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Compton scattering mediated by quantum entanglement
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In this paper, the 16 Stokes parameters of a two-photon system are organized into a 4 × 4 Stokes matrix. This
formalism is then applied to analyze the polarization properties of annihilation photons produced by electron-
positron annihilation, with a particular focus on their evolution during Compton scattering interactions. The
study demonstrates that when one of the subsystems undergoes Compton scattering, quantum entanglement
preserves the polarization symmetry between the scattered and noninteraction photons, while in the absence of
entanglement, this symmetry is lost. Moreover, the method simplifies the calculation of the joint differential
cross section for multiple scattering scenarios and provides a means to characterize the polarization properties of
the individual subsystems. These findings highlight the impact of quantum correlations on scattering behavior,
and they offer a framework for further investigation into the polarization dynamics of entangled photon pairs.
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I. INTRODUCTION

Annihilation photons, particularly the pair of 511 keV
gamma rays produced during electron-positron annihilation,
play a critical role in a wide range of scientific and practical
applications. Notably, these photons are generated in a pure,
maximally entangled state, meaning that the linear and angu-
lar momentum correlations are correlated in a definite way
such that when the linear or angular momentum is measured
in one photon, the corresponding property of its partner is
instantly determined, regardless of the distance between them.
This condition can be formally described quantum mechani-
cally using what is known as a Bell state.

In astrophysics, space-based Compton telescope instru-
ments have been instrumental in detecting and studying
annihilation photons [1,2]. Notably, the COMPTEL instru-
ment aboard the Compton Gamma-Ray Observatory (CGRO)
has provided critical observations of the 511 keV gamma-ray
line, particularly from the Galactic Center [3]. These instru-
ments utilize Compton scattering techniques to localize and
analyze high-energy gamma rays, thereby offering valuable
insights into the processes governing positron annihilation in
various astrophysical environments.

In materials science, the detection of annihilation pho-
tons in positron annihilation spectroscopy (PAS) is used to
probe the microstructure of materials, providing insights into
defects, vacancies, and other structural characteristics at the
atomic scale [4]. Furthermore, in fundamental physics re-
search, annihilation photons serve as a sensitive probe for
testing the predictions of quantum electrodynamics (QED)
and the Standard Model, as well as for exploring potential new
physics beyond current theoretical frameworks [5,6].

In recent years, there has been a growing global interest
in utilizing quantum entanglement to enhance imaging in
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positron emission tomography (PET) through the integration
of Compton camera technology [7–10]. Research efforts have
proposed generalized theoretical frameworks [11–14] to pre-
dict the kinematics of annihilation photons while accounting
for the impact of entanglement on Compton scattering dis-
tributions. Additionally, feasibility studies have explored the
incorporation of quantum entanglement into PET systems.
For example, McNamara et al. [15], Eslami and Mohamadian
[16], and Kim et al. [17] have proposed methods that leverage
the quantum entanglement of annihilation photons to enhance
imaging performance.

Initially, the focus was on the case in which each photon
undergoes a single Compton scattering event [18,19]. The
kinematics of this scenario have been simulated based on the
theoretical work of Pryce and Ward [20] and Snyder et al.
[21], who calculated the joint differential Compton scattering
cross section while accounting for the effect of entanglement
on the scattering distribution of the final annihilation photons;
for brevity, this approach is referred to as the 2-Compton
scattering theory. More recently, Caradonna [14] calculated
the cross section for the case in which one photon undergoes
two Compton scattering events while the other undergoes only
one, an analysis referred to as the 3-Compton cross section,
which has shown good agreement with recent experimental
results [22,23].

Despite these advances, a systematic investigation of
the physical properties of maximally entangled annihila-
tion photons—especially their behavior following Compton
scattering—remains incomplete. The present study aims to
provide a theoretical framework to characterize the behavior
and polarization properties of these photons under specific
hypothetical conditions, which, in principle, can be conducted
experimentally using Compton camera devices.

The polarization characteristics of an isolated annihila-
tion photon beam are examined. This analysis establishes the
definitions and relationships needed to describe the unpolar-
ized state of a single beam, including the derivation of the

2469-9926/2025/111(5)/053708(13) 053708-1 ©2025 American Physical Society

https://orcid.org/0000-0001-7689-8425
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.111.053708&domain=pdf&date_stamp=2025-05-08
https://doi.org/10.1103/PhysRevA.111.053708


PETER CARADONNA PHYSICAL REVIEW A 111, 053708 (2025)

differential scattering cross section using the Stokes vector
formalism. Building on this foundation, a formulation is pre-
sented for the evolved density matrix of a two-photon system
following Compton scattering. In this approach, the initial
density matrix is transformed into a 4 × 4 Stokes density
matrix. Compared with the method described in [14], this
formulation allows for a more efficient calculation of the joint
differential cross section for scenarios involving two or more
Compton scattering events, and for analyzing the polarization
state of each subsystem after a Compton interaction. Since this
method is based on quantum field theory calculations [24], the
results are expected to be consistent with traditional quantum
field theory approaches.

This paper is organized as follows. Section II defines the
polarization basis, introduces the Stokes vector formalism,
and outlines the coordinate system and rotation conventions
used in the analysis.

Section III analyzes the Compton scattering of a single
annihilation photon beam. The results provide a refer-
ence model for interpreting polarization structure in the
bipartite Stokes density matrix when applied to the investi-
gation of the annihilation photons in Sec. V.

Section IV introduces the bipartite Stokes density matrix
formalism, which enables the computation of the conditional
Stokes vectors associated with each photon in a two-photon
system and the joint scattering differential cross sections.

Section V examines the influence of entanglement on the
polarization properties of two-photon annihilation states sub-
jected to Compton scattering. The section introduces both
entangled and classically correlated input states, formulates
their Stokes density matrix representations, and applies the
bipartite scattering framework to compute conditional polar-
ization quantities. In addition, the conditional Stokes vectors
are integrated over scattering angles to evaluate their behavior
under averaging, establishing a basis for interpreting both
postselected and trace-based measurements.

Finally, Sec. VI clarifies how the formalism captures con-
ditional polarization effects without violating locality, and
its potential use in PET imaging simulations is outlined.
It emphasizes the distinction between postselected correla-
tions and unchanged reduced states, and it highlights future
directions for modeling entanglement in realistic scattering
environments.

II. POLARIZATION CONVENTIONS

This section introduces the Stokes formalism as a geomet-
rically intuitive and experimentally meaningful framework for
describing polarization states relevant to Compton scattering.
The mathematical structure of the Stokes representation is
developed, including its connection to the circular polariza-
tion basis, its interpretation on the Poincaré sphere, and its
transformation behavior under azimuthal rotations.

Photon polarization is expressed in the circular basis
{|R〉, |L〉}, corresponding to right- and left-handed helicity
eigenstates with spin projections sz = ±1, as defined in Sec. II
of Ref. [13]. An arbitrary pure state in this basis is written as

|ψ〉 = c1|R〉 + c2|L〉, |c1|2 + |c2|2 = 1, (1)

where c1, c2 ∈ C are probability amplitudes.

The polarization state |ψ〉 given in Eq. (1) can be equiv-
alently described by a Stokes vector |S〉, defined using the
expectation values of Pauli matrices σi (i = 0, 1, 2, 3):

|S〉 =

⎡
⎢⎢⎣

S0

S1

S2

S3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

〈ψ |σ0|ψ〉
〈ψ |σ1|ψ〉
〈ψ |σ2|ψ〉
〈ψ |σ3|ψ〉

⎤
⎥⎥⎦. (2)

The Si parameters (i = 0, 1, 2, 3), given in Eq. (2), quantify
physically measurable polarization differences. S0 represents
the total beam intensity. S1 measures the difference in inten-
sity between vertical and horizontal linear polarizations, S2 is
the difference between linear polarizations at +45◦ and −45◦,
and S3 is the difference between right- and left-handed circular
polarizations.

The degree of polarization p quantifies the purity of the
beam and is given by

p = 1

S0

√
S2

1 + S2
2 + S2

3, 0 � p � 1. (3)

A state is pure if p = 1, and mixed otherwise.
The Stokes parameters define a point inside or on the

surface of the Poincaré sphere. Pure states lie on the surface;
partially polarized (mixed) states lie inside. The poles repre-
sent circular polarizations (S3 = ±1), the equator represents
linear polarizations, and intermediate points describe elliptical
polarization. Randomly polarized radiation corresponds to a
point at the origin. This geometrical interpretation is illus-
trated in Fig. 1(a).

Figure 1(b) illustrates the coordinate system adopted in
the laboratory frame. The coordinate axes x, y, z are chosen
such that the momentum of the incident photon is aligned
with the z-axis. The electric field vector lies in the xy-plane,
and azimuthal rotations φ about the z-axis in general will
transform the Stokes vector, since the Stokes parameters are
dependent upon the choice of axes. In Stokes space, such a
rotation corresponds to a transformation by an angle 2φ about
the S3-axis [25]. This transformation is represented by the
matrix

M(φ) =

⎡
⎢⎢⎣

1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1

⎤
⎥⎥⎦, (4)

which performs a clockwise rotation about the S3-axis when
viewed from above, as illustrated in Fig. 1(a). Since M(φ)
is orthogonal, its inverse equals its transpose: M(φ)−1 =
M(φ)�. Consequently, M(−φ) = M(φ)−1 = M(φ)�, as re-
quired for reversible azimuthal rotations.

Using Eqs. (2) and (4), the transformed Stokes vector |S′〉
in the rotated coordinate frame is then

|S′〉 = M(φ)|S〉 =

⎡
⎢⎢⎣

S0

S1 cos 2φ + S2 sin 2φ

−S1 sin 2φ + S2 cos 2φ

−S3

⎤
⎥⎥⎦, (5)

where the sign of S3 reflects the helicity convention adopted
in [13] and in the particle physics literature more generally.
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FIG. 1. (a) The Poincaré sphere illustrates various special cases
of polarization states, with the matrix M(φ) representing a clockwise
rotation by 2φ about the S3-axis when viewed from above. (b) The
corresponding Euclidean geometry, where the Stokes vector repre-
sents the classical electric field vector in the xy-plane. A rotation of
2φ about the S3-axis corresponds to a counterclockwise rotation by
φ in laboratory coordinates about z.

III. GEOMETRICAL AND POLARIZATION STRUCTURE
OF A SCATTERED PHOTON

This section investigates the Compton scattering of a single
annihilation photon beam. The analysis presented here estab-
lishes essential definitions and results for the single-photon
case, which will be used in Sec. V D to interpret the polariza-
tion structure of the bipartite Stokes density matrix describing
the two-photon annihilation system.

FIG. 2. Compton scattering: An incident photon with energy E0

and momentum �k0 strikes a stationary electron. Following the in-
teraction, the electron recoils with total energy ε and momentum
�p, subtending a polar angle ϕ with respect to �k0 (the z-axis). The
scattered photon emerges from the collision with energy E (θ ), where
θ is the scattering angle, and with momentum �k, oriented along the
z′-axis. The scattering geometry of the photon can be modeled by a
counterclockwise rotation about the z-axis by the angle φ followed
by a clockwise rotation about the x′-axis by the angle θ .

Throughout this work, natural units are adopted, normaliz-
ing the electron mass m, the speed of light c, and the reduced
Planck constant h̄ such that m = c = h̄ = 1. Consequently,
the kinetic energy E0 of incident photons from a monochro-
matic beam is expressed in units of mc2. For an incident
beam of annihilation photons with kinetic energy mc2, this
normalization yields E0 = 1.

Figure 2 depicts a hypothetical experiment designed to
isolate and study one of the annihilation beams produced from
a positron-emitting source. In this experiment, positrons are
assumed to annihilate with electrons at rest in a net spin-zero
configuration. This setup results in the emission of predomi-
nantly two photons in a back-to-back configuration, each with
an incident kinetic energy of E0 = 1. A collimator ensures that
only photons emitted along the z-axis are transmitted.

As shown in Sec. V B, Eq. (23), the isolated annihilation
beams are unpolarized. Accordingly, the Stokes vector |Ŝ〉 de-
scribing a single incident annihilation beam takes the standard
form for an unpolarized source such that

|Ŝ〉 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,

where the hat indicates normalization with respect to total
beam intensity, such that S0 = 1.
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Figure 2 depicts an incident annihilation photon with lin-
ear momentum �k0 = E0/cẑ = ẑ (in natural units), propagating
toward the origin of a Cartesian coordinate system defined by
{x, y, z}. Upon impact, it is assumed that the photon interacts
with a stationary electron whose spin is randomly aligned
with respect to the laboratory frame. The kinetic energy of
the scattered photon E (θ ) is given by the Compton relation

E (θ ) = 1

2 − cos θ
, (in units of mc2),

where θ is the scattering angle between the momenta of the
incident and scattered photons.

The linear momentum �k of the scattered photon, expressed
in terms of θ and φ, is given by

�k = − sin θ sin φ

2 − cos θ
x̂ + sin θ cos φ

2 − cos θ
ŷ + cos θ

2 − cos θ
ẑ.

By conservation of energy, the kinetic energy ε of the
recoiling electron is

ε = 1 − E (θ ) = 1 − cos θ

2 − cos θ
.

Neglecting the work function of the scattering medium, the
magnitude of the electron momentum is

|�p| =
√

ε(ε + 2) =
√

3 cos2 θ − 8 cos θ + 5

(2 − cos θ )2
,

with explicit vector form given by

�p = sin θ sin φ

2 − cos θ
x̂ − sin θ cos φ

2 − cos θ
ŷ + 2(1 − cos θ )

2 − cos θ
ẑ.

Alternatively, by combining energy and momentum con-
servation, the electron momentum vector may be written in
terms of the polar angle ϕ it makes with the z-axis:

�p =
√

ε(ε + 2)(sin ϕ sin φx̂ − sin ϕ cos φŷ + cos ϕẑ).

In the scattering frame {x′, y′, z′}, the relevant momenta are

�k0 = − E0 sin θ ŷ′ + E0 cos θ ẑ′,

�k = E (θ )ẑ′,

�p =
√

ε(ε + 2)(− sin(θ + ϕ)ŷ′ + cos(θ + ϕ)ẑ′).

In this convention, photon momentum vectors always lie
along the z- or z′-axes of their respective frames. The trans-
formation from {x, y, z} to {x′, y′, z′} is performed via a
counterclockwise rotation about z by angle φ, followed by a
clockwise rotation about x′ by angle θ , as shown in Fig. 2.
The x′-axis lies in the xy plane, and the y′-z′ plane defines
the scattering plane, containing both the scattered photon and
electron.

The objective here is to elucidate how these Euclidean
rotations transform the initial Stokes vector |Ŝ〉 into the final
polarization state |Ŝ′〉 of the scattered photon, whose elec-
tric field is confined to the x′y′ plane. This transformation
is modeled by a 4 × 4 Mueller matrix T (θ ). For an unpolar-
ized electron target, the Mueller matrix Tun(θ ) takes the form

[Eq. (28) of Ref. [13]]

Tun(θ ) = r2
o

2

(
E (θ )

E0

)2

⎡
⎢⎢⎣

t11 t12 0 0
t12 2 − t12 0 0
0 0 t33 0
0 0 0 t44

⎤
⎥⎥⎦. (6)

This matrix is symmetric such that Tun(θ ) = T �
un (θ ). The ele-

ments tmn are real-valued functions of θ , with explicit forms:

t11 = cos θ (cos2 θ − 3 cos θ + 3) − 3

cos θ − 2
,

t12 = sin2 θ,

t33 = 2 cos θ,

t44 = cos θ [cos θ (4 − cos θ ) − 5]

cos θ − 2
.

(7)

Using Eqs. (5) and (6), the transition from |Ŝ〉 	→ |Ŝ′〉 of
an unpolarized annihilation beam Compton scattering off an
unpolarized scattering medium is given by the matrix equation

|S′〉 = Tun(θ )M(φ)|Ŝ〉 = r2
o

2

(
E (θ )

E0

)2

t11|Ŝ′〉,

where

|Ŝ′〉 =

⎡
⎢⎢⎢⎢⎣

1
t12
t11

0
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

p′

0
0

⎤
⎥⎥⎥⎦. (8)

Using Eq. (3), it can be shown that the quantity t12/t11 is the
degree of polarization of the scattered beam and is denoted as
p′. Using the definitions for t11 and t12 given in Eqs. (7), it can
be shown that

p′ = t12

t11
,

p′ = (cos θ − 2) sin2 θ

cos θ (3 − 3 cos θ + cos2 θ ) − 3
. (9)

Figure 3 shows the degree of polarization p′ of the scattered
beam, defined in Eq. (9).

Figure 4 schematically illustrates the effect of Compton
scattering on the polarization state of an initially unpolarized
beam in Poincaré space.

The spectral decomposition of the scattered beam can be
found by transforming the Stokes vector |Ŝ′〉 into the density
matrix ρ ′ whose spectral elements belong to the Hilbert space
of states. Using the method of Abouraddy et al. [26], the
spectral decomposition of ρ ′ can be described by the equation

ρ ′ = 1

2

3∑
i=0

S′
iσi = Iv′ |V ′〉〈V ′| + Ih′ |H ′〉〈H ′|, (10)

where σi are the Pauli matrices. The basis state |V ′〉 cor-
responds to vertical polarization, oriented orthogonal to the
scattering plane and aligned with the x′-axis, while |H ′〉 de-
notes horizontal polarization, lying within the scattering plane
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FIG. 3. The degree of polarization of the scattered beam, result-
ing from an initially unpolarized 511 keV photon beam, is shown in
Fig. 2 as a function of the Compton scattering angle θ . It reaches a
maximum value of 0.69 at θ = 81.7◦.

and aligned along the y′-axis. The basis states in Eq. (10) are
defined as

|V ′〉 = 1√
2

[
1
1

]
, |H ′〉 = 1√

2

[
1

−1

]
. (11)

The fractional beam intensities Iv′ and Ih′ defined in
Eq. (10) can be expressed in terms of the degree of polariza-

BEFORE

M(φ)|Ŝ〉 (p = 0)
Tun(θ)M(φ)

S1

S3

S2

M(φ)

AFTER

|Ŝ ′〉 (0 ≤ p′ ≤ 0.69)

S ′
1

S ′
3

S ′
2

pp′

FIG. 4. BEFORE: An azimuthal rotation about the z-axis by an
angle φ (as shown in Fig. 2) corresponds to a clockwise rotation
about the S3-axis in Poincaré space, as viewed from the positive
S3 direction toward the origin. For an initially unpolarized beam
(p = 0), applying the rotation matrix M(φ) to the Stokes vector |Ŝ〉
leaves the vector unchanged, i.e., M(φ)|Ŝ〉 = |Ŝ〉, indicating rota-
tional symmetry, as expected for an unpolarized beam. AFTER: In
contrast, Compton scattering by an angle θ alters the magnitude
of the Stokes vector, corresponding to a change in the degree of
polarization p′ of the scattered beam (see also Fig. 3). The resulting
Stokes vector is aligned along the positive S′

1 axis, indicating that the
beam becomes partially polarized in the vertical direction relative to
the scattering plane. Since p′ < 1, it indicates a mixed final state.

FIG. 5. The normalized scattered beam intensities, Iv′ and Ih′ ,
represent the fractions of vertically |V ′〉 and horizontally |H ′〉 po-
larized photons, respectively, relative to the scattering plane for an
initial source of 511 keV unpolarized incident photons. The intensi-
ties of these two components are plotted as functions of the scattering
angle θ .

tion p′ from Eq. (9) as

Iv′ = 1 + p′

2
, Ih′ = 1 − p′

2
. (12)

The coefficients Iv′ and Ih′ represent the probabilities of
measuring a scattered photon in the |V ′〉 or |H ′〉 states, re-
spectively. Using Eqs. (10) and (11), we find that

Iv′ = 〈V ′|ρ ′|V ′〉, Ih′ = 〈H ′|ρ ′|H ′〉.
Figure 5 shows the normalized intensity fractions Iv′ and

Ih′ , defined in Eq. (12), which represent the proportions of the
beam in the |V ′〉 and |H ′〉 polarization states, respectively, as
functions of the scattering angle θ . These intensities satisfy
the normalization condition Iv′ + Ih′ = 1 for all angles. For an
initially unpolarized beam, the results are independent of the
azimuthal angle φ, consistent with rotational symmetry about
the propagation axis. The plots demonstrate that Compton
scattering acts as a polarization filter, preferentially enhancing
vertical polarization while suppressing horizontal polarization
relative to the scattering plane. The figure also illustrates the
probabilistic nature of this filtering process: for annihilation
photons, the likelihood of detecting a vertically polarized pho-
ton can approach—but never exceed—85% certainty.

The absolute probability of Compton scattering of an in-
cident annihilation photon in the direction of the z′-axis is
described by the differential Compton scattering cross sec-
tion dσ/d	. For annihilation photons with wavelengths of
2.4 × 10−12 m, polarization filters that can discriminate be-
tween the |V ′〉 and |H ′〉 states of the scattered beam are
not available. Therefore, polarization-insensitive detectors are
employed. Within the Stokes framework, these detectors are
characterized by the Stokes vector 〈I| = [1, 0, 0, 0] (Ref. [14],
Appendix B). For a beam of unpolarized annihilation pho-
tons scattering off unpolarized electrons, the differential cross
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section can be computed as follows:

dσ

d	
= 〈I|Tun(θ )M(φ)|Ŝ〉

= r2
0

2

cos θ [cos θ (cos θ − 3) + 3] − 3

(cos θ − 2)3
. (13)

IV. BIPARTITE STOKES DENSITY MATRIX

A. Single Compton scattering

Consider a general 4 × 4 density matrix ρ describing a
two-photon system in the Hilbert space H = H1 ⊗ H2,
where H1 and H2 correspond to subsystem 1 and 2, respec-
tively. The matrix ρ can be symbolically represented as

ρ =

⎡
⎢⎢⎣

ρ11 ρ12 ρ13 ρ14

ρ∗
12 ρ22 ρ23 ρ24

ρ∗
13 ρ∗

23 ρ33 ρ34

ρ∗
14 ρ∗

24 ρ∗
34 ρ44

⎤
⎥⎥⎦,

where ρ is expressed in the operational basis
|R, R〉, |R, L〉, |L, R〉, |L, L〉, ordered from top to bottom
and left to right, Hermiticity is ensured by the condition
ρ = ρ†, and where normalization is enforced by the trace
condition Tr[ρ] = 1.

Following the method introduced by Abouraddy et al. [26],
the density matrix ρ can be mapped to a real-valued 4 × 4
matrix of Stokes parameters via

Si j = Tr[(σi ⊗ σ j )ρ], i, j = 0, 1, 2, 3, (14)

where σ0 is the identity and σ1, σ2, σ3 are the Pauli matrices.
While this decomposition has been employed in optical sys-
tems, the present formulation applies it to Compton scattering,
where the Stokes parameters are explicitly organized into this
operator basis. The resulting matrix S, referred to here as the
Stokes density matrix, is given by

ρ 	→ S =

⎡
⎢⎢⎣

S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

⎤
⎥⎥⎦. (15)

The individual Stokes vectors |S1〉 and |S2〉 for subsystems
1 and 2 can be extracted directly from the first column and
row of S where

|S1〉 =

⎡
⎢⎢⎣

S00

S10

S20

S30

⎤
⎥⎥⎦, |S2〉 =

⎡
⎢⎢⎣

S00

S01

S02

S03

⎤
⎥⎥⎦. (16)

From these components, the conditional reduced density
matrices for the idler and signal photons are given by

ρ1 = 1

2S00

[
S00 + S30 S10 − iS20

S10 + iS20 S00 − S30

]
, (17a)

ρ2 = 1

2S00

[
S00 + S03 S01 − iS02

S01 + iS02 S00 − S03

]
. (17b)

The interpretation of these as conditional reduced density
matrices will be revisited in Sec. V D, where the formalism is
applied to the specific case of annihilation photon scattering,
and further elaborated in the Conclusion (Sec. VI).

Using the definition of the degree of polarization from
Eq. (3), the polarization/purities p1 and p2 of the respective
subsystems are given by

p1 = 1

S00

√
S2

10 + S2
20 + S2

30,

p2 = 1

S00

√
S2

01 + S2
02 + S2

03. (18)

If only subsystem 1 undergoes Compton scattering at polar
and azimuthal angles θ1 and φ1, respectively, the transformed
Stokes matrix S′

1 is described by the ansatz

S′
1 = Tun(θ1)M(φ1)S.

Conversely, if only subsystem 2 scatters, the evolved Stokes
matrix S′

2 is given by the ansatz

S′
2 = SM�(φ2)T �

un (θ2) = SM(−φ2)Tun(θ2). (19)

B. Multiple Compton scattering

Assuming that dispersion effects remain negligible for each
photon wave packet throughout m and n scattering events, the
cumulative effect of all m + n interactions is captured by the
transformed Stokes matrix

S(m,n) =
⎛
⎝ 1∏

j=m

T1 jM1 j

⎞
⎠S

⎛
⎝ 1∏

j=n

T2 jM2 j

⎞
⎠

�

, (20)

where
∏

denotes the product operator, and Tpj and Mpj rep-
resent the Compton scattering Mueller matrix and azimuthal
rotation matrix, respectively, for the jth scattering event ex-
perienced by photon p = 1, 2. The index j = 1 corresponds
to the first interaction, while j = m or n denotes the final
interaction registered in coincidence.

The Mueller matrix Tpj represents the general form of the
Compton interaction matrix, with its functional expression
given in Eq. (43) of [14] and matrix elements listed in Table 2.
The corresponding rotation matrices Mpj , defined in Eq. (45)
of the same reference, implement Stokes-space rotations by
an angle 2φp j about the S3 axis. A schematic depiction of the
complete (m, n) scattering configuration is provided in Fig. 2
of [14].

In the absence of scattering events (m = n = 0), the matri-
ces are defined as

Tp0 = Mp0 := I4,

where I4 is the 4 × 4 identity matrix.
Using Eq. (20), the absolute joint differential cross

section for the coincident detection of scattered photons fol-
lowing the mth and nth scattering events is given by

d2σ

d	1d	2
= 1

4
〈I1|S(m,n)|I2〉, (21)

where d	1, d	2 denote the solid angles subtended by the
detectors. This expression assumes that a pair of detectors
operates in coincidence mode.
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V. ENTANGLED VERSUS SEPARABLE STATES

A. Introduction

The entangled annihilation photon state with concurrence
C = 1 is contrasted with a hypothetical model that preserves
the polarization correlations of the Bell state but is represented
by a mixed state with concurrence C = 0. Originally proposed
by Bohm and Aharonov [27,28], this model reproduces the
polarization statistics of the entangled case while remaining
entirely separable.

In the Bohm-Aharonov mixed state, spin angular momen-
tum is not conserved in individual scattering events relative to
a fixed axis, unlike the Bell state [13]. However, as discussed
in [27], conservation holds on average, consistent with exper-
imental observations of annihilation photons. As a result, the
mixed state exhibits the same rotational symmetry about the
propagation axis as the maximally entangled case.

B. Initial-state construction and symmetry in Stokes space

Consider a two-photon system resulting from the anni-
hilation of an electron-positron pair with opposite spins at
rest. Each photon, with a kinetic energy of 511 keV, prop-
agates in opposite directions to conserve linear momentum.
The maximally entangled Bell state representing this system,
denoted |ψ−

c 〉 in the circular polarization basis and its linear
polarization basis equivalent |ψ+

l 〉, is detailed in [13], along
with its associated density matrix ρen. A key novel result of
this work is the application of Eqs. (14) and (15) to transform
ρen into its Stokes density matrix representation such that

ρen −→ S(ρen ) =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦. (22)

As with ρen, the corresponding Stokes matrix S(ρen ) is sym-
metric, satisfying S(ρen ) = S�(ρen ).

Applying the rule defined in Eq. (16), the unit Stokes vec-
tors for subsystems 1 and 2 can be extracted from the Stokes
matrix in Eq. (22). They are given explicitly by

|Ŝ1(ρen )〉 = |Ŝ2(ρen )〉 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦. (23)

Let p(1)
en and p(2)

en denote the degree of polarization for
subsystem 1 and 2, respectively. Using Eq. (18), we find that
p(1)

en = p(2)
en = 0, indicating that the two bidirectional beams

are initially unpolarized, as expected.
Using Eq. (17), the Stokes vectors in Eq. (23) can be

mapped to 2 × 2 reduced density matrices in Hilbert space,
denoted ρ (1)

en and ρ (2)
en for subsystems 1 and 2, respectively.

These matrices admit a spectral decomposition in the linear
polarization basis |V 〉, |H〉 such that

ρen1 = 1
2 |V1〉〈V1| + 1

2 |H1〉〈H1| = 1
2 1l2,

ρen2 = 1
2 |V2〉〈V2| + 1

2 |H2〉〈H2| = 1
2 1l2. (24)

annihilation
photons

collimator
and e+ source

x1 x′
1

y1

y′1

z1 = z ′
1

α

α

x′
2x2

−α

−α
y′2

y2

z2 = z ′
2

FIG. 6. A simple illustration depicts the coupled counter-rotation
of a bidirectional beam of 511 keV photons in the state |ψ+

l 〉
[Ref. [13], Eq. (21)]. The rotation is viewed from the positive z-axis
towards the origin. The beams are collimated to propagate along both
the positive and negative z-axis. A counter-rotation of the coordinate
system around the propagation axis by an azimuthal angle α is
applied. Due to the rotational symmetry of the quantum state |ψ−

c 〉,
this rotation leaves both the state and its associated Stokes density
matrix S(ρen ) unchanged [see Eq. (34)].

where 1l2 denotes the 2 × 2 identity matrix. This indicates
that each beam corresponds to an equal incoherent mixture
of vertical and horizontal polarization states.

The cross-polarization correlation relationship of |ψ+
l 〉 re-

mains invariant under a coupled rotation of the coordinate
systems around the propagation axis by an azimuthal angle
α, as illustrated in Fig. 6 [13,27]. In Stokes space, this cor-
responds to a clockwise rotation by an angle α about the
S30 axis for subsystem 1. Simultaneously, it corresponds to
a counterclockwise rotation about the S03 axis for subsystem
2. This transformation can be mathematically expressed as

S(ρen ) = M(α)S(ρen )M(α). (25)

With the z-axis aligned parallel to the beam propagating,
Eq. (25) implies that one is free to choose any orientation α

for the x- and y-axis. This freedom arises from the rotational
symmetry of the state |ψ+

l 〉 with respect to the propagation
axis [13,27].

In contrast, the Bohm-Aharonov mixed state (ρls) is con-
structed as an ensemble average over all cross-polarization
orientations, defined explicitly in [13]. Its transformation into
Stokes space is given by

ρls −→ S(ρls ) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 − 1
2 0 0

0 0 1
2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦, (26)

which is symmetric.
The corresponding unit Stokes vectors for subsystems 1

and 2 of the Bohm-Aharonov mixed state, derived using the
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same procedure in obtaining Eq. (23), are given by

|Ŝ1(ρls )〉 = |Ŝ2(ρls )〉 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦. (27)

As with the unit Stokes vectors |Ŝ1(ρen )〉 and |Ŝ2(ρen )〉 in
Eq. (23), the vectors |Ŝ1(ρls )〉 and |Ŝ2(ρls )〉 in Eq. (27) also
represent unpolarized beams. This outcome reflects the con-
struction of ρls and confirms that the Stokes vectors for both
subsystems in the mixed state are mathematically identical to
those in the entangled state. Therefore,

|Ŝ1(ρls )〉 = |Ŝ1(ρen )〉 = |Ŝ2(ρls )〉 = |Ŝ2(ρen )〉.
It follows that the reduced density matrices for subsystems

1 and 2 of ρls, denoted ρls1 and ρls2 , have spectral decomposi-
tions identical to those of ρen1 and ρen2 , given in Eqs. (24):

ρls1 = ρen1 , ρls2 = ρen2 .

In analogy with S(ρen ), the Stokes matrix S(ρls ) remains
invariant under a coupled rotation of the coordinate systems
about the propagation axis by an azimuthal angle α [see
Eq. (25)]. Accordingly, it satisfies the relation

S(ρls ) = M(α)S(ρls )M(α). (28)

C. Reformulation of 2- and 3-Compton scattering

Using the Compton scattering ansatz introduced in
Sec. IV A, together with Eq. (21), the joint differential cross
section for the 2-Compton scattering configuration is given by

d2σ

d	11d	21
= 1

4
〈I1|S(1,1)(ρen )|I2〉, (29)

where

S(1,1)(ρen ) = T11M11S(ρen )M�
21T �

21 .

For the 3-Compton scattering case—where one photon
(taken without loss of generality to be the photon associated
with subsystem 2) undergoes two successive scattering events
while the other undergoes one—the corresponding cross sec-
tion is given by

d2σ

d	11d	22
= 1

4
〈I1|S(1,2)(ρen )|I2〉, (30)

where

S(1,2)(ρen ) = T11M11S(ρen )M�
21T �

21 M�
22T �

22 .

Equations (29) and (30) recast the 2-Compton and
3-Compton scattering configurations—originally developed
in [20] and [14], respectively—in a generalized bipartite
Stokes matrix framework.

D. Evolved Stokes vectors under single-subsystem interaction

When both subsystems 1 and 2 are involved in Compton
scattering, the angular variables θ and φ are typically labeled
with subscripts 1 and 2 to distinguish the scattering geometries
of the respective subsystems. In this study, subsystem 2 is
arbitrarily selected to undergo Compton scattering in order to
examine how such an interaction influences the polarization
characteristics of both photon beams. The choice of subsystem
is inconsequential, as the results are expected to remain sym-
metric: in the center-of-mass frame and on an event-by-event
basis, the two annihilation photons possess identical kinetic
energy and are detected with correlated polarizations, either
both right- or both left-circularly polarized. Since only one
subsystem is considered to scatter, the subscript indices on
θ and φ are dropped, and it is to be understood that these
angles refer exclusively to the local coordinate system of
subsystem 2.

The photon associated with subsystem 2, which interacts
with an unpolarized electron medium, will henceforth be
referred to as the “signal photon.” Conversely, the photon
associated with subsystem 1, which does not interact with the
medium, will be referred to as the “idler photon.”

Let S′(ρen ) denote the Stokes density matrix that evolves
from the initial state S(ρen ) in Eq. (22) as a result of a
Compton scattering event involving the signal photon. Using
the rightmost expression in Eq. (19) (Sec. IV A), the evolved
matrix is given by

S′(ρen ) = S(ρen )M(−φ)Tun(θ ). (31)

As shown in Sec. IV B, the Stokes density matrix S(ρen ) is
invariant under a coupled rotation of the coordinate systems.
Exploiting this invariance, we substitute the expression for
S(ρen ) in Eq. (25) into Eq. (31), which yields

S′(ρen ) = M(α)S(ρen )M(α)M(−φ)Tun(θ ). (32)

Equating the right-hand sides of Eqs. (31) and (32) yields the
identity

S(ρen )M(−φ)Tun(θ ) = M(α)S(ρen )M(α − φ)Tun(θ ), (33)

where the composition property of rotation matrices
M(x)M(y) = M(x + y) has been used.

Since we are free to choose any value for α, we can set
α = φ, which implies α − φ = 0 and therefore M(0) = 1l4.
Equation (33) then reduces to

S′(ρen ) = S(ρen )M(−φ)Tun(θ ) = M(φ)S(ρen )Tun(θ ). (34)

The geometrical interpretation of the expression given on the
left- and right-hand side of Eq. (34) is illustrated in Figs. 7(a)
and 7(b), respectively.

Using Eqs. (4) and (6), it can be shown, for the case of
S′(ρen ), that Eq. (31) evaluates to

S′(ρen ) = r2
o

2

(
E (θ )

E0

)2

×

⎡
⎢⎢⎣

t11 t12 0 0
−t12 cos 2φ −(2 − t12) cos 2φ t33 sin 2φ 0
t12 sin 2φ (2 − t12) sin 2φ t33 cos 2φ 0

0 0 0 t44

⎤
⎥⎥⎦. (35a)

Additionally, since the Bohm and Aharonov mixed state ρls exhibits the same invariance under a coupled rotation of the
coordinate systems, the results derived for the entangled state using Eqs. (31)–(34) also apply to S′(ρls ).
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Substituting S(ρen ) in Eq. (31) with S(ρls ), the corresponding evolved Stokes density matrix S′(ρls ) has the following form:

S′(ρls ) = r2
o

2

(
E (θ )

E0

)2

×

⎡
⎢⎢⎢⎣

t11 t12 0 0
− 1

2 t12 cos 2φ − 1
2 (2 − t12) cos 2φ 1

2 t33 sin 2φ 0
1
2 t12 sin 2φ 1

2 (2 − t12) sin 2φ 1
2 t33 cos 2φ 0

0 0 0 0

⎤
⎥⎥⎥⎦. (35b)

The evolved Stokes vectors for the idler (|S′
i〉) and signal (|S′

s〉) beams, corresponding to the entangled state S′(ρen ) and the
Bohm-Aharonov mixed state S′(ρls ), can be expressed symbolically as

|S′
i (ρen )〉 = t11

r2
o

2

(
E (θ )

E0

)2

|Ŝ′
i (ρen )〉,

|S′
s(ρen )〉 = t11

r2
o

2

(
E (θ )

E0

)2

|Ŝ′
s(ρen )〉, (36a)

and

|S′
i (ρls )〉 = t11

r2
o

2

(
E (θ )

E0

)2

|Ŝ′
i (ρls )〉,

|S′
s(ρls )〉 = t11

r2
o

2

(
E (θ )

E0

)2

|Ŝ′
s(ρls )〉. (36b)

In formulating this theory, an apparent ambiguity arises
regarding which Stokes vector in Eqs. (35a) and (35b)—the
first column or the first row—corresponds to the signal or idler
photon beams. This ambiguity can be resolved by referencing
the single-beam analysis in Sec. III, where the final Stokes
vector derived in Eq. (8) is associated with the signal beam.
Based on this correspondence, the first row in Eqs. (35a)
and (35b) defines the polarization characteristics of the signal
beam. Consequently, the first column represents the polariza-
tion characteristics of the idler beam.

As a result of this identification process, the normalized
Stokes vectors of the idler beam |Ŝ′

i (ρen )〉 and signal beam
|Ŝ′

s(ρen )〉 symbolically introduced in Eq. (36a) for the initially
entangled state ρen are explicitly defined as

|Ŝ′
i (ρen )〉 =

⎡
⎢⎢⎣

1
−p′ cos(2φ)

p′ sin(2φ)
0

⎤
⎥⎥⎦, |Ŝ′

s(ρen )〉 =

⎡
⎢⎢⎣

1
p′
0
0

⎤
⎥⎥⎦. (37a)

Likewise, the normalized Stokes vectors of the idler beam
|Ŝ′

i (ρls )〉 and signal beam |Ŝ′
s(ρls )〉 symbolically introduced in

Eq. (36b) for the Bohm-Aharonov mixed state ρls are explic-
itly defined as

|Ŝ′
i (ρls )〉 =

⎡
⎢⎢⎢⎣

1
− 1

2 p′ cos(2φ)
1
2 p′ sin(2φ)

0

⎤
⎥⎥⎥⎦, |Ŝ′

s(ρls )〉 =

⎡
⎢⎢⎣

1
p′
0
0

⎤
⎥⎥⎦, (37b)

where the quantity p′ is the degree of polarization discussed
in Sec. III, Eq. (9), and Fig. 3 for the case of the single beam
analysis.

As shown in Eqs. (37a) and (37b), the S3 Stokes parameters
are zero, meaning that the state space of the Stokes vectors

for both the idler and signal beams after a Compton inter-
action are confined to the equatorial plane of the Poincaré
sphere, as illustrated in Fig. 8. The direction of the Stokes
vector for the idler beam, in both the maximally entangled
and Bohm-Aharonov mixed states, depends on the azimuthal
angle, which corresponds to the orientation of the scattering
plane of the signal photon. This Stokes vector subtends an
angle of 2φ relative to the negative S′

01-axis.
Using Eq. (18), the degree of polarization for the idler

and signal beams, both before and after scattering, can be
expressed for the entangled and mixed states as

pi(ρen ) = 0, ps(ρen ) = 0 (before),

p′
i(ρen ) = p′, p′

s(ρen ) = p′ (after), (38a)

and

pi(ρls ) = 0, ps(ρls ) = 0 (before),

p′
i(ρls ) = p′

2
, p′

s(ρls ) = p′ (after). (38b)

The results of Eqs. (38a) and (38b) for the postscattering
(after) case are plotted in Fig. 9. They demonstrate that when
the annihilation photons are in the maximally entangled state
ρen, the degree of polarization of the signal and idler beams
remains identical before and after scattering, irrespective of
the azimuthal or polar scattering angles. In contrast, in the
Bohm-Aharonov mixed state ρls—where entanglement is ab-
sent but cross-polarization correlations persist—the degree of
polarization of the idler beam after scattering of the signal
photon is always half that of the signal beam, irrespective of
the azimuthal or scattering angle. Since the key distinction
between the entangled state and the Bohm-Aharonov mixed
state is the absence of entanglement of the initial state in
the latter, this result suggests that entanglement of the initial
state preserves the polarization symmetry between the idler
and signal beams after Compton scattering. Furthermore, the
preserved symmetry in the degree of polarization between the
signal and idler beams constitutes a measurable property of
the system and can be regarded as a defining characteristic of
the final two-photon state as a whole.
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FIG. 7. (a) Rotation of the coordinate system of subsystem 2
about the z2-axis by an angle φ, while the coordinate system of
subsystem 1 remains fixed; (b) the reverse configuration, where the
coordinate system of subsystem 1 rotates while subsystem 2 remains
fixed. Both geometries are equivalent [Eq. (34)], yielding the same
evolved Stokes density matrix S′ representing either state ρen or ρls.

It is important to emphasize that the apparent change in
the Stokes vector of the idler photon following Compton
scattering of the signal photon, given in Eq. (37), does not
imply a violation of locality or the no-signaling theorem. In
this formalism, the evolved Stokes vector of the idler repre-
sents a conditional polarization state, reconstructed under the
assumption that the signal photon has scattered into a known
(θ, φ) direction and has been detected in coincidence with
the idler. This corresponds to a postselected subensemble and
is fully consistent with the framework of quantum steering.
However, when the signal photon is not postselected—that
is, when no information about its scattering direction is
retained—the true reduced state of the idler, obtained by trac-
ing over the signal subsystem, remains unchanged.

This result can be confirmed by integrating over the
scattering and azimuthal angle in the expressions for the
Stokes vectors |Ŝ′

i (ρen )〉 and |Ŝ′
i (ρls )〉, given in Eqs. (37a)

and (37b), respectively. This integration eliminates the con-
ditional dependence on the scattering geometry of the signal

IDLER

(a)

(p = 0)
ES and BA

BEFORE

(b)

ES p′max

BA p′
max

2

AFTER

SIGNAL

(c)

(p = 0)
ES and BA

BEFORE

(d)

ES and BA p′max

AFTER

FIG. 8. The Stokes vector space on the equatorial plane of the
Poincaré sphere, defined by the S1 and S2 axes, for the idler and
signal beams before and after Compton scattering. Plots (a) and
(c) show the Stokes vectors for the idler and signal beams in the
entangled state (ES) and Bohm Aharonov (BA) mixed states prior to
interaction, respectively. Plots (b) and (d) depicts the space of state
of the Stokes vector for the idler and signal beams, respectively, after
scattering. In plot (b), the light orange region represents the possible
positions of the idler Stokes vector in the case of the entangled state,
with a magnitude ranging from 0 to pmax. The darker orange region
indicates the state space of the mixed state, constrained between 0
and pmax/2. Plot (d) shows that the Stokes vector for the signal beam
is the same in both cases, confined along the positive S′

10 axis, with a
magnitude between 0 � p′ � p′

max, where p′
max = 0.69.

and recovers the original unpolarized state associated with the
idler. For the entangled case, define |Ŝ′

i (ρen )〉av as the θ - and
φ-averaged Stokes vector such that

|Ŝ′
i (ρen )〉av = 1

4π

∫ π

θ=0

∫ 2π

φ=0
|Ŝ′

i (ρen )〉d	 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦, (39a)

and similarly for the Bohm-Aharonov mixed case,

|Ŝ′
i (ρls )〉av = 1

4π

∫ π

θ=0

∫ 2π

φ=0
|Ŝ′

i (ρls )〉d	 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦, (39b)

where d	 = sin θdφdθ .
Equations (39a) and (39b) demonstrate that, in both cases,

the reduced state of the idler remains maximally mixed after
tracing over the signal. That is, when measurement outcomes
associated with the signal photon are averaged out, the Stokes
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FIG. 9. Degree of polarization as a function of the Compton
scattering angle θ for 511 keV photons. The green curve ( ) corre-
sponds to the single beam analysis presented in Fig. 3 and is plotted
here for reference. The ( ) curve represents p′

s(ρls ), the degree of
polarization of the signal beam in the Bohm-Aharonov mixed state,
as well as p′

i(ρen ) and p′
s(ρen ), the degrees of polarization of the idler

and signal beams when the photons are in a maximally entangled
state. The ( ) curve shows p′

i(ρls ), the degree of polarization of the
idler beam in the Bohm-Aharonov mixed state, which is consistently
half that of the signal beam across all scattering angles.

vector of the idler remains unchanged, regardless of whether
or not the signal has scattered. As a result, the reduced density
matrix of the idler remains invariant under the partial trace
operation.

It is useful to compute the joint differential cross-
section for both the maximally entangled and Bohm-
Aharonov mixed states in the setup shown in Fig. 7. Using
the formula in Eq. (19), the joint differential cross-section for
the evolved Stokes density matrices—corresponding to the
entangled state in Eq. (35a) and the Bohm-Aharonov mixed
state in Eq. (35b)—is given by

1

4
〈I1|S′(ρls )|I2〉 = 1

4
〈I1|S′(ρen )|I2〉 = 1

4

dσ

d	
, (40)

where dσ/d	 is the differential scattering cross-section ob-
tained from the single-photon beam analysis in Sec. III,
Eq. (13). Equation (40) with Eq. (13) are plotted in Fig. 10.

VI. CONCLUSION

A key finding of this work lies in the polarization sym-
metry between subsystems of the annihilation photons in the
maximally entangled state. The degree of polarization of the
idler beam is identical to that of the signal beam across
all scattering angles (θ, φ). In contrast, the Bohm-Aharonov
mixed state—lacking entanglement—exhibits a broken sym-
metry, with the idler beam showing only half the degree of
polarization of the signal beam. This contrast suggests that
entanglement may play a role in preserving subsystem sym-
metry and points to a potentially accessible observable for
distinguishing entangled from classically correlated photon
states in specific scattering scenarios.

FIG. 10. Differential cross section (in units of r2
0 ) for a single

unpolarized 511 keV photon beam ( ), and for a two-photon sys-
tem in the maximally entangled state (ES) and the Bohm-Aharonov
(BA) mixed state ( ). As shown, the differential cross sec-
tion is identical in both two-photon cases, indicating that coincidence
measurements alone cannot distinguish between entangled and clas-
sically correlated photon pairs.

It is emphasized that the apparent change in the Stokes
vector of the idler photon following Compton scattering of
the signal photon does not imply a violation of locality or
the no-signaling theorem. In this formalism, the Stokes vector
of the idler represents a conditional polarization state—one
reconstructed under the assumption that the signal pho-
ton scattered into a known direction and was subsequently
detected in coincidence. This conditionality defines a postse-
lected subensemble, fully consistent with quantum mechanics.

A plausible experimental strategy for accessing this condi-
tional state would involve allowing the idler photon to undergo
Compton scattering, with its angular distribution recorded on
a position-sensitive detector placed downstream. Although
the beam would also contain photons whose partners did not
scatter, coincidence timing can, in principle, be used to isolate
the relevant signal-idler pairs. This would leave primarily the
scattering pattern of the idler, from which its Stokes vector can
be inferred. The signal photon, by contrast, could be measured
using a standard photon counter, provided its azimuthal and
polar scattering angles are known. This kind of setup illus-
trates how quantum steering effects could be observed without
invoking nonlocal signaling.

When all scattering directions of the signal photon are
integrated over—that is, when no information about its out-
come is retained—the reduced density matrix of the idler
reverts to its original, unpolarized form. This invariance un-
derscores a central conceptual result: although the two-photon
state remains nonlocal in the quantum sense, the Compton
interaction itself is strictly local. It acts only on the signal
photon and induces no change in the marginal state of the
idler unless conditioned on a specific signal outcome. This
behavior is consistent with relativistic causality and the no-
signaling theorem, and it reinforces the distinction between
entanglement-driven correlations and dynamical nonlocality.

This result aligns with the findings of Shivashankara [29],
who used a framework based on quantum field theory and
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QED scattering amplitudes to model the interaction between
an unpolarized electron and a photon from a Bell pair—
specifically, the same entangled state commonly used to
describe annihilation photons.

While the present work is theoretical in scope, the closed-
form expressions derived for multiple Compton scattering—
particularly in the context of entangled annihilation photons—
offer an accessible framework for practical implementation.
The ability to evaluate joint differential cross sections in com-
pact analytic form enables a more straightforward integration
into simulation platforms such as GEANT4, making the for-
malism suitable for research and development projects.

This opens the door to systematic studies of how entan-
glement affects the polarization correlations of annihilation
photons undergoing multiple scattering events in PET de-
tectors. In particular, the framework facilitates modeling of
emerging Compton-PET architectures, where entanglement-
sensitive corrections to scattering distributions may influence
image reconstruction and detector response. While direct
experimental validation of higher-order scattering effects
(e.g., beyond 3-Compton) would likely require intense
positron-emitting sources and high-statistics datasets, the im-
mediate opportunity lies in using this theory to quantify
systematic effects due to multiple scattering within detector
media [22]. Embedding this model in Monte Carlo simula-
tions could help isolate subtle entanglement-induced features,
guide detector design, and strengthen the interpretability of
experimental data without necessitating large-scale dedicated
experiments in the near term.

Looking ahead, the formalism developed here establishes
a platform for further theoretical exploration of entanglement
dynamics in high-energy scattering regimes. In particular, the
ability to spectrally decompose postscattering states and com-
pute entanglement measures such as quantum concurrence
provides a route to quantifying residual correlations after par-
tial decoherence. These tools may prove valuable not only for
foundational studies of entanglement under Lorentz-invariant
interactions, but also for guiding detector design and data
analysis in advanced PET and Compton imaging systems.
Future work will focus on refining these tools and applying
them to increasingly realistic geometries and scattering con-
figurations.
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