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We suggest that the observed large annihilation rates of ortho-positronium (o-Ps) in halogen gases are due
to the process of dissociative Ps attachment Ps + X2 → PsX + X , where X stands for a halogen atom. This
process is similar to dissociative electron attachment which leads to formation of negative ions. We calculate the
cross section and rate of this process for the F2 molecule, for which it is exothermic and therefore can occur at
room temperature. We start with the Ps-F2 scattering calculations which take into account electron exchange and
correlations within the framework of the free-electron-gas model. The calculations reveal several resonances.
Similar to the process of dissociative electron attachment, a �u resonance contributes to the dissociative Ps
attachment at thermal energies. We determine the resonance position and width as functions of the internuclear
separation and use them as inputs for the local version of the quasiclassical theory of dissociative attachment.
Our calculations yield an anomalously large rate constant for the o-Ps annihilation process which is only one
order of magnitude lower than those observed for Br2 and I2.
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I. INTRODUCTION

In this paper we consider the process of dissociative attach-
ment of positronium (Ps) to halogen molecules, which may
explain anomalously large annihilation rates (quenching) of
Ps in these gases.

When fast positrons (e.g., those produced in β+ decay)
thermalize and ultimately annihilate in matter, a sizable
fraction of them forms Ps. This is true for positrons in as-
trophysical environments [1,2], in gases at normal conditions
[3], and for positrons in many condensed-matter systems
[4]. Ps is formed by the positron picking up an atomic
or molecular electron. Its formation is typically statistical,
with 25% of it being para-Ps (p-Ps, total spin S = 0) and
75% being ortho-Ps (o-Ps, S = 1). In vacuum, they annihi-
late predominantly by 2γ (p-Ps) or 3γ (o-Ps) annihilation,
with the lifetimes of 0.125 and 142 ns, respectively. Ps is
a fundamental leptonic system for testing QED [5] prob-
ing the effect of gravity on antimatter [6] and a prospective
resource for antihydrogen production (see [7] and other pa-
pers in this special issue). It also has a number of important
applications.

In gases and condensed-matter systems, the lifetime of o-Ps
is reduced by its interaction with surrounding molecules or
surfaces. In positron annihilation lifetime spectroscopy, this
effect enables one to estimate the sizes of pores in insulators
or free space in polymers. When o-Ps formed inside a pore
collides with its walls, the positron can annihilate rapidly by
2γ emission on one of the surface electrons. The reduction
in the lifetime of o-Ps can be related to the frequency of such
collisions and the dimension of the pores using the Tao-Eldrup
model (see [8] and references therein). A similar processes in
gases is known as the pickoff annihilation (or pickoff quench-
ing of o-Ps). The total annihilation rate of o-Ps can then be

written as

λo-Ps = λ3γ + λc(n), (1)

where λ3γ is the intrinsic annihilation rate of o-Ps in vacuum
and λc(n) is the annihilation rate due to Ps collisions with
the gas molecules, which depends on the number density of
the gas n. This rate is proportional to n and is traditionally
parametrized by [9]

λc(n) = 4πr2
0 cn 1Zeff, (2)

where 4πr2
0 cn is the Dirac 2γ annihilation rate for a positron

in an uncorrelated gas of electrons (assumed to be in the S = 0
state with the positron) and r0 and c are the classical electron
radius and speed of light, respectively. The dimensionless
parameter 1Zeff (also denoted by 1Zeff) is interpreted as the
effective number of electrons per gas atom or molecule in a
singlet state relative to the positron.

The values of 1Zeff measured for thermalized room-
temperature Ps in various gases are typically quite small, e.g.,
for lighter noble-gas atoms He, Ne, and Ar, one has 1Zeff =
0.125, 0.235, and 0.314, respectively [3]. For these atoms,
many-body theory calculations [10,11] show good agreement
with the measurements. For heavier noble-gas atoms (Kr and
Xe), original measurements yielded significantly larger val-
ues, 1Zeff = 0.478 and 1.26, respectively [3]. At the same time,
both gases yielded unexpectedly low Ps-formation fractions.
Mitroy and Novikov [12] showed that these findings could
be explained by o-Ps-to-p-Ps conversion due to the effect of
the spin-orbit interaction in Ps-atom scattering. The majority
of o-Ps would then annihilate prior to thermalization, leading
to reduced Ps-formation fractions and overestimated pickoff
annihilation rates. Subsequent measurements [13] confirmed
this understanding. These results showed that the o-Ps-p-Ps
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TABLE I. Dissociation energies D0 of halogen molecules and Ps
affinities (PsA) of halogen atoms.

D0 (eV) PsA (eV)

Species Refs. [22,23] Ref. [24] Ref. [25]

F2 1.60 2.806 2.718
Cl2 2.48 2.350 2.245
Br2 1.97 2.061 1.873
I2 1.54 1.714 1.393

spin-orbit conversion rates scale approximately as Z4 (Z being
the nuclear charge) and clarified the distinction between this
effect and pickoff annihilation (see also [14]). The resulting
pickoff annihilation rates are in good accord with the many-
body-theory calculations [11].

The experimental room-temperature 1Zeff values for most
molecular gases studied so far are similar to those of the
noble gases. They range from approximately 0.3 for N2 and
CO to approximately 0.5 for N2O, CO2, CH4 and CH3F and
approximately 0.8 for C4H10 (butane), with other polyatomic
gases such as NH3, CH3Cl, CH3Br, CCl2F2, SF6, and C2H6

having similar 1Zeff [15,16]. By contrast, several molecular
gases display much larger 1Zeff values: 44 ± 3 for O2 [3], 190
for NO, 1.15 × 104 for Br2, 1.26 × 104 for I2, and 5.7 × 105

for NO2 [15,17]. These numbers indicate that o-Ps annihila-
tion in these gases is due to processes other than the simple
pickoff annihilation. Thus, both O2 and NO contain electrons
with unpaired spins, which allows o-Ps to convert to p-Ps
by electron exchange (hence, exchange quenching [3] or spin
conversion [14]). When separated from the spin conversion,
the true pickoff annihilation for O2 is estimated to give 1Zeff =
0.6 ± 0.4 [18], similar to those for other molecules.

Much higher 1Zeff values for Br2, I2, and NO2, were in-
terpreted as “chemical quenching” [3,17], implying formation
of a Ps-molecule complex. It is known that Ps can bind to
many open-shell atoms, e.g., H, Li, C, O, Na, K, and Cu,
and to the halogen atoms F, Cl, Br, and I [19]. Ps binding
is facilitated by the ability of these atoms to form stable
anions, which means that the Ps-atom bound state has a strong
component of the Coulomb-bound positron-anion complex.
However, with the exception of Ref. [20], which calculated Ps
binding to the OH, CH, and NH2 radicals, nothing is known
about the possibility of Ps to attach to neutral molecules.1 It is
this problem that we address in the present work. In particular,
we show that low-energy dissociative Ps attachment to the
halogen molecules is likely responsible for the anomalously
high 1Zeff values observed for Br2 and I2.

Table I shows the dissociation energies of the halogen
molecules [22,23] and Ps affinities (PsA) of the correspond-
ing atoms, i.e., the Ps binding energies of the Ps-atom
complexes. The Ps affinities are from the multireference
configuration-interaction calculations [24] and many-body-
theory calculations [25]. In spite of some uncertainties, these

1This is in stark contrast to positron-molecule binding, which
supports very high positron-molecule annihilation rates due to vi-
brational Feshbach resonances [21].

values show that the process of dissociative Ps attachment
(DPsA)

Ps + AB → PsA + B (3)

is exothermic for fluorine, and possibly for bromine and io-
dine, and mildly endothermic for chlorine. This means that
low-energy Ps atoms (e.g., room-temperature thermal or those
with 0.1–0.2 eV) can drive the process of molecular dissocia-
tion accompanied by formation of Ps-atom bound states. The
Ps-atom complexes have lifetimes of about 0.5 ns [25]. This
means that their formation by the long-lived o-Ps atoms will
lead to rapid annihilation and result in significant increases of
the 1Zeff parameter. We thus argue that the high 1Zeff values
measured for Br2 and I2 (and possibly for NO2 too) can be
explained by DPsA. Such explanation, as opposed to some
rapid o-Ps–p-Ps conversion, is supported by measurements of
the momentum distribution of annihilation radiation from the
quenching [17], which indicate that positrons annihilate with
high-momentum atomic electrons.

The DPsA process (3) is analogous to dissociative electron
attachment (DEA),

e− + AB → A− + B, (4)

which leads to formation of negative ions and is important
in many contexts, e.g., gas discharges, plasmas, in biological
systems, and in astrophysical environments [26]. This and
other electron-molecule processes are often mediated by cre-
ation of temporary molecular anions (here AB−), which enable
efficient coupling between the light (electron) and heavy (nu-
clear motion) degrees of freedom.

A similar coupling is essential for positron annihilation in
most polyatomic molecular gases,

e+ + M → e+M → M+ + 2γ . (5)

Here annihilation proceeds via positron capture in vibrational
Feshbach resonances, i.e., vibrationally excited states of the
positron-molecule complex e+M, which increase the positron
annihilation rates dramatically [21]. For positron annihilation
in gases, the annihilation rate is traditionally parametrized as
λ = πr2

0cnZeff, where Zeff is the effective number of target
electrons that contribute to annihilation [cf. Eq. (2)]. For small
molecules, such as N2, O2, or CO2, its values for room-
temperature positrons are comparable to the actual number of
electrons (Zeff = 30.8, 26.5, and 53, respectively [3,27], show-
ing some enhancement due to long-range positron-molecule
attraction). However, for polyatomic molecules capable of
binding the positron, values of Zeff are increased by orders of
magnitude, e.g., Zeff = 3.5 × 103 for propane (C3H8), rising
to 1.78 × 106 for dodecane (C12H26) [28]. For larger poly-
atomic molecules the positron can remain attached to the
molecule for longer due to intramolecular vibrational energy
redistribution [29]. As a result, the lifetime of the complex
against positron autodetachment becomes large and the anni-
hilation cross section increases and can become comparable
to the geometrical cross section of the molecule.

Similar phenomena can occur in resonant Ps scattering.
Moreover, when the DPsA channel is open, this process would
also strongly increase the annihilation rate. To affect the an-
nihilation rate at thermal energies, the reaction (3) should
be exothermic, with the reaction threshold Eth = D0 − PsA
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being negative (or mildly endothermic, with a small positive
Eth). According to the data in Table I, the reaction involving
F2 is most certainly exothermic. Calculations for the lightest
halogen molecule are also less challenging. Hence, in this
paper we present theoretical results for Ps interaction with
F2 and show that DPsA indeed leads to an anomalously high
annihilation rate with 1Zeff ∼ 103. Atomic units (a.u.) are used
throughout the paper unless stated otherwise.

II. ELECTRON AND Ps SCATTERING FROM F2

AND POTENTIAL ENERGY CURVES FOR F2
− AND PsF2

Our DPsA calculations follow the general method used
for DEA mediated by a temporary anion state (see, e.g.,
Ref. [30]). To implement this, we first need to obtain the
resonance position and width for a range of internuclear sepa-
rations. This can be done by calculation of Ps-F2 collisions.
The problem of low-energy Ps scattering by molecules is
very challenging theoretically because of the importance of
exchange and correlations in these collisions. Here we use
the approach of Ref. [31] that accounts for these effects using
the free-electron-gas (FEG) approximation. It enables one to
calculate the Ps-target potential and was shown to work well
for Ps scattering from the noble gases, as well as N2, CO2, and
O2 (discussed below).

To check the reliability of the model, we applied it first
to electron-F2 scattering in 2�u symmetry. The resonance of
this symmetry is responsible for DEA to F2 at low energies.
Several calculations of this resonance and corresponding DEA
cross sections are available in the literature [30,32–40]. Anal-
ysis of experimental data on the attachment rate coefficients
[40] showed that the best theoretical DEA cross sections were
generated by Hazi et al. [34] using the Stiltjes momentum
imaging technique for calculation of the resonance width. In
a more recent study [30], we used the resonance position and
width from R-matrix calculations. The corresponding width
turned out to be a factor of 2 greater than that of Hazi et al.,
while the anion potential energy curve was consistent with
other accurate calculations.

Our present fixed-nuclei treatment of e−-F2 and Ps-F2

systems uses the scattering potentials calculated in the FEG
approximation [31,41]. In both cases, the FEG potentials de-
pend on the ground-state electron density which was obtained
from the PYSCF suite of quantum chemistry codes using the
cc-pVTZ basis [42–44].

We have previously applied the FEG model to Ps scattering
by rare-gas atoms [45], molecular targets such as N2, O2,
and CO2 [46–49], and polar molecules [50]. These calcu-
lations corroborated the similarity between the electron and
Ps total scattering cross sections at equal projectile velocities
for nonpolar molecules, as seen in experiment above the Ps
ionization threshold [51]. The calculations also confirmed ob-
servations of Ps scattering resonances near the Ps ionization
threshold [52,53].

The long-range behavior of the scattering potentials is dif-
ferent for electron scattering compared with Ps scattering. In
the former case (e−-F2), the polarization of the molecule dom-
inates the interaction, V (r) � −α/2r4. We describe it using
the spherical polarizability α = 7.84 a.u. [54] of F2 at the
equilibrium internuclear separation of Re = 2.668 a.u. In the

FIG. 1. (a) Total elastic cross section for e−-F2. The black solid
line shows the present FEG results and the blue dashed line shows
the R-matrix results of Morgan and Noble [57]. (b) Present FEG total
elastic cross section for Ps-F2.

Ps-F2 case, the long-range interaction is of the van der Waals
type, V (r) � −C6/r6, and we use C6 = 73.84 a.u., obtained
from the London formula [55] at equilibrium. This difference
in the long-range behavior of the scattering potentials leads to
different behavior between electron and Ps scattering at low
energies (velocities) [56].

Figure 1 shows the elastic cross sections for the electron
and Ps scattering from F2 at the equilibrium nuclear separa-
tion. The present e−-F2 cross section is in good agreement
with the R-matrix calculations of Morgan and Noble [57].
The electron cross section does not display any resonance
structure, whereas in the Ps-F2 case, we see several resonances
similar to those seen for Ps scattering from N2, O2, and CO2.

Figure 2 shows the partial �, �, and 	 cross sections with
gerade and ungerade symmetries for Ps-F2 elastic scattering

FIG. 2. (a) Partial elastic cross section for Ps-F2 scattering in
gerade symmetries. The black solid line shows �g; blue dashed line,
�g; and red dotted line, 	g. (b) Partial elastic cross section for Ps-F2

scattering in ungerade symmetries. The black solid line shows �u;
blue dashed line, �u; and red dotted line, 	u.
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FIG. 3. Ps-F2 eigenphase sum for the (a) 	g symmetry and
(b) �u symmetry at several values of the internuclear separation R
in a.u.

at the equilibrium separation. The cross sections display res-
onances in several symmetries, with the lowest two being
	g at 3.4 eV and �u at 4.4 eV. These resonances, as well
as the two at higher Ps energies (	u and �g), do not con-
tribute to DPsA because the corresponding potential energy
curves do not cross the neutral curve. In Fig. 3 we show the
eigenphase sums for the 	g and �u symmetries for several
values of the internuclear separation. Their position remains
well above zero energy even at R = 2.8 a.u. The absence
of similar resonances in e-F2 scattering is in variance with
previously experimentally observed [51,52] and theoretically
confirmed [46,48,56] similarities between electron and Ps
scattering when viewed as functions of the projectile veloc-
ity V for V ∼ 1 a.u. and higher, so for Ps energies higher
than 6–7 eV. The strongest resonance features we see in the
Ps-F2 scattering cross section are mostly below this energy;
therefore, the absence of these in electron scattering should
not be surprising. This situation is similar to that observed in
scattering by the O2 molecule [49] whereby the low-energy
resonance was theoretically predicted for Ps scattering, but
not for electron scattering. In the case of F2, from comparison
of exchange and correlation potentials for two projectiles, we
conclude that the total potentials with the centrifugal barrier
added are quite similar, the one for Ps being a bit shallower
but broader. The effect of the mass of Ps likely comes into
play here, making it easier to create resonances.

At low (thermal) energies, only the �u resonance con-
tributes to DEA to F2. In a similar way, the �u resonance is
also responsible for DPsA at thermal energies. Figure 4 shows
the �u phase shifts for the electron and Ps scattering by F2

for a range of internuclear separations R. In both cases, the
resonance becomes a true bound state for R ≈ Re.

Figure 5 shows the �u potential energy curves for the
e−-F2 (i.e., F2

−) and Ps-F2 systems obtained from the scat-
tering calculations described above. The anion curve U (R)
is also compared with the previous results [30]. The zero-
energy level corresponds to energy of the neutral molecule
at R = Re, and the internuclear separation is given in terms of
ρ = R − Re.

FIG. 4. Plot of the (a) e−-F2 eigenphase sum for the �u symme-
try and (b) Ps-F2 eigenphase sum for the �u symmetry at several
values of the internuclear separation R in a.u.

The present anion curve crosses the neutral curve at ρcr =
Rcr − Re = −0.071 a.u. compared to −0.023 a.u. in the earlier
calculation [30]. It still lies in the Franck-Condon region for
the transition from the ground vibrational state since the left
turning point for this state is at ρ = −0.107 a.u. We did not
carry out energy calculations in the region R > Rcr, as this is
not critical for DEA. However, extrapolation of our results to
this region with the account of U (∞) = −0.066 a.u. produces
a very deep minimum at ρ = 1.0 a.u. with Umin = −0.23
a.u. This is certainly an overestimate since in more accurate
calculations the value at the minimum is about −0.16 a.u.
Note that the asymptotic value of U (R) was obtained from
the F2 dissociation energy of D0 = 1.60 eV [22], vibrational
quantum h̄ω = 0.11 eV, and the electron affinity of F, equal to
3.40 eV.

The PsF2 curve of the �u symmetry demonstrates a lower
position of the resonance and a smaller value of the crossing

FIG. 5. Potential energy curves for F2 (purple solid line), F2
−

(blue solid line with yellow squares), and PsF2 (red solid line with
open circles) as functions of ρ = R − Re. The dashed curve labeled
“F2

− [30]” is the anion curve used in Ref. [30]. The blue and red
solid curves joining the symbols are the results of interpolation or
extrapolation using the Morse parametrization.
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TABLE II. Adiabatic resonance width in eV for F2
− and PsF2 for

a range of nuclear separations R.

�(R) (eV)

R (a.u.) F2
−, present F2

−, Ref. [30] PsF2, present

2.1 1.6270 0.9577
2.2 1.2826 0.7743
2.3 0.9180 0.4513
2.4 0.6063 1.786 0.0954
2.5 0.2897 0.912 0
2.6 0.0503 0.247 0

point ρcr = −0.250 a.u. Therefore, it lies in the classically
forbidden range outside the Franck-Condon region, and we
should expect the DPsA cross section to be lower than the
DEA cross section. The lower position of the resonance for
Ps-F2 compared to the e−-F2 scattering could be due to the
weaker centrifugal potential which is inversely proportional
to the mass of the projectile.

Table II shows the adiabatic resonance width �(R) for
F2

− and PsF2 systems and compares it with that used in
[30]. While the latter turned out to be an overestimate, the
present calculations most certainly underestimate the width.
This should lead to a further reduction of the DEA cross
section, since at low energies the survival factor is close to
unity and the cross section is proportional to the adiabatic
width [see Eq. (7) below].

III. DISSOCIATIVE ELECTRON ATTACHMENT TO F2

In [30] we compared the results of local and nonlocal
calculations of DEA to F2. The nonlocal effects are important
in this case since the local theory exhibits several unphysical
features. In addition to the incorrect threshold behavior [due
to the width �(R) being independent of the electron energy],
the local theory for F2 also produces unphysical oscillations in
the cross section as a function of energy due to the oscillatory
behavior of the survival factor. However, in the quasiclassical
(WKB) version of the DEA theory [36,58], these features dis-
appear and in particular the cross section exhibits the correct
threshold behavior. To understand this we note that in the
WKB approximation, the electron capture occurs at the fixed
internuclear separation, or the Franck-Condon point R = RF ,
which is found from

U (RF ) − U0(RF ) = E , (6)

where U (R) and U0(R) are the potential energy curves for the
anion and for the neutral molecule, respectively, and E is the
incident electron energy [58] [see Eq. (A3) in the Appendix].
Near the crossing point, the adiabatic width of the local theory
behaves according to the Wigner threshold law as

�(R) = const × [U (R) − U0(R)]a,

where a is the threshold exponent; a = 3/2 for the �u res-
onance. Substituting Eq. (6), we obtain the correct threshold
behavior

�(E ) ≡ �(RF ) = const × Ea.

FIG. 6. DEA cross sections for F2. Curve 1 shows nonlocal re-
sults calculated with the width obtained from R-matrix calculations
[30]; curve 2, quasiclassical approximation of the local theory [30];
curve 3, nonlocal results [40] obtained with the resonance width of
Hazi et al. [34]; and curve 4, present quasiclassical (WKB) result,
Eq. (7).

Further details of derivation of the quasiclassical expression
for the DEA cross sections are given in the Appendix. The
result is given by Eq. (A4) and has the form

σ = 4π2

k2
�(RF )Fv (E )s, (7)

where k is the electron momentum (E = k2/2 in atomic units),
Fv (E ) is the generalized Franck-Condon factor calculated us-
ing the uniform Airy function approximation [58], and s is the
survival factor

s = exp

(
−

∫ Rcr

R1(E )

�(R)

v(R)
dR

)
,

where R1(E ) is the turning point of the anion motion, Rcr is
the potential curve crossing point at which U (Rcr ) = U0(Rcr ),
and v(R) is the classical velocity of the nuclei in the anion
state. The cross section in Eq. (7) has the correct threshold
behavior of the DEA cross section σ ∝ �(E )/E ∝ Ea−1 [58].
In contrast, in the exact version of the local theory, all inter-
nuclear distances contribute to the DEA amplitude and cross
section, including those for which � is finite, and the cross
section diverges as 1/E .

Figure 6 shows the DEA cross sections for F2 calculated
using different methods. A comparison of the WKB version of
the local theory with the nonlocal results (both from Ref. [30])
shows that at low electron energies, the former underestimates
the cross sections by about a factor of 2. Calculations with the
present width lead to a further reduction in magnitude. This
makes our cross section comparable to the previous nonlocal
calculations [36,38] where the cross sections are too small,
apparently because of the underestimated resonance width.
We conclude that the uncertainty in the width is a major
factor that affects the accuracy of the cross section. Hence,
at the present level of accuracy of calculation of the width
with the FEG model, it suffices to use the WKB version of
the local theory, Eq. (7). The present DEA calculations in
the WKB approximation underestimate the best results by a
factor of 4. We expect the same accuracy for the DPsA cross
sections shown in Sec. IV.
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FIG. 7. Comparison of DEA and DPsA to the F2 molecule. The
blue solid curve shows the present quasiclassical results for DEA and
the red curves the present quasiclassical results for DPsA obtained
with various horizontal shifts of the PsF2 potential energy curve (see
the text for details).

IV. DISSOCIATIVE Ps ATTACHMENT: CROSS SECTIONS
AND THERMAL RATE COEFFICIENT

Figure 7 presents a comparison of the DEA and DPsA
cross sections for attachment to F2 calculated in the WKB
approximation of the local theory, Eq. (7). The calculations
use the potential energy curves shown in Fig. 5 and widths
�(R) shown in Table II, and for Ps, we replace k in Eq. (7)
by the Ps momentum kPs, linked to its energy by E = k2

Ps/4.
In addition to the calculation with the ab initio PsF2 potential
energy curve, we show the cross sections obtained with the
original curve shifted horizontally to the right by 	R = 0.02
and 0.05 a.u. (see discussion below). The peak value of the
DEA cross section (blue solid curve) is greater than that of
DPsA, calculated with the original curve (red dashed curve),
by a factor of 70. The reason for this is clear from a compar-
ison of the potential energy curves in Fig. 5 and resonance
widths in Table II. The curve crossing in the Ps case occurs in
the classically forbidden region, which strongly reduces the
Franck-Condon factor and the capture probability. The lower
width and higher incident momentum (for a given energy) in
the Ps case leads to a further reduction of the cross section.

In spite of the DPsA cross section being small on the
atomic scale, its contribution to the o-Ps annihilation rate ex-
pressed in terms of 1Zeff, is quite significant. Since the process
of DPsA leads to rapid annihilation, its contribution to 1Zeff

is estimated from the ratio of the DPsA rate to the Dirac
annihilation rate [cf. Eq. (2)],

1Zeff = 〈σV 〉
4πr2

0 c
.

The angular brackets in the numerator stand for the thermal
Maxwellian average of the rate coefficient σV , where V =
kPs/2 is the Ps velocity (in atomic units).

Calculation of the rate coefficient at room temperature
for the ground vibrational state of F2 gives 〈σV 〉 = 0.178 ×
10−10 cm3/s, which corresponds to 1Zeff = 596. A further
averaging over the initial vibrational-state distribution of F2

at room temperature leads to 1Zeff = 629. This reflects the fact
that cross section increases dramatically with the growth of

TABLE III. Thermal-averaged rate coefficients and 1Zeff for
DPsA by F2 at T = 300 K with various shifts 	ρ of the PsF2

potential energy curve.

	ρ (a.u.) ρcr (a.u.) Rate (10−10 cm3/s) 1Zeff

0 −0.2505 0.1882 629
0.02 −0.2213 0.4509 1507
0.05 −0.1810 1.281 4281

the initial vibrational level, affecting the rate coefficient even
at room temperature, even though the thermal energy kBT is
four times smaller than the vibrational quantum h̄ω. These
numbers should be regarded as a lower bound since the DPsA
cross section we obtained is likely an underestimate by as
much as a factor of 5. However, even this value is anoma-
lously large: It is greater than the spin-orbit quenching rate
coefficients for O2 and NO and is only one order of magnitude
lower than the rates observed for Br2 and I2 [15,16].

In order to estimate how the position of the curve cross-
ing influences the cross section and rate coefficient, we
performed additional calculations with the PsF2 potential en-
ergy curve shifted to the right by small amounts (0.02 and
0.05 a.u.), assuming the same adiabatic width as a function of
energy. Since the Franck-Condon factor grows exponentially
when the crossing point moves towards the classically al-
lowed region, the cross sections and rate coefficients increase
dramatically. In particular, shifting the curve by 	ρ = 0.02
and 0.05 a.u., increases Boltzmann-averaged 1Zeff to 1507
and 4281 respectively. The corresponding cross sections are
shown in Fig. 7, with Table III summarizing the results for the
rate coefficients and 1Zeff. Note that in both cases, the crossing
point ρcr remains to the left of the classically allowed region
(ρ = −0.107 a.u.).

V. CONCLUSION

Although measurements of o-Ps annihilation rates in the F2

gas are not available, the present calculations strongly suggest
that anomalously large annihilation rates observed in heavy
halogen gases Br2 and I2 can be due to the process of DPsA.
Hence, we believe that the DPsA is the likely mechanism
responsible for chemical quenching. Perhaps a similar mecha-
nism is operative in the NO2 gas where the annihilation rate is
extremely high with 1Zeff = 8 × 105. This could be explained
if the DPsA cross section in this gas at thermal energies is
of the order of 10−15 cm2. The measured DEA cross sec-
tions for NO2 [59] give a much lower value of approximately
10−17 cm2. The theoretical paper [60] reports a much higher
peak value of approximately 10−16 cm2, but the calculated
threshold for the e− + NO2 → NO + O− reaction is 1.71 eV,
making the DEA cross section negligible at thermal energies.
We have seen, however, that replacing the electron by Ps can
drastically change the dissociative attachment dynamics due
to the sensitivity of attachment cross sections to the potential
energy curves and resonance widths. Therefore, it is not un-
likely that the DPsA cross section for NO2 is higher at thermal
energies.

Note added in proof. We recently became aware of an early
prediction of a possible DPsA process in Ps-Cl2 collisions
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with the threshold 0.5 eV which could explain enhanced “res-
onant” Ps annihilation in Cl2-Ar mixtures [61].
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APPENDIX: OUTLINE OF QUASICLASSICAL THEORY
OF DISSOCIATIVE ATTACHMENT

Since our version of the quasiclassical theory of dissocia-
tive attachment is somewhat different from the original work
of Kazansky and Yelets [58], we outline our derivation here.

The differential cross section, averaged over all molecular
orientations, in the axial-recoil approximation is given by [62]

dσv

d�K
= 2π2K

Mk2
|ξv (R, K̂)|2, R → ∞,

where K is the momentum of the relative motion of the
molecular fragments, M is the reduced mass of the target, k
is the projectile (electron or Ps) momentum, and the function
ξv (R, K̂) describes the fragments’ relative motion. The sub-
script v indicates the initial vibrational state of the molecule.
Expansion of ξv (R, K̂) in partial waves

ξv (R, K̂) =
∑
lm

Ylm(K̂)ξvlm(R)

gives the equation for the partial amplitude ξvlm(R) in the local
approximation,(

− h̄2

2M

d2

dR2
+ U (R) − i

2
�(R) − E

)
ξvlm(R)

= −il γlm(R)√
2π

ζv (R), (A1)

where γlm(R) is the complex partial capture amplitude, U (R)
is the potential energy of the resonance state, �(R) is its width,
and ζv (R) is the wave function of the initial vibrational state.
From now on we will assume for simplicity that the capture
occurs into a state with a fixed angular momentum l and
its projection m and will drop the index m. The solution of
Eq. (A1) can be written as

ξvl (R) = − il

√
2π

∫
G(R, R′)γl (R

′)ζv (R′)dR′,

where

G(R, R′) = M

iK
ψ (r)(R<)ψ (+)(R>)

is the Green’s function, R< = min{R, R′}, R> = max{R, R′},
and ψ (r) and ψ (+) are the regular and outgoing-wave solutions

of the homogeneous version of Eq. (A1) with the asymptotic
behavior

ψ (+) � eiKR, ψ (r) � e−iKR − SeiKR,

with S the scattering matrix. Finding the asymptotic form of
ξvl (R) for R → ∞, we obtain for the integrated cross section

σv = πM

Kk2

∣∣∣∣
∫

ψ (r)(R)γl (R)ζv (R)dR

∣∣∣∣
2

. (A2)

We now use the quasiclassical approximation by represent-
ing the wave functions in the form [63]

ψ (r)(R) = 2

√
K

p(R)
sin[S(R) + π/4],

ζv (R) =
√

2Mωv

π p0(R)
sin[S0(R) + π/4],

where p0(R) and p(R) are classical momenta for the nuclear
motion in the neutral potential U0(R) and the anion potential
U (R), respectively, S0(R) and S(R) are corresponding classi-
cal actions, and ωv is the classical frequency of the motion
in the potential U0(R). The equations above are given for the
classically allowed region, but an extension to the classically
forbidden region is straightforward.

The integral in Eq. (A2) is evaluated using the saddle-point
method. The result is reduced to the product of the general-
ized Franck-Condon factor and the survival probability factor.
Since the derivation of the latter is well known [62,64], we
will outline here calculation of the former assuming that the
resonance width �(R) is sufficiently small so that the saddle
point is given by the solution of the equation

Et − U (R) = εv − U0(R), (A3)

where Et is the total energy and εv is the vibrational energy of
the initial state. Equation (A3) represents the Franck-Condon
condition: The kinetic energy of the nuclear motion does not
change during electron capture. Denoting the solution of this
equation by RF and assuming that γl (R) is changing much
slower than ψ (r) and ζ (R), we obtain∫

ψ (r)(R)γl (R)ζv (R)dR = γl (RF )Iv,

where

Iv =
∫

ψ (r)(R)ζv (R)dR =
(

2KMωv

π p0(Rv )p(Rv )

)1/2

×
∫

cos[S(R) − S0(R)]dR.

The saddle-point method is hence reduced to the stationary
phase method, with the result

Iv =
(

4ωvK

p0(RF )|F − F0|
)1/2

cos(	S − π/4),

where F0 = −(dU0/dR)R=RF , F = −(dU/dR)R=RF , and
	S = S0(Rv ) − S(Rv ). Note also that, according to Eq. (6) or
(A3), p0(RF ) = p(RF ).
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This result is valid if the Franck-Condon point lies in
the classically allowed region sufficiently far from the turn-
ing points. Generalization to an arbitrary position of Rv is
achieved by the uniform Airy function approximation [58].
Briefly, it is reduced to the substitution

cos(	S − π/4) → √
π

(
3
2	S

)1/6
Ai

[ ± (
3
2	S

)2/3]
,

where Ai is the regular Airy function and the sign of its argu-
ment depends on whether the Franck-Condon point lies in the
classically forbidden or classically allowed region. We finally
obtain the expression for the cross section in the quasiclassical
approximation,

σv = 4π2

k2
s

ωv�(RF )

p0(RF )|F − F0|
(

3

2
	S

)1/3

Ai2

[
±

(
3

2
	S

)2/3
]
,

(A4)

where we use �(RF ) = ∑
l |γl (RF )|2 and the fact that the sum

is reduced to one term if the resonance is dominated by a
single partial wave l .

The survival factor s is given by [62,64]

s = exp

(
−

∫ Rcr

R1

�(R)

v(R)
dR

)
,

where v(R) = p(R)/M is the classical velocity for the mo-
tion in the potential U (R). The lower integration limit
R1 is reduced to RF if RF lies in the classically al-
lowed region. Otherwise the turning point for the motion
in the potential U (R) should be taken. The upper limit
Rcr is the curve crossing point where �(R) becomes
zero.
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