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Quantum error mitigation for rotation-symmetric bosonic codes with symmetry expansion
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The rotation symmetric bosonic code (RSBC) is a unified framework of practical bosonic codes that have
rotation symmetries, such as cat codes and binomial codes. While cat and binomial codes achieve the breakeven
point in which the coherence time of the encoded qubits exceeds that of unencoded qubits, the state preparation
fidelity needs to be improved for practical quantum computing. Concerning this problem, we investigate the
framework of symmetry expansion, a class of quantum error mitigation that virtually projects the state onto
the noise-free symmetric subspace by exploiting the system’s intrinsic symmetries and postprocessing of
measurement outcomes. Although symmetry expansion has been limited to error mitigation of quantum states
immediately before measurement, we successfully generalize symmetry expansion for state preparation. Then,
we consider two types of stabilization: photon number and phase stabilization. Photon number stabilization
can be performed by leveraging the rotation operators. On the other hand, the phase errors can be suppressed
via the extension towards phase direction by leveraging the recently proposed projective squeezing method. To
implement our method, we use an ancilla qubit and a randomly generated controlled gate between the bosonic
code states and the ancilla qubit. Our novel error mitigation method will significantly enhance computation
accuracy in the near-term bosonic quantum computing.
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I. INTRODUCTION

Quantum computers promise significant speedups for
computation tasks such as Hamiltonian simulation, prime
factoring, and machine learning [1–5]. However, detrimental
effects of environmental noise devastates quantum advantages
in such tasks. Quantum error correction with the redundancy
of the code space has been studied to correct computational
errors to retrieve computation advantages [6–10].

For the realization of quantum error correction, discrete-
variable-based code and continuous-variable-based code can
be considered. The former usually uses two-level systems as
a basic component to encode a logical qubit. Although exper-
imental progress is significant, e.g., distance-3 and -5 surface
codes have been experimentally demonstrated by using su-
perconducting qubit-systems [11–13], each logical qubit is
encoded with tens of physical qubits, which require many
connections of physical qubits and induce additional compu-
tation errors on the system due to engineering difficulties. As
a result, the break-even point has not been achieved, where the
logical error rate is lower than the physical error rate of one
physical qubit.

*Contact author: suguru.endou.uc@hco.ntt.co.jp
†Contact author: yasunari.suzuki.gz@hco.ntt.co.jp
‡Contact author: matsuzaki.yuichiro@aist.go.jp

In contrast, continuous-variable-based codes, which are
also called bosonic codes, are hardware-efficient because only
one bosonic mode in a resonator allows for the construc-
tion of a logical qubit from the infinite-dimensional Hilbert
space [14–18]. Furthermore, for superconducting circuits, a
microwave resonator has a longer coherence time than the
qubit [19], so the error rate of the bosonic code tends to be
lower. Due to these advantages, the break-even point has al-
ready been observed for the bosonic cat code and the binomial
code [20,21]. In addition, for some bosonic codes, the noise
channel is highly biased, and we can improve the threshold
values by using error-correction protocols adapted for such
noise [22].

As a unified framework of the bosonic cat code [23] and
binomial code [24], the rotation symmetric bosonic code
(RSBC) has been proposed by Grimsmo et al. [25]. RSBC
code states are stabilized by rotation operations on the phase
space represented by, e.g., Wigner functions [26,27], analo-
gous to Gottesman-Kitaev-Preskill (GKP) codes stabilized by
displacement operations [28,29]. The logical Z operator can
be described by the rotation operator ẐM = exp(i π

M N̂ ), where
N̂ is the number operator and M is the parameter to determines
the degree of the RSBC. We note that R̂M = Ẑ2

M acts as a
logical identity operator, i.e., the RSBC is invariant under the
rotation with 2π/M.

Despite many advantages for error correction, the state
preparation noise cannot be ignored, which limits the

2469-9926/2025/111(6)/062402(17) 062402-1 ©2025 American Physical Society

https://orcid.org/0000-0002-2317-3751
https://orcid.org/0000-0003-4955-1359
https://orcid.org/0000-0003-4173-1355
https://orcid.org/0000-0002-2725-6765
https://ror.org/00berct97
https://ror.org/057zh3y96
https://ror.org/01703db54
https://ror.org/01703db54
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.111.062402&domain=pdf&date_stamp=2025-06-02
https://doi.org/10.1103/PhysRevA.111.062402


SUGURU ENDO et al. PHYSICAL REVIEW A 111, 062402 (2025)

FIG. 1. Schematic figures of symmetry expansion (SE) for rotation symmetric bosonic codes (RSBCs). (a) The concept of symmetric
expansion (SE). We can project the noisy state onto the symmetric subspace with the projector P̂S, where S is the group of symmetry
operations. The projector can be expanded as P̂S = 1

|P̂S |
∑

Ŝ∈S Ŝ with symmetry operators Ŝ ∈ S. In our case, we set Ŝ to the rotation
operators. (b) The error mitigated state via SE, which is in the symmetric subspace. (c) The proposed quantum circuit for performing SE for
initial-state preparation of RSBCs. We use an ancilla two-level system. The black (white) circle indicates a control operation that operates
when the ancilla qubit is 1 (0). Because we focus on the case where the symmetry operators are rotation operators, controlled-Ŝ operations are
dispersive interactions between the ancilla qubit and the system bosonic-code state. By randomly generating rotation operators and measuring a
Pauli X operator of the ancilla qubit, we can virtually obtain the effective density matrix projected onto the symmetric subspace. (d) The Wigner
functions of a noisy logical zero state for the rotation order M = 2 and the error mitigated state. We simulate photon loss noise described by
the Lindblad master equation dρ̂

dt = γ

2 (2âρ̂â† − â†âρ̂ − ρ̂â†â) for γ t = 0.1. (e) The Wigner functions of a noisy state under phase error and
the error mitigated state for phase errors via projective squeezing. We simulate dρ̂

dt = γ

2 (2N̂ ρ̂N̂ − N̂2ρ̂ − ρ̂N̂2) for γ t = 0.1 with the increased
squeezing level �r = 0.589.

practicality of the bosonic codes. The state preparation fi-
delity of experiments for cat and binomial code is below 96%
[18,20,21,30]. State preparation of general RSBC states can
be performed either with universal operations via dispersive
interactions [31] or consecutive projections via rotation oper-
ators with Hadamard test circuits [25]. The former requires
long pulse sequences. The latter needs high fidelity single-
shot readout of the ancilla qubit; furthermore, the success
probability of state preparation decreases as the rotation de-
gree M increases. Therefore, while preparing the encoded
initial state, it is highly probable that the state is decohered
due to noise, e.g., photon loss.

Meanwhile, low-overhead error suppression methods, so-
called quantum error mitigation (QEM) techniques, have
been intensively studied for leveraging noisy NISQ hardware
for useful tasks [32–35]. There exist diverse QEM methods
such as extrapolation [36–38], probabilistic error cancellation
[37,39,40], virtual distillation [41–43], and quantum subspace
expansion [44,45]. When syndrome measurements, decoding,
and adaptive feedback controls are not available, one of QEM
methods called symmetry expansion (SE) works as an alterna-
tive to error detection and correction techniques by virtually
projecting the noisy state onto the symmetric subspace with
a random sampling of symmetry operators intrinsic to the
system and postprocessing of measurement outcomes [46,47].

In this paper, we show how to apply SE for RSBCs.
Although the conventional SE is applied just before the mea-
surement for mitigating errors during computation, we also
make SE applicable to the mitigation of state preparation noise
with a constant depth by using a single ancilla qubit and
controlled operations between the ancilla qubit and the res-
onator. The key point of our method is to exploit the recently
proposed generalized quantum process used in the pertur-
bative quantum simulation method, where we virtually add
interactions to the system Hamiltonian [48]. The schematic
figures illustrating our proposal are displayed in Fig. 1. By
using the same procedure, we can also virtually simulate RS-
BCs from easy-to-prepare states such as coherent states. We
also showed that SE immediately before the measurement is
useful when the information on symmetries is not available in
the measurement.

We consider two types of stabilization: photon-number sta-
bilization and phase stabilization. Photon-number-changing
errors can be suppressed using rotation symmetries, while
phase errors can be mitigated through photon-number trans-
lation symmetries. We demonstrate that stabilization via
rotation symmetries can be achieved using our SE tech-
nique, effectively suppressing the impact of photon loss. For
phase errors, although leveraging photon-number translation
symmetries presents experimental challenges, the recently
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proposed projective squeezing method, which is a general-
ization of SE for translation symmetries, enables stretching
the quantum state in the phase direction, thereby suppressing
phase errors. We confirm numerically and analytically that our
method significantly enhances computational accuracy.

II. ROTATION SYMMETRIC BOSONIC CODE

Here, we review the rotation symmetric bosonic code
(RSBC), which is defined by the rotation symmetries in the
phase space [25]. The logical states of the order-M rotation
symmetric code are defined as

|0M,�〉 = C0
−1/2

2M−1∑
k=0

exp

(
i
kπ

M
N̂

)
|�〉,

|1M,�〉 = C1
−1/2

2M−1∑
k=0

(−1)kexp

(
i
kπ

M
N̂

)
|�〉, (1)

where |�〉 is a primitive state we need to choose properly,
C0 and C1 are normalization constants which asymptotically
approaches 2M in the large-photon limit, and N̂ = â†â is
a number operator. Here, â and â† denote annihilation and
creation operators. These two states are stabilized by a rota-
tion operator R̂M = exp(i 2π

M N̂ ) with ẐM = R̂2M = exp(i π
M N̂ )

operating as a logical Z operator.
Through the Kronecker comb relation 1

M

∑M−1
m=0 ei 2πkm

M =∑∞
l=0 δk,lM (k = 0, 1, 2 . . .), the projector onto the subspace

spanned by Fock states {|2nM + l〉}n is constructed as

P̂ (l )
2M =

∞∑
n=0

|2nM + l〉〈2nM + l|

= 1

2M

2M−1∑
k=0

e
−iπ lk

M Ẑk
M , (2)

where l ∈ {1, 2, . . . , 2M − 1}. Thus, the projectors onto
|0M,�〉 and |1M,�〉 correspond to l = 0 and l = M. So, |0M,�〉
and |1M,�〉 has a Fock basis representation

|0M,�〉 =
∞∑

n=0

c(�)
2nM |2nM〉,

|1M,�〉 =
∞∑

n=0

c(�)
(2n+1)M |(2n + 1)M〉. (3)

Here, c(�)
i is a probability amplitude dependent on the prim-

itive state |�〉. The projector on the code space can be
written as

P̂ (c)
2M = P̂ (0)

2M + P̂ (M )
2M

= 1

M

M−1∑
k=0

R̂k
M . (4)

Note that, unlike the logical Z operation, finding a simple
form of the logical X operation is not so straightforward. The
dual states |±M,�〉 = 1√

2
(|0M,�〉 ± |1M,�〉) are written in the

Fock basis as

|+M,�〉 = 1√
2

∞∑
n=0

c(�)
nM |nM〉,

|−M,�〉 = 1√
2

∞∑
n=0

(−1)nc(�)
nM |nM〉. (5)

The important classes of the RSCBs are the cat code and
the binomial code. For the cat code, the primitive state is the
coherent state |α〉, and the code states are the superposition
of coherent states with different phases. The binomial code is
defined as

|0/1〉binom = 1√
2L

[0,L+1]∑
m even/odd

√(
L + 1

m

)
|mM〉, (6)

where M corresponds to the spacing in the Fock basis, and
L defines the truncation of the photon number. The binomial
codes can exactly correct photon loss, photon gain, and de-
phasing errors up to a certain order. Note that the binomial
code words |0/1〉binom are stabilized by P̂ (0)

2M and P̂ (M )
2M due to

the spacing structure in the Fock basis; thus the binomial code
can be classified into the RSBCs. The primitive state of the
binomial code is shown in Ref. [25].

With respect to the logical Z measurement for RSBCs,
Eq. (3) indicates that a photon-number resolving measurement
can distinguish the two states; more concretely, if the mea-
surement outcome of photon number is mM (m = 0, 1, 2 . . .),
the measured state turns out to be |0M,�〉 for even m, and vice
versa. Thus, photon-number resolving measurement works as
a logical Z measurement on the code space. In the presence
of noise shifting the photon number, by rounding the photon
number to the nearest mM, we can suppress the effect of
errors. Therefore, this code becomes increasingly robust to
errors such as photon-loss or photon-gain errors.

For the logical X measurement, in the large-photon limit
where C0, C1 → 2M, because the dual states can be rewritten
from Eq. (1) as

|+M,�〉 → 1√
M

M−1∑
n=0

exp

(
i
2nπ

M
N̂

)
|�〉,

|−M,�〉 → 1√
M

M−1∑
n=0

exp

(
i
(2n + 1)π

M
N̂

)
|�〉, (7)

we can distinguish |+M,�〉 and |−M,�〉 with a phase measure-
ment, e.g., heterodyne measurement [49]. The measurement
operator corresponding to the heterodyne measurement is de-
scribed by {|β〉〈β|}β for a coherent state |β〉 (β ∈ C). When
the measured angle θ = arg(β ) is closer to 2nπ/M, we can
interpret the outcome as +, and vice versa. Note that while
the robustness of the logical Z measurement is increased as the
rotation degree M increases, the performance of the logical X
measurement becomes more vulnerable to phase noise.

Even in the absence of phase noise, the failure proba-
bility of distinguishing the two logical states is finite with
phase measurement due to the intrinsic phase uncertainty in
quantum states. It has been shown that the phase uncertainty
vanishes in the large-photon-number limit for the cat code
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(α → ∞) and the binomial code (L → ∞). In this limit, the
RSBC is called a number-phase code, in which the proba-
bility amplitudes are flattened, i.e., |c(�)

nM | = |c(�)
(n+1)M | and the

logical X operator approaches a number-translation operator
X̂N = ∑∞

m=0 |m〉〈m + M|.
To perform universal operations, we need a universal gate

set. The proposed universal gate set in number-phase codes
is {Ĥ, Ŝ, T̂ , Ĉ} with H , S, T denoting Hadamard, S, and T
gates, and Ĉ is a controlled rotation (CROT) gate between
two bosonic modes defined as ĈMM ′ = ei π

MM′ N̂⊗N̂ . Here, M
and M ′ denote the degree of rotation symmetry for two
bosonic modes. Similarly to the Pauli stabilizer codes, a di-
rect implementation of T gates is not fault-tolerant, so we
resort to the gate teleportation of the magic state |TM,�〉 =

1√
2
(|0M,�〉 + ei π

4 |1M,�〉) via a CROT gate together with the
logical X measurement for the gate operation. As well as
the absence of a simple implementation of the logical X op-
eration, the Hadamard operation cannot be straightforwardly
applied. Then we use the teleportation of the plus state |+M,�〉
for applying the Hadamard gate. The direct implementation of
the S gate is expressed as Ŝ = ei π

2M2 N̂2

, which can be also per-
formed via teleportation of |+iM,�〉 = 1√

2
(|0M,�〉 + i|1M,�〉).

For the error correction of the number phase code, due to
the complicated structure of the logical X operator, we use
a teleportation-based quantum error-correction scheme [50]:
two fresh ancilla qubits encoded in RSBCs are added, and
two CROT gates are applied, one of which is applied to the
noisy state and one of the fresh qubits and the other is applied
to the fresh ancilla qubits. Then, the logical X measurements
are performed to one of the ancilla qubits and the noisy state
to teleport the state to one of the fresh ancilla qubits. When
the dual states are distinguishable in the presence of prop-
agated noise in the logical X measurement, we can obtain
the error information for error correction in the teleported
mode. Refer to Ref. [51] for the detailed study of perfor-
mance of teleportation-based error correction under noisy
measurements.

III. SYMMETRY EXPANSION

The symmetry expansion (SE) method allows us to vir-
tually project the noisy quantum state onto the symmetric
subspace [46,47]. Let us denote the finite group of symmetry
operations by S. Then, the state in the symmetry subspace
|ψS〉 is stabilized as

Ŝ|ψS〉 = |ψS〉 ∀ Ŝ ∈ S. (8)

The projector onto the symmetric subspace reads:

P̂S = 1

|S|
∑
Ŝ∈S

Ŝ. (9)

Now, we suppose the noisy state ρ̂ is projected via the
projector:

ρ̂S = P̂Sρ̂P̂S

Tr[P̂Sρ̂]
. (10)

In SE, similarly to the other error mitigation methods, we
can mitigate errors in expectation values of observables via
classical postprocessing of measurement outcomes. Let the

measured observable denote as Ô, which we assume com-
mutes with the projector P̂S. The error mitigated expectation
value results in

〈Ô〉S = 1

pS|S|
∑
Ŝ∈S

Tr[ŜÔρ̂],

pS = 1

|S|
∑
Ŝ∈S

Tr[Ŝρ̂]. (11)

We first compute pS by uniformly sampling Ŝ ∈ S, measuring
it, and repeating this procedure to obtain the average of the
outcomes. We can similarly compute 1

|S|
∑

Ŝ∈S Tr[ŜÔρ̂] by

sampling ŜÔ instead. Thus we can obtain 〈Ô〉S. Although we
focused on the case of uniformly sampling symmetries, we
can also consider optimizing the weight of each symmetry.

Let us now assume the symmetry is characterized by Pauli
stabilizer generators {Ŝi}i. In this case, the projector onto the
symmetric subspace can be expressed as

P̂Pauli =
∏

i

(
I + Ŝi

2

)

= 1

2Ng

∑
Ŝ∈Sstab

Ŝ, (12)

where Sstab denotes the stabilizer group generated by {Ŝi}i

with Ng being the number of stabilizer generators. Thus, SE
can be performed by randomly sampling Ŝ ∈ Sstab with the
probability 1/2Ng .

Now we discuss the sampling cost required in this method.
Given random variables x and y, the variance of the function
f (x, y) under the assumption that there is no correlation of x
and y is

Var[ f ] =
∣∣∣∣∂ f

∂x

∣∣∣∣
2

Var[x] +
∣∣∣∣∂ f

∂y

∣∣∣∣
2

Var[y]. (13)

For f (x, y) = x/y, we have

Var[ f ] = 1

〈y〉2
(Var[x] + 〈 f 〉2Var[y]) ∝ 〈y〉−2, (14)

where 〈x〉 and Var[x] denotes the expectation value and vari-
ance of a random variable x. Thus, in the case of symmetry
expansion, the variance of the error mitigated expectation
value 〈Ô〉S is proportional to p−2

S , and the number of mea-
surements to achieve the required accuracy ε scales as
O((pSε)−2).

IV. SYMMETRY EXPANSION FOR
ROTATION-SYMMETRIC BOSONIC CODES

In this section, we first introduce error mitigation for state
preparation errors via SE using the recently introduced gen-
eralized process [48]. Next, we compare our method with the
conventional state verification method. We then discuss how
SE immediately before measurement can be used for RSBCs.
Finally, we show that RSBCs can be virtually generated by
applying SE to a primitive state |�〉.

062402-4



QUANTUM ERROR MITIGATION FOR … PHYSICAL REVIEW A 111, 062402 (2025)

FIG. 2. Quantum circuit for measuring Eq. (15). The black
(white) circle indicates a control operation that operates when the
ancilla qubit is 1 (0).

A. Symmetry expansion for state preparation

Here, we introduce symmetry expansion (SE) for RSBCs
for mitigation of state preparation errors, while SE just before
measurement has only been discussed for Pauli and permu-
tation symmetries [46,47]. We assume that the initial states
are initialized either to logical zero states |0M,�〉, or states for
gate operations via teleportation such as magic states |TM,�〉 =

1√
2
(|0M,�〉 + eiπ/4|1M,�〉), plus states |+M,�〉 = 1√

2
(|0M,�〉 +

|1M,�〉), and plus y states |+iM,�〉 = 1√
2
(|0M,�〉 + i|1M,�〉).

We can employ SE to improve state-preparation fidelity for
these states. We remark that our protocol is also fully compat-
ible with the quantum computation model that does not rely
on teleportation for gate operations, e.g., universal quantum
computation for cat codes protected by quantum Zeno dynam-
ics [52]. In this case, we need to apply SE only to the logical
zero states.

Before we proceed to formulate SE for RSBCs, we review
the generalized quantum process introduced in Ref. [48]. We
consider a quantum circuit for the unitary operators Û and V̂
as shown in Fig. 2. Then, simple calculations show

〈X̂0 ⊗ Ô〉 + i〈Ŷ0 ⊗ Ô〉 = tr[ÔÛ ρ̂V̂ †], (15)

where X̂0 and Ŷ0 are Pauli operators for the ancilla qubit and
Ô is the measured observable. This is equivalent to obtaining
the generalized quantum process [48]

�(ρ̂ ) = Û ρ̂V̂ †. (16)

Now we use the generalized quantum process for SE for
state preparation of RSBCs. The projected state via the pro-
jector P̂S reads

ρ̂S = 1

pS|S|2
∑

Ŝ,Ŝ ′∈S
Ŝρ̂Ŝ ′†. (17)

Therefore, each generalized process Ŝ (·)Ŝ ′† in Eq. (17) can
be simulated by replacing the unitaries Û and V̂ in Fig. 2 with
S and S ′. Then, by randomly generating S and S ′, we can
simulate the projection by the projector P̂S as indicated in
Fig. 1(c). Note that V̂ Û † in Fig. 2 is replaced by ŜŜ ′†, which
is an element of the group S. Then, with the normalization of
the measurement outcome with the projection probability pS,
we can finally apply SE in the state preparation.

Then, we consider that S is the set of rotation operators
for the error mitigation for rotation symmetric codes. Let
us denote the noisy logical zero states as ρ̂i and the noisy
resource states for gate rotation as σ̂ j , where i and j indicate
labels of bosonic qubits. The error mitigated initial states via
SE read

ρ̂S
i = 1

pi
P̂ (0)

2M ρ̂iP̂ (0)
2M = 1

pi(2M )2

2M−1∑
ki,k′

i=0

Ẑki
M ρ̂iẐ

k′
i

M,

σ̂ S
j = 1

q j
P̂ (c)

2M σ̂ jP̂ (c)
2M = 1

q jM2

M−1∑
l j l ′j=0

R̂
l j

M σ̂ j R̂
l ′j
M, (18)

where pi = Tr[P̂ (0)
2M ρ̂i] and q j = Tr[P̂ (c)

2M σ̂ j] are the projection
probabilities.

Let the measured observable and the process in a quantum
circuit including the teleportation and error correction pro-
cedure denote Ô and UC, respectively. We also include the
rounding process for classical error correction of the mea-
surement of the observable in UC. Then the error mitigated
expectation value can be written as.

〈ÔSE〉 = Tr

⎡
⎣OUC

⎛
⎝

⎛
⎝Nρ̂−1⊗

i=0

ρ̂S
i

⎞
⎠ ⊗

⎛
⎝Nσ̂ −1⊗

j=0

σ̂ S
j

⎞
⎠

⎞
⎠

⎤
⎦

= 1(∏
i pi

∏
j q j

)
(2M )2Nρ̂ M2Nσ̂

∑
�l,�l ′,�k,�k′

Tr

⎡
⎣ÔUC

⎛
⎝

⎛
⎝Nρ̂−1⊗

i=0

Ẑki
M ρ̂iẐ

k′
i

M

⎞
⎠ ⊗

⎛
⎝Nσ̂ −1⊗

j=0

R̂
l j

M σ̂ j R̂
l ′j
M

⎞
⎠

⎞
⎠

⎤
⎦, (19)

where �k = (k0, k1, . . . , kNρ̂−1), �k′ = (k′
0, k′

1, . . . , k′
Nρ̂−1), �l =

(l0, l1, . . . , lNσ̂ −1), and �l ′ = (l ′
0, l ′

1, . . . , l ′
Nσ̂ −1). Here, Nρ̂ (Nσ̂ )

denotes the number of bosonic qubits for ρ̂i (σ̂i). To compute
Eq. (19), we first compute the projection probability pi and q j .
The probabilities can be calculated with a classical simulation
given the noise model as we show in Sec. VII or can be
straightforwardly evaluated with the linear combination of

expectation values of Ẑk
M or R̂k

M measured by using a
Hadamard test circuit.

To calculate the other part of Eq. (19), i.e., the unbiased
estimator for (

∏
i pi

∏
j q j )〈ÔSE〉, we first randomly generate

(�k, �k′, �l, �l ′) with a uniform distribution. Then we use the gen-
eralized quantum process to perform unphysical operations

{Ẑki
M (·)Ẑk′

i
M}i and {R̂l j

M (·)R̂l ′j
M} j . To do so, we use one ancilla
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FIG. 3. Quantum circuits for performing SE for (a) state preparation and (b) before measurement. Empty squares in the circuits denote
rotation operations.

qubit for each bosonic qubit as shown in Fig. 3(a). It is note-
worthy that we can recycle the ancilla qubit by turns in each
SE procedure. We next perform the process corresponding to
the computation UC , and finally measure the observable Ô.
We repeat this procedure, and construct the unbiased estimator
of (

∏
i pi

∏
j q j )〈ÔSE〉. Notice that because 〈ÔSE〉, pi, q j ∈ R,

there is no contribution from the imaginary part of Eq. (15);
hence, it is not necessary to measure Pauli Y operators of an-
cilla qubits. More concretely, denoting the unbiased estimator
of 〈ÔSE〉 obtained in this procedure as μSE, we get

〈μSE〉 = 1(∏
i pi

∏
j q j

) 〈 �X0 ⊗ Ô〉, (20)

where �X0 is the product of Pauli X operators of ancilla qubits.
With respect to the sampling cost of this method, due to the
division by (

∏
i pi

∏
j q j ) in Eq. (20), we have

Var[μSE] ∝
⎛
⎝∏

i

pi

∏
j

q j

⎞
⎠

−2

≡ C, (21)

which indicates the number of measurements to achieve a
certain accuracy ε scales with O((

∏
i pi

∏
j q jε)−2).

In our later work [53], we generalized the symmetry ex-
pansion for initial-state preparation so that it can be applied
at any point during circuit execution, which is called virtual
quantum error detection (VQED). In Ref. [53], we consid-
ered the Pauli-based stabilizer error correction and detection
codes. By replacing the Pauli stabilizers with rotation stabi-
lizer operators, we can mitigate the effect of photon loss for
rotation-symmetric codes during circuit execution.

B. Comparison with error detection for initial-state preparation

We compare our method with the conventional verification
method, i.e., quantum error detection for state preparation.
Suppose the case of M = 2m for m ∈ N. For performing
verification of the logical zero state |0M,�〉 via the conven-
tional quantum error detection using an ancilla qubit, we
need to perform Hadamard-test gates for rotation unitaries

{ei2π/2k }m+1
k=1 and postselect the verified states depending on the

measurement outcomes of the ancilla qubit [25]. Therefore,
it is necessary to perform m + 1 Hadamard-test gates with
high-fidelity single-shot measurements of the ancilla qubit.

Meanwhile, our method only requires a constant number of
control operations by dispersive interactions and measurement
of expectation values of Pauli X operators of ancilla qubits.
Therefore, when high-fidelity single-shot measurements are
not available, our proposal will clearly outperform the con-
ventional verification protocol for large M. Furthermore, our
method is fully compatible with readout error mitigation
methods [54,55] for the readout of ancilla qubit, which can
dramatically improve the computation accuracy, considering
the fact that the readout fidelity is relatively lower than gate
operation fidelity for qubit-based computation.

For a fair comparison, we mention the downsides of
our protocol. Regarding the sampling cost, while the ver-
ification succeeds with the probability

∏
i pi

∏
j q j , the

number of measurements required in our protocol scales
with O((

∏
i pi

∏
j q j )−2), which indicates quadratically worse

sampling overheads. Another disadvantage is that quantum
error mitigation, including SE, is restricted to algorithms re-
lying on expectation values of observables. This problem may
not be so significant because most NISQ algorithms, e.g.,
the variational quantum eigensolver (VQE) [56–59], employs
only expectation values. It has also been shown that quan-
tum error mitigation can be incorporated in phase estimation
algorithms [60].

C. Symmetry expansion before measurement

Next, we introduce the method in which SE is applied
immediately before measurement. Although this scenario
is discussed for Pauli-stabilizer symmetries, we propose a
method tailored to RSBCs. Suppose that we cannot use the
information of the symmetry for error correction through
a single-shot measurement due to the low resolution of
measurement outcomes, e.g., photon parity measurement is
difficult. In this case, since the measurement fidelity is ac-
cordingly low, we consider using a Hadamard test circuit to

062402-6



QUANTUM ERROR MITIGATION FOR … PHYSICAL REVIEW A 111, 062402 (2025)

measure the observable in the logical Z basis. In this case, we
have Ô = Ẑ⊗NM

M , where NM is the number of measured bosonic
qubits. The error mitigated expectation value of an observable
results in

〈ÔSE〉 = Tr
[(

ẐMP̂ (c)
2M

)⊗NM
ρ̂noisy

]
Tr

[(
P̂ (c)

2M

)⊗NM
ρ̂noisy

] , (22)

where NM is the number of measured qubits in the observable
and ρ̂noisy is the noisy output state.

The numerator can be expanded as

Tr
[(

ẐMP̂ (c)
2M

)⊗NM
ρ̂noisy

]
= 1

M2NM

M−1∑
m0,...,mNM−1=0

Tr

[
NM−1⊗
h=0

Ẑ2mh+1
M ρ̂noisy

]
. (23)

Equation (23) can be evaluated by randomly generating
(m0, m1, . . . , mNM−1) with a uniform distribution, and
measuring ancilla qubits in the quantum circuit shown
in Fig. 3(b). We only need Pauli X measurements of
ancilla qubits because Tr[(ẐMP̂ (c)

2M )⊗NM ρ̂noisy] is real.
The denominator can also be calculated similarly, which
corresponds to the projection probability of the noisy state
onto the symmetric subspace. Denoting the denominator as
pc, the sampling cost of this method is proportional to p−2

c
with the same argument in Sec III.

We remark that we can straightforwardly combine SE for
state preparation and measurement for further enhancement
of computation results. The sampling overhead grows with
O[(pc(

∏
i pi

∏
j q j )ε)−2] for a required accuracy ε.

D. Virtual creation of RSBC states

As a remarkable application of SE, we can virtually per-
form state preparation of RSBCs only from a primitive state
ρ̂� = |�〉〈�| with the same setup for error mitigation. For
ρ̂

(0)
M,� = |0M,�〉〈0M,�|, denoting p� = Tr[P̂ (0)

2M ρ̂�], since

ρ̂
(0)
M,� = 1

p�

P̂ (0)
2M ρ̂�P̂ (0)

2M, (24)

we can obtain the expectation value corresponding to the
state ρ̂

(0)
M,� with the same implementation of SE. For primitive

states such that 〈�|Ẑk
M |�〉 = δk,0, e.g., coherent states with

a sufficiently large photon count, we have p� = 1/2M. This
indicates that the sampling overhead increases as O((2M )2Nv ),
where Nv is the number of virtual bosonic qubits; therefore,
although we cannot rely on this method for state preparation
of all the bosonic qubits, when experimentalists are short
of a couple of bosonic qubits, this method may be able to
compensate for that shortage.

V. PHASE-ERROR SUPPRESSION

Here, we discuss the mitigation of phase error. The number
phase codes have other symmetries described by the logical
X operator X̂M = ∑∞

m=0 |m〉〈m + M|. Since X̂ 2k
M (k ∈ N ) acts

as a logical identity operator and therefore is a stabilizer
on the code space relevant to phase error suppression, we
can define the corresponding projector P̂X ∝ ∑∞

k=0 X̂ 2k
M . See

Appendix C for the performance of the truncated projectors
P̂ (L)

X ∝ 1
L+1

∑L
k=0 X̂ 2k

M (L ∈ N ) for mitigating phase errors.

However, it is not realistic to construct the projector P̂ (L)
X

due to the difficulty of implementing the number-translation
operator.

Alternatively, we propose a method to suppress phase
errors by developing the recently proposed projective squeez-
ing method [61,62]. The intuition behind the choice of the
projective squeezing method is that this method allows for
the projection onto a squeezed vacuum state with a higher
squeezing level, and the squeezed vacuum state with a high
squeezing level has a small phase uncertainty. Then, by con-
sidering the rotation symmetries as well, we can construct
the projector onto the rotation codes with small phase uncer-
tainty. Here, we discuss the suppression of the phase error by
using the example of four-legged rotation symmetric codes.
We consider the four-legged rotation code with the primitive
state being the phase state by squeezed vacuum states for the
squeezing parameter r > 0:

|±M=2, r〉 = Ŝ(∓r)|0〉. (25)

Note that the code states described by Eq. (25) have increas-
ingly small phase uncertainty as r increases. To construct the
projector for a higher squeezing level for four-legged rotation
codes, we develop the projective squeezing method intro-
duced in Refs. [61,62]. The smeared projector to increase the
squeezing level from r to r + �r for |−M=2, r〉 is described
by

P̃sq(�) =
∫

ds

√
�

π
e−�s2

D̂

(
i

s√
2

)

= exp

(
− x̂2

4�

)
,

(26)

which increases the squeezing level by �r with �r =
1
2 ln(1 + 1

2�−1e−2r ). Here, D̂(α) α ∈ C is a displacement op-
erator. Meanwhile, by changing D̂(i s√

2
) with D̂( s√

2
), we can

construct the smeared projector that squeezes the state for the
momentum axis P̃asq(�) = exp(− p̂2

4�
). Now, we construct the

smeared projector to mitigate the phase error for the four-
legged rotation code as follows:

P̃phase(�) = P̃sq(�) + P̃asq(�). (27)

We can show

P̃phase(�)(c+|+M=2, r〉 + c−|−M=2, r〉)

∼ e− �r
2 (c+|+M=2, r + �r〉 + c−|−M=2, r + �r〉), (28)

which indicates that the phase uncertainty is suppressed. Here,
the norms of P̃sq(�)|+M=2, r〉 and P̃asq(�)|−M=2, r〉 are expo-
nentially small with the squeezing level r, i.e.,

‖P̃sq(�)|+M=2, r〉‖2 = ‖P̃asq(�)|−M=2, r〉‖2

= e−2r

√
e2�r − 1 + e−3r

, (29)

and we ignore these terms.
We numerically demonstrate that the smeared projector

P̃phase(�) reduces phase uncertainty, thereby mitigating phase
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errors for four-legged cat states, both in the pure state case and
under phase errors described by a Lindblad operator â†â.

Now, we discuss the implementation and the sampling
cost for applying the smeared projector P̃phase(�). Because
we can expand the normalized smeared projector P̃′

phase(�) =
1
2 P̃phase(�) as

P̃′
phase =

∫
ds

1

2

√
�

π
e−�s2

D̂

(
i

s√
2

)

+
∫

ds
1

2

√
�

π
e−�s2

D̂

(
s√
2

)

∼
∑

k

pkD̂k, (30)

where {D̂k}k corresponds to either {D̂(i s√
2

)}s or {D̂( s√
2

)}s

with the approximation being necessary for the proper dis-
cretization for the implementation. Note that

∑
k pk = 1 due

to the normalization. While a detailed explanation of the
implementation of the projective squeezing can be found in
Refs. [61,62], this can be considered a generalized method
of the symmetry expansion method. We randomly generate
the displacement operations with the probability of {pk}k .
Then, by replacing the controlled rotation operations with
the controlled displacement operations, we can perform the
virtual projection due to the smeared projector P̃phase(�). Now,
the sampling cost is described by the projection probability
qphase(�) = Tr[P̃′†

phaseP̃′
phaseρ̂in] for the input state ρ̂in. When

the input state is c+|+M=2, r〉 + c−|−M=2, r〉, the projection
probability reads

qphase(�) ∼ 1
4 e−�r, (31)

where the coefficient 1/4 appears as a result of the normaliza-
tion, which leads to a large sampling cost, i.e., the sampling
overhead in Eq. (21) scales as

Cphase ∼ 16e2�r . (32)

VI. ROBUST IMPLEMENTATION OF SYMMETRY
EXPANSION AGAINST ANCILLA-QUBIT ERRORS

Here, we review the result in Ref. [61], which offers a
robust implementation of our framework to the ancilla qubit
errors. We model the noisy interaction for controlled oper-
ations between the ancilla qubit and the resonator via the
following Lindblad master equation:

d

dt
ρ̂(t ) = −i[Ẑ ⊗ V̂ ′, ρ̂(t )] + w1D[σ̂−1 ⊗ Î](ρ̂(t ))

+ w2D[Ẑ ⊗ Î](ρ̂(t )), (33)

where D[Â](ρ̂) = 1
2 (2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â) is the Lindblad

superoperator, w1 and w2 are T1 and T2 error rates, and Z ⊗ V ′
is the interaction Hamiltonian for realizing the controlled op-
eration. We introduce the block representation of the density
matrix of the composite system,

ρ̂com =
(

ρ̂00(t ) ρ̂01(t )
ρ̂10(t ) ρ̂11(t )

)
, (34)

where the subindices correspond to the ancilla qubit state.
Then, by comparing both sides of Eq. (33), we can

show

d ρ̂01

dt
= −i{V̂ ′, ρ̂01} −

(w1

2
+ 2w2

)
ρ̂01,

d ρ̂10

dt
= i{V̂ ′, ρ̂10} −

(w1

2
+ 2w2

)
ρ̂10, (35)

and hence

ρ̂01(t ) = e−( w1
2 +2w2 )t ρ̂ id

01(t ),

ρ̂10(t ) = e−( w1
2 +2w2 )t ρ̂ id

10(t ). (36)

Here, ρ̂ id
10(01)(t ) is the noiseless block matrix whereas ρ̂10(01)(t )

is the noisy one. Measuring the Pauli X operator of the ancilla
qubit yields

Tr
[
ρ̂com(t )X̂ ⊗ Î

] = ρ̂01(t ) + ρ̂10(t )

= e−( w1
2 +2w2 )t

[
ρ̂ id

01(t ) + ρ̂ id
10(t )

]
,

Tr
[
ρ̂com(t )X̂ ⊗ Ô

] = Tr
[
(ρ̂01(t ) + ρ̂10(t ))Ô

]
= e−( w1

2 +2w2 )t Tr
[(

ρ̂ id
01(t ) + ρ̂ id

10(t )
)
Ô

]
.

(37)

Equation (37) shows that T1 and T2 errors only uniformly
shrink the expectation value when we measure the Pauli X
of the ancilla qubit.

Now, because our protocol uses the same circuit for com-
puting the numerator and denominator in Eq. (19) except for
the measurement of the observable, the effects of the noise
are likely to be canceled out. Furthermore, we can construct
the unbiased estimator of the error mitigated expectation
value by changing the sampling probability of error mitigation
operations [61]. We denote the generalized processes under
noise as

� ′
k (ρ) = rkÛk ρ̂V̂ †

k , (38)

where 0 < rk < 1 is a coefficient due to noise. While the
uniform linear combination of noiseless generalized processes
�k realizes a projection onto the rotation code subspace due
to the projector P̂ , we obtain

1

cM
∑

k

�k =
∑

k

qk�
′
k, (39)

where M is the number of generalized processes for QEM,
c = 1

M
∑

k r−1
k > 1 and qk = 1

Mcrk
with

∑
k qk = 1. For

nonuniform linear combinations of generalized processes for
projective squeezing, a similar modification is possible [61]. If
we estimate the projection probability with random sampling
of Hadamard test circuits in a similar vein to the estimation
of the numerator in Eq. (20), the effect of the rescaling factor
c is canceled out due to division by modifying the sampling
probability of the generalized process for QEM to {qk}k . Thus,
we can construct the unbiased estimator of the error mitigated
expectation values even under ancilla-qubit errors. Note that
the sampling overhead is amplified with c2 because the de-
nominator is rescaled by c−1.
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VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of SE for
cat codes and binomial codes from analytical and numerical
studies. We here consider photon loss noise d ρ̂

dt = γ

2 (2aρ̂a† −
a†aρ̂ − ρ̂a†a). Refer to Appendix A for the detailed analytical
derivation of the results.

A. Symmetry expansion for logical zero cat states

Here, we discuss the performance of SE with analytical
studies for cat-type RSBCs where the primitive state is a
coherent state, i.e., |�〉 = |α〉. When we consider a logical 0
state |0M,α〉, the state at time t reads

ρ̂(t ) = e−�(t )

N

2M−1∑
m,m′=0

e�(t )ei m−m′
M π

∣∣α(t )ei m
M π

〉〈
α(t )ei m′

M π
∣∣, (40)

where N is the normalization factor, �(t ) = α2(1 − e−γ t ) is
the effective error rate, and α(t ) = αe−γ t/2. Note that we
approximately have �(t ) ∼ α2γ t for γ t � 1. Now, with sym-
metry expansion, we can obtain

P̂ (0)
2M ρ̂(t )P̂ (0)

2M ∝ |0M,α(t )〉〈0M,α(t )|. (41)

Here, we use P̂0
2M |α(t )ei m

M π 〉 ∝ |0M,α(t )〉 ∀ m. Thus, we can
see that the state is perfectly projected onto the symmetric
subspace corresponding to the primitive state |�〉 = |α(t )〉.
Accordingly, defining fM (x) = ∑

l=0
(x)Ml

(Ml )! , the exact analyt-
ical form of the projection probability can be obtained as

p0(t ) = Tr
[
P̂0

2M ρ̂(t )
] = f2M (�(t )) f2M (α(t )2)

f2M (α2)
. (42)

Equation (42) can be approximated as

p0(t ) ∼ e−�(t ) f2M (�(t )) (43)

in the regime where the photon count is large enough and the
error rate is low as well. We note that, if �(t ) � 1, p0(t ) can
be further approximated as

p0(t ) ∼ e−�(t ). (44)

In the limit of α → ∞, we get p0(t ) → 1/2M in Eq. (42). In
Fig. 4, we plot the projection probability p0 in the low-error
and high-error regimes for γ t = 0.01 and γ t = 0.1. We can
observe that in the low-error regime, the approximations agree
well with the exact analytical solution Eq. (42). In the large-
error regime, we can see the behavior until the convergence
of the projection probability to 1/2M. As the photon number
increases, the approximation of Eq. (44) breaks down be-
cause �(t ) � 1 is not satisfied. Instead, Eq. (43) well-captures
the dynamics because terms in the series of f2M (�(t )) are
non-negligible. We can also observe that in the low-photon-
number regime, the projection probability stays closer to unity
in the exact solution; this is because states adjacent to the
vacuum state are highly symmetric.

B. Symmetry expansion for general logical cat states

For symmetry expansion of general logical states |ψM,α〉 =
a|0M,α〉 + b|1M,α〉, we apply the projector onto the code space

FIG. 4. Projection probability p0 versus the photon number |α|2
for M = 2. Brown and green indicate the low-error and high-error
regimes γ t = 0.01 and γ t = 0.1, respectively. Lined curves, trian-
gles, and dashed curves correspond to the exact analytical solution
(42), approximations in Eqs. (43) and (44).

P̂ (c)
2M . Let the initial state denote

ρ̂ψ (0) =
2M−1∑

m,m′=0

cmc∗
m′

∣∣αei πm
M

〉〈
αei πm′

M
∣∣. (45)

Here, cm = a√
N0

+ (−1)m b√
N1

and N0 and N1 are the normal-
ization factors of |0M,α〉 and |1M,α〉. Then, the state after time
t reads

ρ̂ψ (t ) =
2M−1∑

m,m′=0

cmc∗
m′e�(t )(ei m−m′

M π−1)

× ∣∣α(t )ei m
M π

〉〈
α(t )ei m′

M π
∣∣. (46)

Then application of the projector P̂ (c)
2M and the normalization

gives

ρ̂EM
ψ (t )

= 1

Nc

(
|c0|2|+(t )〉〈+(t )| + c0c∗

1
gM (�(t ))
fM (�(t ))

|+(t )〉〈−(t )|

+ c∗
0c1

gM (�(t ))
fM (�(t ))

|−(t )〉〈+(t )| + |c1|2|−(t )〉〈−(t )|
)

,

(47)

where Nc = |c0|2 + |c1|2, |+(t )〉 = 1√
M

∑M−1
k=0 ei 2πk

M N̂ |α(t )〉 ∼
1√
2
(|0M,α(t )〉 + |1M,α(t )〉), |−(t )〉 = 1√

M

∑M−1
k=0 ei 2πk

M N̂ |ei π
M α(t )〉

∼ 1√
2
(|0M,α(t )〉 − |1M,α(t )〉), and gM (x) = ∑

l=0
xMl

(Ml )! (−1)l .

The trace distance between ρ̂EM
ψ (t ) and the state |ψM,α(t )〉,

which is denoted as ρ̂ψ,α(t ), can be written as

D
(
ρ̂EM

ψ (t ), ρ̂ψ,α(t )
) = Mc

Nc

(
1 − gM (�(t ))

fM (�(t ))

)
, (48)

with Mc = |c0||c1|. Taylor expanding 1
fM (x) = 1 − xM

M! +
O(x2M ), we obtain

D
(
ρ̂EM

ψ (t ), ρ̂ψ,α(t )
) = 2Mc

Nc

�(t )M

M!
+ O(�(t )2M ). (49)
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FIG. 5. Trace distance between the state with (without) error
mitigation and the rotation code state ρ̂T,α(t ) depending on the photon
number |α|2. Green (Brown) lined curves indicate the exact numer-
ical results for the unmitigated (error mitigated) quantum states.
Brown triangles are the analytical results given in Eq. (49). We set
(a) M = 2 and (b) M = 4.

This clearly shows that the lower order of the error is
eliminated as the order of symmetry increases for �(t ) �
1. We plot the trace distance between the ideal state and
the noisy or error-mitigated states for the magic state
|TM,α〉 = 1√

2
(|0M,α〉 + eiπ/4|1M,α〉) in Fig. 5 for M = 2 and

M = 4 in the regime of γ t = 0.01. Because our analysis is
valid when coherent states constituting the logical states are
sufficiently distinguishable, we restrict ourselves to such a
regime in the plot. Refer to Appendix B for details.

Meanwhile, the corresponding projection probability is

pψ ∼ e−�(t ) fM (�(t )), (50)

where we assume 〈+(t )| − (t )〉 ≈ 0. We remark that the pro-
jection probability pψ can be further approximated to be pψ ∼
e−�(t ) in the case of �(t ) � 1. We also show the projection
probabilities for the noisy magic state onto the code space via
SE for M = 2 in Fig. 6 in the regime where each coherent
state of the cat code is sufficiently distinguishable. Note that
Eq. (50) agrees well with the exact result for γ t = 0.01 and
γ t = 0.1 until the convergence while the approximation by
pψ ∼ e−�(t ) fails to explain the dynamics. This is because the
contribution of fM (�(t )) is non-negligible over the regime.

C. Numerical simulation for the binomial code

We also benchmark the performance of our protocol for
the binomial code. Here, we plot the trace distance between
the error-free state and the noisy or error mitigated states

FIG. 6. Projection probability pT versus the photon number |α|2
for M = 2. Brown and green indicate the low-error and high-error
regimes for γ t = 0.01 and γ t = 0.1, respectively. Lined curves,
triangles, and dashed curves correspond to the exact numerically
simulated result, an approximation of Eq. (50), and an approximation
of pT ∼ e−�(t ), respectively.

for γ t = 0.01 against the photon number of the initial state
in Fig. 7 for the logical zero and magic states for M = 2.
We can clearly see that the error mitigated state is closer to
the error-free one than the noisy state, which confirms the
performance of our protocol. We also numerically calculate
the projection probability of SE for the logical zero states
and the magic state in Fig. 8. The behavior of the projection
probability is akin to the one for the cat code, especially in the

FIG. 7. Trace distance between the unmitigated or error miti-
gated states and the error-free states against the photon number for
the binomial code for (a) the logical zero states and (b) the logical
magic states. We set M = 2. Green-lined curves correspond to the
unmitigated case with the brown triangles denoting the error miti-
gated case.
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FIG. 8. Projection probability (a) p0 for the logical zero states
and (b) pT for the magic states against the photon number for
M = 2 in the case of the binomial code. Brown and green indicate
the low-error and high-error regimes γ t = 0.01 and γ t = 0.1, re-
spectively. Lined curves, triangles, and dashed curves correspond
to the exact numerical solution, approximations by (a) p0(t ) ∼
e−�(t ) f2M (�(t )) and (b) pT (t ) ∼ e−�(t ) fM (�(t )), and approximations
by e−�(t ), respectively.

large-photon regime, which may be attributed to the fact that
the photon number distribution of the binomial code comes
closer to Poisson distribution in the large-photon-number limit
and these codes asymptotically approach each other [24,63].

D. Sampling cost for quantum error mitigation

From the above discussions, in terms of both the cat code
and binomial code, considering the low-error regime, when
n̄(1 − e−γ t ) ∼ n̄γ t � 1 for the average photon number n̄, the
projection probability can be well-approximated as p ∼ e−n̄γ t .
Denoting the number of error mitigated initial states as NQEM,
we can see that the variance of the error mitigated observables
is amplified with C = e2n̄γ tNQEM for the error mitigation of
initial states from Eq. (21). Therefore, when we only ap-
ply symmetry expansion for the initial state preparation, if
n̄γ tNQEM � 2, we can perform quantum error mitigation with
the sampling overhead C � 54.6.

E. Numerical simulation of phase-error suppression

To observe the effect of phase-error suppression by the
application of the projector P̃phase in Sec. V, we here consider
phase noise described by a Lindblad master equation d ρ̂

dt =
γ

2 (2N̂ ρ̂N̂ − N̂2ρ̂ − ρ̂N̂2) with N̂ = â†â for four-legged cat
states. Note that application of rotation symmetry-based pro-
jectors, e.g., P̂ (0)

2M in Eq. (2), cannot suppress this type of error

FIG. 9. The trace distance between the ideal logical state and
the noisy or error mitigated state under phase noise depending on
the photon number |α|2. The green line denotes the noisy results
under the phase error, and brown triangles denote the error mitigated
results.

because of the commutation relationship [N̂, P̂ (0)
2M] = 0. We

consider the noisy state under the phase noise for the total
evolution time γ t = 0.1. We set � = 1.5, which translates
into the increased squeezing level �r = 0.589.

As illustrated in the Wigner function in Fig. 1(e), the uncer-
tainty of the phase becomes large due to the effect of the phase
noise. By applying the smeared projector P̃phase, we confirm
that the phase is stabilized.

We then investigate the qubit state constructed from the
expectation values of the logical Pauli operators, i.e.,

ρ̂ (L) = 1
2

(
Î + r (L)

X X̂ + r (L)
Y Ŷ + r (L)

Z Ẑ
)
, (51)

where r (L)
X = Tr[X̂Lρ̂in], r (L)

Y = Tr[ŶLρ̂in], and r (L)
Z =

Tr[ẐLρ̂in] for the input state ρ̂in with X̂L = ∑
m=0 |m〉〈m + M|,

ẐL = exp(i π
M N̂ ), and ŶL = iX̂LẐL. We consider the noisy and

the error mitigated state as the input state ρ̂in with the initial
state being the magic state.

We plot in Fig. 9 the trace distance depending on the
number of photons |α|2 between the ideal state and the error
mitigated state for the constructed qubit state in Eq. (51). It is
confirmed that the phase error is suppressed because the trace
distance is significantly reduced for a large-photon-number
state.

Furthermore, we plot the numerically calculated projec-
tion probability for the input of a noiseless four-legged cat
code state. Interestingly, although Eq. (31) is derived for the
superposition of squeezed vacuum states towards orthogonal
directions, Eq. (31) agrees well with the projection probability
for a cat code state for a sufficiently large increased squeezing
level, as demonstrated in Fig. 10.

VIII. CONCLUSION AND DISCUSSION

We propose a practical error mitigation technique for
RSBCs based on SE, which is especially useful for state
preparation. Because state preparation is an important build-
ing block for quantum computation using RSBCs due to the
necessity for gate operations, our protocol may significantly
enhance the overall computation accuracy. For applying SE
for state preparation, we introduce a novel method using
the generalized quantum process for virtually projecting
the quantum state onto the symmetric subspace. For the
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FIG. 10. The projection probability for the smeared projector for
phase noise-suppression for a four-legged cat code state. The brown
triangles denote the numerically calculated projection probability
and the green line denote the analytical result in Eq. (31).

implementation of SE, two controlled rotation operations are
performed by dispersive interactions between an ancilla qubit
and the bosonic qubit, followed by the subsequent measure-
ment of the ancilla qubit. Our protocol can circumvent an
experimentally demanding verification procedure depending
on postselection; thus, it will lead to dramatic noise reduction.
With the same formalism for error mitigation, we can virtually
generate the RSBC states that give the same expectation value
as the ideal one from a primitive state with a sample cost
proportional to M2 for the rotation order M.

We also benchmark our protocol for practical RSBCs: cat
codes and binomial codes. In regard to cat codes, we provide
a detailed analytical study of the projection probability onto
the symmetric subspace and the trace distance between the
error mitigated state and the ideal state for photon loss noise.
We confirm that the analytical results coincide well with the
exact numerical solutions. The results of trace distances indi-
cate that the error mitigated states are significantly closer to
the ideal one. In addition, the error mitigation performance
improves as M increases. We also evaluate the performance
of SE for binomial codes and verify that the noise effects are

similarly suppressed. The projection probability for binomial
codes approaches the behavior of that of cat codes in the
large-photon-number limit because the photon number dis-
tribution becomes approximated by the Poisson distribution.
Based on these arguments, we evaluate the sampling overhead
of SE in the low-error regime, which exponentially increases
with the number NQEM of error mitigated qubits, the effective
error rate γt = γ t , and the average photon number n̄. Note
that the error mitigation incurs an exponential increase of the
sampling overhead [64–67], and this also holds in our case.
Nevertheless, our method is useful in the regime n̄γ tNQEM =
O(1), and may find a good regime depending on the develop-
ment of bosonic quantum devices.

Finally, the combination of quantum error codes with quan-
tum error mitigation is an active research area [60,68–70].
An example of other methods than SE is probabilistic error
cancellation (PEC) [37,39] on the code space to effec-
tively increase the code distances [60,68], compensate for
gate decomposition errors such as approximation errors in
Solovay-Kitaev algorithms [60] and T gate errors [60,69,70].
Investigating the relationship between SE and PEC in the code
space is an interesting direction. For example, seeing whether
PEC can be combined with SE for further improvement of
computation accuracy for bosonic code quantum computation
could be practically important.
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APPENDIX A: ERROR-MITIGATED STATE AND THE PROJECTION PROBABILITY

To clarify the performance of our protocol, it is important to evaluate the error mitigated state and projection probabilities for
important states such as |0M,�〉, |TM,�〉. The Lindblad master equation for photon loss d

dt ρ(t ) = γ

2 (2âρ̂â† − â†âρ̂ − ρ̂â†â) leads
to [23,72,73]:

ρ̂(t ) =
∞∑

L=0

ρ̂L(t ), ρ̂L(t ) = (1 − e−γ t )L

L!
e−(γ t/2)N̂ âLρ̂(0)(â†)Le−(γ t/2)N̂ . (A1)

When we set the initial state to a superposition state of coherent states |ψ (0)〉 = ∑
m cm|αm〉, we can easily obtain

ρ̂(t ) =
∑
mm′

cmc∗
m′exp[(1 − e−γ t )αmα∗

m′ ]exp

(
−|αm|2 + |αm′ |2

2
(1 − e−γ t )

)
|αme−γ t/2〉〈αm′e−γ t/2|. (A2)

1. Error mitigation for |0M,α〉
Considering the case of |ψ (0)〉 = |0M,α〉 for |�〉 = |α〉, we have

ρ̂(t ) = 1

N

2M−1∑
m,m′=0

exp[−�(t )]e�(t )eiπ m−m′
M

∣∣α(t )ei m
M π

〉〈
α(t )ei m′

M π
∣∣. (A3)
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Here, N is the time-independent normalization factor, α(t ) = αe−γ t/2 and �(t ) = α2(1 − e−γ t ). Since P̂0
2M |α(t )ei m

M π 〉 ∝
|0M,α(t )〉 ∀ m, we can clearly see

P̂ (0)
2M ρ̂(t )P̂ (0)

2M ∝ |0M,α(t )〉〈0M,α(t )|, (A4)

which indicates that SE projects the noisy state onto the symmetric subspace of the RSBCs.
Now, we discuss the projection probability p0. We first calculate the normalization factor as

N =
2M−1∑

m,m′=0

〈
αe

iπm′
M

∣∣αe
iπm
M

〉 = e−α2
2M−1∑

m,m′=0

eα2exp(−i
π(m′−m)

M ) = 2Me−α2
2M−1∑
m=0

eα2exp(i πm
M ). (A5)

Here, in the second line we used 〈β|β ′〉 = exp(− 1
2 |β|2 − 1

2 |β ′|2 + β∗β ′) for two coherent states |β〉 and |β ′〉. In the third line,
we used the periodicity of the exponential function. Then, with Taylor’s expansion, we have

2M−1∑
m=0

eα2exp(i πm
M ) =

2M−1∑
m=0

∑
l=0

1

l!
α2lexp

(
i
πml

M

)
= 2M

∑
l=0

(α2)2Ml

(2Ml )!
= 2M f2M (α2), (A6)

where we define fM (x) := ∑
l=0

(x)Ml

(Ml )! and employ
∑2M−1

m=0 exp(i π lm
M ) = 2M for l = 2Ml ′ (l ′ = 0, 1, 2, . . .), otherwise 0. Thus,

we have

N = 4M2e−α2
f2M (α2), (A7)

which converges to 2M for sufficiently large α2. Since we have limα→∞N = 2M, we get limα→∞ f2M (α2) = eα2
/2M. The

projection probability p0 can be written as

p0 = Tr
[
P̂ (0)

2M ρ̂(t )P̂ (0)
2M

] = 1

N

2M−1∑
m,m′=0

exp[−�(t )]e�(t )ei m−m′
M π

(
1

2M

)2 2M−1∑
k,k′=0

〈
α(t )ei k′

M π
∣∣α(t )ei k

M π
〉
. (A8)

A similar argument for the calculation of the normalization factor leads to

2M−1∑
m,m′=0

e�(t )ei m−m′
M π = 4M2 f2M (�(t )), (A9)

and

N ′ :=
2M−1∑
k,k′=0

〈
α(t )ei k′

M π
∣∣α(t )ei k

M π
〉 = 4M2e−α(t )2

f2M (α(t )2). (A10)

Note that N ′ converges to 2M when α(t )2 is sufficiently large. Therefore, in the regime where the photon count is large enough
and the error rate is low, we obtain the approximated projection probability

p0 ∼ e−�(t ) f2M (�(t )). (A11)

The projection probability p0 can be further approximated as p0 ∼ e−�(t ) ∼ e−α2γ t under the assumption of f2M (�(t )) ≈ 1 for
α2γ t � 1. Meanwhile, the exact analytical expression of the projection probability can be obtained as follows:

p0 = f2M (�(t )) f2M (α(t )2)

f2M (α2)
. (A12)

2. Error mitigation for general logical qubit states

Here, we derive the error mitigated state and the projection probability for the general qubit state |ψM,�〉 = a|0M,�〉 + b|1M,�〉
under photon loss. The density matrix for the noiseless state can be described as

ρ̂ψ (0) =
2M−1∑

m,m′=0

cmc∗
m′

∣∣αei πm
M

〉〈
αei πm′

M
∣∣, (A13)

where cm = a√
N0

+ (−1)m b√
N1

with N0 and N1 being the normalization factors for |0M,�〉 and |1M,�〉. Hereafter, we assume
N0 = N1 = 2M by assuming a sufficiently large photon count. Under the photon loss noise described by Eq. (A1), we have the
state at time t :

ρ̂ψ (t ) =
2M−1∑

m,m′=0

cmc∗
m′e−�(t )e�(t )eiπ m−m′

M
∣∣α(t )ei m

M π
〉〈
α(t )ei m′

M π
∣∣. (A14)

062402-13



SUGURU ENDO et al. PHYSICAL REVIEW A 111, 062402 (2025)

Then we apply the projector onto the code space P̂ (c)
2M = 1

M

∑M−1
k=0 ei 2πk

M N̂ to the state ρ̂ψ (t ) to get

P̂ (c)
2M ρ̂ψ (t )P̂ (c)

2M = 1

M

{
|c0|2

M−1∑
k,k′=0

e−�(t )e�(t )ei
2(k−k′ )

M π |+(t )〉〈+(t )| + c0c∗
1

M−1∑
k,k′=0

e−�(t )e�(t )ei
2(k−k′ )−1

M π |+(t )〉〈−(t )|

+ c∗
0c1

M−1∑
k,k′=0

e−�(t )e�(t )ei
2(k−k′ )+1

M π |−(t )〉〈+(t )| + |c1|2
M−1∑

k,k′=0

e−�(t )e�(t )ei
2(k−k′ )

M π |−(t )〉〈−(t )|
}

, (A15)

where |+(t )〉 = 1√
M

∑M−1
k=0 ei 2πk

M N̂ |α(t )〉 ∼ 1√
2
(|0M,α(t )〉 + |1M,α(t )〉) and |−(t )〉 = 1√

M

∑M−1
k=0 ei 2πk

M N̂ |ei π
M α(t )〉 ∼ 1√

2
(|0M,α(t )〉 −

|1M,α(t )〉). Then, we obtain

P̂ (c)
2M ρ̂ψ (t )P̂ (c)

2M = Me−�(t )[|c0|2 fM (�(t ))|+(t )〉〈+(t )| + c0c∗
1gM (�(t ))|+(t )〉〈−(t )|

+ c∗
0c1gM (�(t ))|−(t )〉〈+(t )| + |c1|2 fM (�(t ))|−(t )〉〈−(t )|], (A16)

where gM (x) = ∑
l=0

xMl

Ml! (−1)l . Here, we use

1

M

M−1∑
k,k′=0

e�(t )exp(i
2(k−k′ )π

M ) =
M−1∑
m=0

e�(t )exp(i 2πm
M ) =

M−1∑
m=0

∑
l=0

1

l!
(�(t ))lexp

(
i
2πml

M

)
= M

∑
l=0

(�(t ))Ml

(Ml )!
= M fM (�(t )), (A17)

and

1

M

M−1∑
k,k′=0

e�(t )exp(i
2(k−k′ )±1

M π ) =
M−1∑
m=0

e�(t )exp(i 2m±1
M π ) =

M−1∑
m=0

∑
l=0

1

l!
(�(t ))lexp

(
i
(2m ± 1)π l

M

)

= M
∑
l=0

(�(t ))Ml

(Ml )!
(−1)l = MgM (�(t )). (A18)

Then, with proper normalization, we get the error mitigated state:

ρ̂EM
ψ (t ) = |c0|2

|c0|2 + |c1|2 |+(t )〉〈+(t )| + c0c∗
1

|c0|2 + |c1|2
gM (�(t ))
fM (�(t ))

|+(t )〉〈−(t )|

+ c∗
0c1

|c0|2 + |c1|2
gM (�(t ))
fM (�(t ))

|−(t )〉〈+(t )| + |c1|2
|c0|2 + |c1|2 |−(t )〉〈−(t )|. (A19)

For the magic state |TM,�〉 = 1√
2
(|0M,�〉 + eiπ/4|1M,�〉), we have

ρ̂EM
T (t ) = 1

2

(
1 + 1√

2

)
|+(t )〉〈+(t )| + i

1

2
√

2

gM (�(t ))
fM (�(t ))

|+(t )〉〈−(t )|

− i
1

2
√

2

gM (�(t ))
fM (�(t ))

|−(t )〉〈+(t )| + 1

2

(
1 − 1√

2

)
|−(t )〉〈−(t )|. (A20)

For the state |+iM,�〉 = 1√
2
(|0M,�〉 + i|1M,�〉), we get

ρ̂EM
+i (t ) = 1

2
|+(t )〉〈+(t )| + i

2

gM (�(t ))
fM (�(t ))

|+(t )〉〈−(t )| − i

2

gM (�(t ))
fM (�(t ))

|−(t )〉〈+(t )| + 1

2
|−(t )〉〈−(t )|. (A21)

The error mitigated state for the plus state |+M,�〉 = 1√
2
(|0M,�〉 + |1M,�〉) becomes

ρ̂EM
+ (t ) = |+(t )〉〈+(t )|. (A22)

This is because we have |0M,α〉 ∼ |+2M,α〉 in the large-photon-number limit.
On the other hand, we get the projection probability

pψ = Tr
[
P̂ (c)

2M ρ̂ψ (t )P̂ (c)
2M

] ∼ M(|c0|2 + |c1|2)e−�(t ) fM (�(t )) = e−�(t ) fM (�(t )), (A23)

where we assume 〈+(t )| − (t )〉 ∼ 0. For α2γ t � 1, the projection probability pψ can be further approximated as pψ ∼ e−�(t ) ∼
e−α2γ t .

APPENDIX B: THE REGIME WHERE THE COHERENT
STATES ARE DISTINGUISHABLE

The two coherent states |α〉 and |−α〉 (α ∈ R) are suffi-
ciently distinguishable for |α|2 � 1.5 with the overlap of two

states being approximately 0.2%. We denote such an ampli-
tude by α0. Then, we consider the regime where coherent
states constituting the RSCB with the rotation degree M have
a low enough overlap. The overlap of the |αM〉 and |αMeiπ/M〉
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FIG. 11. Wigner functions of (a) noisy cat states under phase
noise and (b)–(d) error mitigated states via a truncated projector P̂ (L)

X .
Panels (b), (c), and (d) show the cases of L = 1, L = 2, and L = 3,
respectively. We set γ t = 0.1.

(αM ∈ R) should be

|〈αM |αMeiπ/M〉|2 � |〈α0| − α0〉|2, (B1)

which leads to

|αM |2 � |α0|2
sin2

(
π

2M

) . (B2)

For example, we have |αM=2|2 � 3 and |αM=4|2 � 10.2,
which are used in the plot in Fig. 5.

APPENDIX C: PHASE-ERROR SUPPRESSION
VIA PHASE STABILIZERS

To clarify the complementary effect of P̂ (L)
X compared with

the projector obtained from rotation symmetries, we here
consider phase noise described by a Lindblad master equa-
tion d ρ̂

dt = γ

2 (2N̂ ρ̂N̂ − N̂2ρ̂ − ρ̂N̂2). Note that application of
rotation symmetry-based projectors, e.g., P̂ (0)

2M in Eq. (2), can-
not suppress this type of error because of the commutation
relationship [N̂, P̂ (0)

2M] = 0. Meanwhile, we found truncated
projectors can mitigate phase noise, as shown in Fig. 11.
The error mitigation effect can be enhanced as we increase
the truncation level L. This is because the projector P̂ (L)

X
has the effect of projecting the state onto the subspace in
which the phase is fixed, as indicated by the fact that phase
errors can be detected through the logical X measurement.
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