−π/2 + A(�t ) as in Eq. (14), we define �A = A(�t ). Thus,
we can write

sin

(
A + FG

2

)
= − cos

(
�A + FG

2

)

= 1 − 1

2

(
�A + FG

2

)2

+ O

(
�A + FG

2

)4

to leading order. The leading-order contribution to gate fi-
delity is then

FMS = 1 − 1

2

(
n̄ + 1

2

)
(F 2 + G2) + 1

128

(
�A + FG

2

)2

.

(A1)

Note that A = O(�t2), so (�A + FG
2 ) = O(�t4) is small

compared to the first term. Hence, the �A + FG
2 term drops

out. We proceed by analyzing the leading-order change in
fidelity,

�FMS = − 1
2

(
n̄ + 1

2

)
(F 2 + G2). (A2)

Note that the infidelity, defined as 1 − FMS, is proportional
to the quantity F 2 + G2 to the leading order. Therefore, the
fidelity is equally sensitive to changes in F and G in general.

APPENDIX B: DERIVATIVES OF THE COUPLING
AMPLITUDE ENVELOPE FUNCTION �(t )

The kth derivative is given by

�(k)(t ) = δk0
a0

2
+

N∑
n=1

an(nξ0)k cos(nξ0t + kπ/2)

+
N∑

n=1

bn(nξ0)k cos[nξ0t + (k − 1)π/2],

where δk0 is the Kronecker delta, which we use to compact the
notation. When evaluated at t = T = 2π/ξ0, the sine terms
drop out. Thus, we can write the general expression as the
piecewise function

�(k)(T ) =
{

δk0
a0
2 + (−1)k/2 ∑N

n=1 an(nξ0)k for even k

(−1)(k−1)/2 ∑N
n=1 bn(nξ0)k for odd k.

(B1)

Note that the kth derivatives of f and g depend on the (k −
l )th derivatives of �. Instead of �(k)(T ) itself, we substitute
�(k−l )(T ) into f (k) and g(k). Since F (k) = f (k−1) (and likewise
for G), the substitution is for �(k−1−l )(T ). However, these
�(k−1−l )(T ) are each multiplied by the lth derivatives of either
the sine or cosine evaluated at the gate time. Thus, only every
other term �(k−1−2l )(T ) contributes to each sum. The symbol
l is kept as the dummy index even though its meaning has
changed. These are expressed as

�(k−1−2l )(T ) =
{

δ0,(k−1−2l )
a0
2 + (−1)(k−1)/2+l

∑N
n=1 an(nξ0)k−1−2l for odd k

(−1)(k−2)/2+l
∑N

n=1 bn(nξ0)k−1−2l for even k > 0.
(B2)
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APPENDIX C: REDUCED LINEAR CONSTRAINTS

We show below the derivation of Eqs. (28) and (29) from
Eqs. (26) and (27). For k = 1, we have the condition

F (1)(T ) = 0 ⇒ a0

2
+

N∑
n=1

an = 0, (C1)

while G(1)(T ) = 0 for all an and bn. For k = 2, we have

F (2)(T ) = 0 ⇒
N∑

n=1

bnn = 0, (C2)

G(2)(T ) = 0 ⇒ a0

2
+

N∑
n=1

an = 0. (C3)

For k = 3, we have

F (3)(T ) = 0 ⇒ a0

2
+

N∑
n=1

an(n2 + 1) = 0, (C4)

G(3)(T ) = 0 ⇒
N∑

n=1

bnn = 0. (C5)

Finally, we look at k = 4. We have

F (4)(T ) = 0 ⇒
N∑

n=1

bn(n3 + 3n) = 0, (C6)

G(4)(T ) = 0 ⇒ a0

2
+

N∑
n=1

an(3n2 + 1) = 0. (C7)

Note that if (C1) holds, then (C4) becomes

0 = a0

2
+

N∑
n=1

an︸ ︷︷ ︸
=0, by (c1)

+
N∑

n=1

ann2,

0 =
N∑

n=1

ann2. (C8)

This is of the form (28). Now we show that G(4)(T ) = 0 is not
an independent condition from F (1)(T ) = F (3)(T ) = 0. From
the definition (25), we write

G(4)(T ) ∝ a0

2
+

N∑
n=1

an︸ ︷︷ ︸
=0, by (c1)

+3
N∑

n=1

ann2

︸ ︷︷ ︸
=0, by (c8)

= 0,

so we can determine G(4)(T ) = 0 from lower-order conditions
for F .

This trend continues as k increases, meaning that the
conditions (28) and (29) are sufficient to guarantee a pulse
with O(�t2k+2) infidelity contribution. Thus the G(i)(T ) = 0
conditions can be completely determined from the F (i)(T ) =
0 constraints. We can arrive at the reduced constraints in
Eqs. (28) and (29).

APPENDIX D: SETTING bi = 0

The full expressions for average power P and geometric
phase A are

P = 1

4
a2

0 + 1

2

N∑
n=2

a2
n + b2

n (D1)

and

A ≡ ξ0

T η2
A(T ) = −1

4
a2

0 + 1

2

N∑
n=2

a2
n + b2

n

n2 − 1
. (D2)

The bi are taken to be 0 for the remainder of this work.
Recall that the MS protocol is the special case where a0 = 2,
meaning that A = P = 1. This is the maximal value of the
ratio A/P for our construction. Hence, we expect the largest
contribution to A to come from the a0 term in the AM-MS
protocol as well. Thus, we make an ansatz that the optimal
A given a fixed power budget will be negative, noting that
only the absolute value of the geometric phase is important
in generating a maximally entangled state. Since the ai and
bi (i > 0) add positive contributions to A, they counteract this
larger a0 term. When the first linear constraint [Eq. (C1)] is
invoked, the fidelity of the operation improves at the cost of
laser power investment into the parameters ai (i > 0).

In contrast, nonzero bi coefficients are not necessary to
improve the fidelity. Power investment into these parameters
is wasteful because they do not appear in the k = 1 constraint
with a0. In fact, they do not appear in a constraint with a0 for
any k, so we can likely ignore them for higher k as well.

Another idea is to set the ai = 0 and use only the uncon-
strained bi coefficients, so this case is considered. Given some
investment of power into the bi coefficients, the upper bound
of the contribution of those coefficients to the geometric phase
is 1

3 . This is because

P = 1

2

N∑
n=2

b2
n

and

A = 1

2

N∑
n=2

b2
n

n2 − 1
� 1

2

N∑
n=2

b2
n

3
= P/3.

This condition can be used to quantitatively justify the ansatz
above. If we obtain a ratio A/P > 1/3 with this assumption,
it is ensured that the chosen coefficients outperform the case
with nonzero bn.

In summary, the a0 term contributes the most to the (ab-
solute value of) geometric phase, while the other an and bn

coefficients counteract this contribution. The an coefficients
are indispensable when a0 is nonzero, but the bn are not
constrained by the value of a0 for any k. Therefore, we choose
bn = 0 and choose to optimize only the an. The bn coefficients
are discussed in this article because expanding the fidelity in
terms of errors in parameters other than the gate time will
enforce a different system of linear constraints. In other cases,
the bi coefficients may be related to a0 in these constraints, so
they must be kept as parameters.
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APPENDIX E: EXAMPLE OF MATRICES FOR O(�t6)
AND O(�t10 ) SENSITIVITY

We begin with the case of a fidelity of O(�t6). The pulse is
analyzed at an arbitrary value of N to see how the pulse com-
plexity affects the laser power at the same level of robustness.

The first linear constraint gives us a matrix for the laser
power which is easy to diagonalize for any N . The constraint
we have [Eq. (C1)] yields

a0 = −2
N∑

n=2

an. (E1)

Substituting this into Eq. (30) gives

P =
(

N∑
n=2

an

)2

+ 1

2

N∑
n=2

a2
n.

In the matrix form, the first term corresponds to the matrix
of one JN−1 of dimension N − 1, i.e., [JN−1]i j = 1, while the
second term is the diagonal matrix 1

21N−1, where 1N−1 is the
identity matrix of dimension N − 1. Thus, the reduced matrix
P′ will have entries [P′]i j = 1 + (1/2)δi j , with i, j ∈ [2, N] ⊂
Z. By substitution of Eq. (E1) into Eq. (31), the entries of A′
are found to be [A′]i j = −1 + {1/[2( j2 − 1)]}δi j , with i, j ∈
[2, N] ⊂ Z.

This was as far as we considered analytically. The rest
of the optimization for one LC was performed numerically
using Mathematica. The matrices were constructed and the
maximum eigenvalue was found. The general forms of F (19)
and G (20) were used to speed up the calculations required in
the plots. The results of the numerical work are presented in
Sec. IV.

For O(�t10), we followed a similar strategy. The linear
system was solved, and the reduced coefficients a0 and a2

were substituted into Eqs. (30) and (31). From these expres-
sions, the matrices A′ and P′ were found. The constraints used
are

a0

2
+

N∑
n=2

an = 0,

N∑
n=2

ann2 = 0.

The first equation again gives (E1), while the new constraint
allows us to write

a2 = −1

4

N∑
n=3

ann2. (E2)

Thus,

a0 = −2a2 − 2
N∑

n=3

an

= −2

(
−1

4

N∑
n=3

ann2

)
− 2

N∑
n=3

an

= 1

2

N∑
n=3

an(n2 − 4). (E3)

Now substituting both (E3) and (E2) into (30) yields

P = 1

16

(
N∑

n=3

an(n2 − 4)

)2

+ 1

32

(
N∑

n=3

ann2

)2

+ 1

2

N∑
n=3

a2
n,

which results in a reduced matrix P′ with entries

[P′]i j = 1
16 (i2 − 4)( j2 − 4) + 1

32 i2 j2 + 1
2δi j, (E4)

with i and j indexed from 3 to N . Similarly, substituting (E3)
and (E2) into (31) yields

A = − 1

16

(
N∑

n=3

an(n2 − 4)

)2

+ 1

96

(
N∑

n=3

ann2

)2

+ 1

2

N∑
n=3

a2
n

n2 − 1
,

which gives a reduced matrix A′ with entries

[A′]i j = − 1

16
(i2 − 4)( j2 − 4) + 1

96
i2 j2 + 1

2( j2 − 1)
δi j,

(E5)

with i and j again indexed from 3 to N . These matrices
were again constructed in Mathematica, and the maximum
eigenvalue of P′−1/2A′P′−1/2 was found along with its corre-
sponding eigenvector. The pulse coefficients were recovered
from this eigenvector, allowing the power-optimized pulses to
be studied in detail. The results are portrayed in Sec. IV.

APPENDIX F: STRETCH MODE

The Hamiltonian in the stretch mode interaction picture
under the rotating-wave approximation has the same form as
in the c.m. interaction picture (1) except with different values
for the Lamb-Dicke parameter ηs and mode frequency νs. For
the stretch mode,

Hs = fs(t )Jyx + gs(t )Jy p, (F1)

with

fs(t ) = −
√

2ηs� cos[(νs − ν + ξ0)t], (F2)

gs(t ) = −
√

2ηs� sin[(νs − ν + ξ0)t]. (F3)

The phase-space coordinates were calculated in a similar way,
and the result for a constant pulse is

Fs(t ) = −
√

2ηs�

νs − ν + ξ0
sin[(νs − ν + ξ0)t], (F4)

Gs(t ) = −
√

2ηs�

νs − ν + ξ0
{1 − cos[(νs − ν + ξ0)t]}. (F5)

The gate error from residual displacement is approximately
given by the displacement squared [20], so we have

1 − F ∼ |αs|2 ≡ F 2
s + G2

s (F6)

= 2

(
ηs�

νs − ν + ξ0

)2

× {2 − 2 cos[(νs − ν + ξ0)t]}. (F7)
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FIG. 9. Gate error due to residual displacement in the stretch
mode vs mode-frequency spacing �ν = νs − ν for both the MS gate
and the AM-MS gates. Dashed lines show 10−4 infidelity and the
corresponding cutoff ratios, while the dotted line shows the turning
point where AM gates show less error than MS gates due to the
spectator mode. The gaps in the oscillations of AM-MS gate fidelity
are artifacts of the plot scale.

This is oscillatory due to coincidental resonances, so the en-
velope function was inferred by maximizing the cosine term.
Recall that the geometric phase condition gives η�MS = ξ0/2,
and the equations ηs = 3−1/4η and νs = √

3ν follow from the

frequency spacing of two-ion normal modes. Therefore,

1 − F ∼ 2√
3

(
1 + (

√
3 − 1)

ν

ξ0

)−2

. (F8)

The same analysis was performed with AM-MS gates. We
constructed (F2) and (F3) using the amplitude-modulated
�(t ) instead of the constant �MS and integrated to find Fs and
Gs. Mathematica was used to evaluate the integrals at the gate
time and plot the resulting dependence on �ν/ξ0 (Fig. 9) for
both the constant pulse and the AM-MS pulses.

In Fig. 9 we observe that our assumptions are valid for a
cutoff frequency ratio (νs − ν)/ξ0 greater than 100. Taking
ν = 2π × 1 MHz to analyze the order of magnitude, this
cutoff corresponds to a gate time on the order of 100 µs.
This is consistent with current implementations, for exam-
ple, Ref. [16]. Repeating the analysis using AM-MS gates
results in a reduction of the cutoff frequency. This implies that
the amplitude modulation reduces errors due to off-resonant
coupling to the stretch mode. We suspect that the linear con-
straints (28) and (29) with i = 1 have the approximate effect
to close the loop on the stretch mode when the harmonics used
in the AM are slow varying compared to the oscillations of the
stretch mode.
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